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Abstract: Asymptotic stability of unicycle-like robots proved to be involved 

due to Brockett's condition. By using a smooth, time-invariant controller 

constructed out of Bessel’s functions, in this paper unicycle-like robots are 

uniformly-exponentially stabilized to the origin. The pure feedback controller 

obtained provides closed-form trajectories with the possibility of a simple and 

feasible (hardware) non-linear observer construction from posture angle 

measurements solely. Two examples are presented: Asymptotic steering of a 

unicycle to the origin using gyros and a perfect non-linear observer 

reconstruction states along with conclusions and future work.  
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Introduction 

Modelling mechanical systems can be carried out in 

two main ways (Angeles and Kecskemethy, 1995): 

 

 Dynamic models including forces and torques 

 Kinematic models excluding forces and torques 

 

Both approaches aim to collect a system of Ordinary 

Differential Equations (ODE’s) parameterized in its 

control inputs (Astolfi et al., 1997; Bloch, 2015).  

These ODE systems are mainly non-linear, with a 

universal modeling given by Sarkar et al. (1994) in the 

case of kinematic rolling constraints. 

It turns out that dynamic models represent the most 

general approach to account for all possible physical 

interactions that may occur. However, these models are 

out of as many ODE’s as the mechanical systems’ degrees 

of freedom (Kane and Levinson, 1985; Angeles and 

Kecskemethy, 1995). 

At this point, two main challenges must be dealed with: 

 

 A great amount of ODE’s 

 A control law rendering the system asymptotically 

stable/stable (Kostić et al., 2009; Udwadia and 

Kalaba, 1994; Skowronski, 2012) 

 

For these reasons, many researchers focus the 

attention on more tractable models, yet keeping the non-

linear richness with fewer amounts of ODE’s (Muñoz-

Lecanda and Yániz Fernandez, 2008).  

This explains the great interest in controlling 

kinematic models (Siegwart et al., 2011) with the case of 

mobile robots as a subset of kinematic modeling, mainly, 

wheel planar kinematic models.  

Moreover, it happens that these models can be 

classified into two universal classes: Holonomic and 

Nonholonomic (Garcia and Agamennoni (2012) for a 

universal classification and models). 

As pointed out by Jian et al. (2010), El-Hawwary and 

Maggiore (2008) and Qu et al. (2004), holonomic 

robots are simpler than nonholonomic, being one of the 

reasons that many techniques have been proposed 

without any convergence's guarantee (Lavalle, 2006; 

Galceran and Carreras, 2013; Kumar and Dewangan, 

2016; Yang et al., 2016; Salaris et al., 2010; Wang et al., 

2009; Thomas et al., 2016). 

On the other hand, it is well-known that a 

nonholonmic robot cannot be stabilized asymptotically 

with a smooth controller due to Brockett’s condition 

(Brockett, 1983).  

For this reason, many different techniques have been 

proposed to control nonholonomic robots avoiding the 

use of time-invariant controllers (Zambelli et al. (2015) 

and the references therein). 

However, none of the available techniques considers the 

stabilization's problem in closed-form. In fact, according to 

Lizárraga (2004), it is not possible to track some desired 

trajectories with an equi-continuous control law. 

To summarize the literature's drawbacks in 

controlling nonholonomic robots, either path-following 

or asymptotic stability: 
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 Planar curves must be parameterized to be followed 

f(x,y) = 0 (Morro et al. (2011)) 

 Path’s curvature must satisfy some specifications: 

f(x,y)  0 ( Morro et al. (2011)) 

 Very oscillatory and slow motion (see for instance 

Moon Kim and Tsiotras (2002)) 

 Brockett’s condition 

 Lizárraga’s obstructions 

 Closed-form solution’s unavailability for a universal 

set of models 

 Closed-form algorithms to track/follow any desired 

pre-specified trajectory 

 

In this paper, generalizing the solution presented in 

Garcia et al. (2008), a smooth time-invariant controller is 

presented to steer in closed-loop a unicycle-like robot to 

the origin uniformly exponentially stable. 

The contributions in this paper are as follows: 
 

 Closed-form solution to steer unicycle robots to the 

origin 

 Continuous feedback controller with guaranteed 

stability 

 The proof that a unicycle can be asymptotically 

stabilized measuring considering modularity 

 A non-linear observer with angle output 

measurement (gyros) 
 

This paper is organized as follows: Section Rolling 

constraints presents the modeling of rolling constraints 

to be considered, trajectories’ closed-form solution using 

a smooth, time-invariant controller, Section Unicycle’s 

asymptotic stability presents the asymptotic stability 

analysis, Section Practical controller: Only gyros 

presents a practical algorithm, whereas Section Examples 

simulates in Matlab. Finally, Section Conclusions 

depicts some conclusions and future work. 

Notations and Definitions 

In this short section, some definitions are provided to 

use all along the paper: 

Rotation Matrix 
 

cos( ) sin( )
( ) 

-sin( ) cos( )

x x
R x

x x

 
  
 

 

 

Matrix Eigenvalues 

Given a matrix n nA  , the eigenvalues (A):  

 

 ( ) detA I A 0      

 

With I the identity matrix. 

Matrix Transpose 

Given a matrix n nA  , the transpose is denoted by A’. 

Derivatives with Respect to Time 

Time derivatives are indicated as: 

 

( )
( )

dx t
x t

dt
  

 

Rolling Constraints: Unicycle-Like Robots 

As mentioned previously, mechanical systems that 

roll without slipping encompass the modeling for many 

mechanical systems (Bloch, 2015).  

Moreover, according to Murray and Shankar (1993) 

any nonholonomic system can be written in a universal 

chain form, so unicycle models can be considered as a 

general nonholonomic dynamics. 

In particular, unicycle-like robots represents a 

universal modeling for a wide variety of wheeled robots 

(Garcia and Agamennoni, 2012) and Fig. 1: 

 

 

 

 

 

  1

2

cos 0

sin 0

0 1

x t x
u

y t x
u

t

   
    

      
    

   

 (1) 

 

where the control inputs (u1, u2)  1  1. 

Bessel’s Functions Closed-form Solutions 

Following the ideas in Garcia et al. (2008), a lemma 

can be proved. 

Lemma 1 

Given the dynamics in Equation 1 driven by the 

controller: 
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 



 

 

For any arbitrary N  , with a <0. The robot's 

trajectories are given by: 
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
 (2) 

 

With Ji the Bessel’s functions of first kind and Ci 

arbitrary constants depending on the initial conditions. 
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Fig. 1: Unicycle-like robot with coordinates 

 

Proof 

The proof is in the Appendix. 

Equation 2 states clearly the origin as an equilibrium 

point if and only if limt (t) = 0. 

Unicycle’s Asymptotic Stability 

Equation 1 defines a dynamics that it is endowed 

with uniform exponential stability by using Lemma 1 

(Rugh (1995) for a definition on stability).  

Theorem 1 

The controller in Lemma 1 possess uniform 

exponentially stability to the origin. 

Proof 

The proof is in the Appendix. 

Clearly, it is a closed-loop and time-invariant 

controller, except for (0) = 0, (rendering the controller 

identically zero). 

However, the posture angle is a modular quantity: 

 

   0 0 0 2  mod 2         

 

This modularity property avoids Brockett’s condition 

collision. On the other hand, in a paper by Aicardi et al. 

(1995) a closed-loop controller using Lyapunov 

techniques was presented, however that controller 

becomes singular at x(0) = 0, y(0) = 0, whereas the 

controller in this paper is well defined for the whole 3. 

Regular Embedded Sub-Manifold: Trajectories’ 

First Integral 

Notwithstanding that the closed-form solution obtained 

represents the complete system's time evolution; a 

geometrical point of view is of interest in what follows. 

Considering the closed-form trajectories in Lemma 1 

with N = 2: 
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Compactly: 
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x t
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y t
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Where: 
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Matrix L() is nonsingular in the view of the Bourget’s 

hypothesis proved in 1929 by Siegel (Watson, 1966). 

Then, trajectories’ regular embedded sub-manifold 

(first integral) follows (Bloch (2015), Isidori (1995) and 

Nijmeijer and van der Schaft (1990) for details in 

geometrical control): 

 

   
 

 
1

x t
C L R
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 (3) 

 

Equivalenlty: 
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Non-Linear Observer 

Equation 3 can be utilized to derive a non-linear 

observer measuring only the angle posture (Luenberger 

(1966) and Isidori (1995) for linear and non-linear 

observers): 
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 (4) 

 

Practical Controller: Only Gyros 

Once that uniform exponential stability has been 

proved in Theorem 1, a practical algorithm can be 

described to control in closed-loop a unicycle robot: 

 

 Determine the constant vector C  from Equation 3 

given the initial conditions 

Y 

X x 

y 

 
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     
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C L R

yC
 
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 Use the controller in Lemma 1with N=2 and single 

gyro measurements: 

 

   

 
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 
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 
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Notice that only the initial condition must be 
provided to initiate the algorithm, endowing the 
controller with a very strong property for the well-known 
SLAM problem (Lavalle, 2006).  

Only SLAM must be made at t = 0 as opposed to the 
available literature where SLAM or time-tracking has to 
be performed on-line. 

Examples 

Using Matlab, Lemma 1 is implemented with both 
objectives: steering to the origin asymptotically stable 
and non-linear observer reconstruction. 

 

 
 

Fig. 2: Unicycle’s closed-loop trajectories 

 

 
 

Fig. 3: Numerical verification 
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Using Gyros 

Considering the arbitrary initial condition: [1.345,-

4.567,2.078]'. Then, Fig. 2 is obtained. 

Non-Linear Observer Verification 

Equation 4 provides an interesting verification to 

numerically reconstruct robot’s states. Then, Fig. 3 is 

obtained. 

Discussion 

Unicycle robot’s asymptotic stability is not possible 

using a time-invariant feedback controller due to 

Brockett’s condition. 
In this paper, the modularity of the angular posture 

along with a novel pure feedback and time-invariant 
controller, allows asymptotic stability for unicycle robots. 

It should be clear that modularity was not studied 
previously in the literature, excluding also closed form 
solutions addressed in this paper. 

It turns out that, besides the fact of providing the 
important concept of a modular controller, SLAM and 
non-linear observers con be constructed in hardware 
using posture angle solely. 

Conclusion 

Nonholonomic trajectories of a unicycle-like robot is 

solved in closed-form using a smooth, closed-loop and 

time-invariant controller.  
Uniform exponential stability was proved, even for this 

case (unicycle robot) where Brockett’s condition is satisfied 
on the basis of modularity. In fact, postural angle’s 
modularity was the cornerstone to avoid obstructions using 
smooth, closed-loop, time-invariant control laws.  

Besides the wide variety of available literature, 

trajectories’ closed-form knowledge allowing an explicit 

non-linear observer derivation to completely reconstruct 

states using only a single gyro sensor, makes a salient 

property of this paper.  

Possible future work encompasses:  
 

 Numerical algorithm to drive a set of multiple robots 

with additional constraints (formation of robots) 

 Non-linear observer’s numerical analysis robustness  

 Real-time applications using on-board gyros and 

microprocessors 

 Satellite control using gyros, applying the universal 

transformation in Murray and Shankar (1993) 

 Optimal control 
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Appendix 

Lemma 1 Proof 

Let’s consider an auxiliary system: 

 

 

 

cos
,   1, ,

sin
i iX u i N





 
   
 

 

 

Summing up: 

 

 

 1 1

cos

sin

N N

i i

i i

X u


 

 
  
 

   
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Defining: 

 

1

1 1

N N

i i

i i

X X u u
 

     

 

Considering the inspiring guess: 

 

     2 1 cos sin   

,   1, ,

i iu a i X

a 0 i N

         

 
 (5) 

 

Then: 

 

       
1

2 1 1 0
0

iX a i R R 
         
 

 

 

Defining the change of coordinates: 

 

 i iZ R X   

 

Taking derivatives with respect to time: 

 

 2 1

0
i i

i a
Z Z





   
  

 
 (6) 

 

Defining the control input: 

 

 
   

 

,

0 , 0 0
0

2 , 0 0

2u a a 0

 


 

  

 
 

 

 

 

Equation 6 leads: 

 

 2 1

0

i
i

idZ
Z

d




 

   
   

 
 (7) 

 

Equation 5 means: 

 

   2 1 1 0   i iu a i Z       

 

So, only the first component of vector Zi needs to be 

considered. Taking derivative with respect to  in 

Equation 7: 

 

 
 

 
   1 12

12 1 2 1
i i 2

i

dZ dZ
i i Z

d d

 
   

 
            

 

For this Bessel’s ODE, a closed-form solution is 

known (Andrews (1985) pp.229): 

 

      1

1

i

i i i i iZ C J D Y         

With {Ji, Yi} the Bessel’s functions of first and 

second kind respectively. Assuming Di = 0. Finally, for 

Zi2 from Equation (6): 

 

 
   

 

   

1

2 1

1

1

2 1i

i i

i

i i i

dZ i
Z Z

d

Z C J


 

 

  

  
  


   

 

 

Utilizing the Bessel’s function property: 

 

 
   1

i

i i

dJ i
J J

d


 

 
    

 

Then: 

 

     

   
 

 

1 1

2

1
2 1

1

i i

i i i i

i i

i i

i
Z C J J

i
i J J

    


   


 




     



 
        



 

 

Equivalently: 

 

   1

2 1

i

i i iZ C J  


       

 

This completes the proof. 

Theorem 1 Proof 

First, the origin must be an equilibrium point. 

Equation 2 shows that the origin is an equilibrium point 

as long as (t) is exponentially tending to zero. 

Moreover, this equilibrium point is attractive to the 

origin uniformly (taking into account the Bessel’s 

functions of first kind’s uniform decay behavior): 

 

   

 

 
 

 

 1
1

, 0 lim ( ) 0  (Uniformly)

0 (Uniformly)

t

N ii 1

ii
i

t a t a t

x t J
R C

y t J

  


 










    

   
       

   


 

 

Finally, an exponential bound is proved: 

 

 

 
 

 

 
1

1

N ii

ii 1
i

x t J
R C

y t J


 







   
      

   
  

 

Bessel’s functions are bounded at the origin ( = 0), 

so uniform exponentially stability is proved. This 

completes the proof. 


