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Abstract: Sensor outputs are used when finding the position of an 

Autonomous Aerial Vehicle (UAV). Outputs such as air pressure, vehicle 

acceleration or magnetic field help the vehicle decide its attitude and 

altitude. However, it must also predict the next movement of the vehicle. 

The Kalman Filter is used to assist observing and predicting the state of a 

system. To achieve this, sensors and a model that can predict the future 

movement of the vehicle are needed. In practice, the sensors and models 

are not perfect. There are always uncertainties like weather conditions. 

Also the data from the sensors are often noisy. Getting less noisy data for 

an unmanned aerial vehicle is important for stable flight. This uncertainty 

is reduced with the Kalman Filter. The mentioned uncertainties can be 

reduced using the Kalman Filter and more stable data can be obtained. 
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Introduction  

This article focuses on the sensor noise filtering of the 

altitude of an UAV. Many different types of sensors can be 

used to measure height in UAVs. Some of these sensors are 

barometer, ultrasonic and laser distance sensors. These 

sensors have advantages and disadvantages among others. 

Laser sensors have more resolution and quicker response 

time than ultrasonic sensors (Sasidharan et al., 2016). But 

ultrasonic sensors are cheaper and have wider field of view. 

Above 5-10 m altitude, it is better to use a barometer. But 

barometer sensors are usually not very sensitive and are too 

noisy due to factors such as temperature and wind. Using a 

UAV with raw data from the sensors used is not a healthy 

method. Due to incorrect altitude data along with unstable 

flight, there may be an accident at the time of landing. It is 

necessary to make the data more noise-free by using a 

number of filters. In this study, performance comparison 

was made by examining different filters. As mentioned, the 

sensor data is noisy. They can vary depending on various 

factors such as temperature, density, wind. Equation 1 and 2 

are also given the height measurement equations of 

ultrasonic and barometer sensors, respectively: 
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where the coefficients are as: T current temperature, t 

time, p atmospheric pressure at defined level, p0 sea 

level standard atmospheric pressure, L temperature 

lapse rate, T0 sea level standard temperature, g Earth-

surface gravitational acceleration, M molar mass of dry 

air, R universal gas constant (Gąsior et al., 2014). 

When these equations are examined, they appear to 

vary depending on temperature. 

Figure 1 and 2 show changes in ultrasonic and 

barometer height data depending on temperature. As 

can be seen from the figures, the barometer sensor is 

more noisy when temperature changes.  

This study was written to examine the Kalman 

filter as well as various filters. Kalman filter was 

published by (Kalman, 1960) as a paper titled "A 

New Approach to Linear Filtering and Prediction 

Problems". The Kalman filter is used, especially in 

the guidance and control of aircraft, spacecraft and 

autonomous vehicles. Kalman filter works on linear 

models, as will be mentioned later. Extened Kalman 

Filter (EKF) and Unscented Kalman Filter (UKF) 

algorithms have been developed for nonlinear 

models (Rhudy et al., 2013). In this study, the 

Kalman filter will be examined. This paper will be 

helpful for previous (Kurttay et al., 2018) and 

upcoming projects on UAVs in the Automatic Control 

and Robotics Laboratory. EKF and UKF will be 

examined in later studies.  
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Fig. 1: Altitude-temperature graph (Ultrasonic sensor) 

 

 
 

Fig. 2: Altitude-temperature graph (Barometric sensor)

 

Materials and Methods 

In this Section, some filters used to reduce sensor 

noise and the Kalman filter will be examined. Getting 

average is a simple way for filtering. Distance value, 

ht observes the altitude of the UAV. Average is 

calculating with below equation: 
 

0

ˆ /
n

t tx h n
 

  
 
  (3) 

 

x̂t means estimate of the true state xt. But getting 

average requires some memory. Because all values 

must be kept since the measurement is taken. As 

shown in the Fig. 3, noise of the sensor is reduced. 

However, there is still a lot of noise. It would be 

more efficient to recursively estimate rather than take a 

direct mean: 

 1
ˆ 1 /t t tx x t h t        (4)

 
 

Using recursive average, we can perform the 

computation more efficient without storing all the data 

(Tellex et al., 2018). As shown in Fig. 4, sensor noise 

is slightly reduced compared to the normal average. 

The disadvantage of the average filter is the time it 

takes to process the data. An alternative to this 

method is the moving average method. Instead of 

averaging all the data at once, the averages are added 

to the general average at certain intervals (Raudys and 

Pabarškaitė, 2018). 

As shown in the Fig. 5, there is some delay 

because the operation is performed at certain periods. 

As the calculation period is reduced, the delay is 

reduced. Delay is advantageous in terms of spent 

power. However, memory usage is still high because 

it is necessary to store previous data as well. 
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Fig. 3: Average result

 

 
 

Fig. 4: Recursive form result

 

 
 

Fig. 5: Moving average result 
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Fig. 6: Exponential smoothing result 

 

Exponential filter is a recursive filter and creates 

new optimized data using the latest optimized data 

and new data. The mathematical model is as shown 

below (Ostertagová and Ostertag, 2011): 
 

 1
ˆ ˆ1i i iy y y      (5) 

 

yi new measurement, ŷi last smoothed value, ŷI +1 new 

smoothed value and α represents smoothing constant. 

In Fig. 6, exponential smoothing filter with different 

smoothing constant is examined. Smoothing constant 

greatly changes the characteristic of the filter. If the 

smoothing constant is small, the filter responds a little 

later, but returns a smoother result. If the smoothing 

constant is large, the filter will respond to changes sooner, 

but the results will not be very smooth. 

Exponential filter does not need much memory, as 

only the final measurement must be stored. Another 

advantage is that it does not consume much power 

because it does not take too much measurement. 

Low-pass and High-pass filters are one of the 

most popular filters today. It is often preferred because 

its application is easy and fast. These filters can be 

examined in two classes: Active and Passive. Active 

elements such as transistor or operational amplifiers are 

used in active filters, passive elements such as 

inductors, capacitors and resistors are used in passive 

filters. Active elements require external source for their 

work and can provide power gain. Passive elements, on 

the other hand, do not need an external source for their 

work and do not have an effect on power gain (Lacanette, 

1991; Khan et al., 2016).  

Low/High Pass filters are digital filters consisting of 

circuits with passive elements. A low pass filter does not 

affect low frequencies and rejects high frequencies. In this 

study, a software was developed that would coincide with 

a low-pass filter without adding an external circuit. 

A first order low-pass filter can be implemented with 

RC circuit and according to Kirchhoff’s Law. To apply 

the equation to the algorithm, the equation is written as: 

 

       1 1y n x n y n      (6) 

 

t

t




  

  (7) 

 

Ω in the equation is a time constant depending on the 

resistance and capacitance values of the circuit and α is a 

smoothing factor. As shown in the Fig. 7, sensor noise 

was reduced using the low pass filter.  

The High pass filter does not allow low 

frequencies while passing high frequencies, as 

opposed to the low-pass filter. The extraction of the 

algorithm is similar to low-pass filter:  

 

         1 1y n y n x n x n      (8) 

 

The main difference between these two filters is that 

the high pass passes higher frequencies than the cutoff 

frequency, while the low pass filter passes lower 

frequencies than the cutoff frequency. 

In addition to the filters described above, there is also 

the Kalman Filter, which is used in autonomous vehicles 

today. Basically, the Kalman Filter is a tool that predict 
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values using mathematical expressions and equations and 

works with Gaussian distribution and linear models 

(Nonami et al., 2010; Welch and Bishop, 2006). Take 

position estimation as an example. For KF, it is primarily 

assumed that our position has a Gaussian distribution. If we 

expect to see our vehicle at position x, it means that at the 

highest probability it is at Point x and the farther away it is 

from Point x, it is less likely to see our vehicle at that point. 

In general, any linear combination of independent normal 

deviations is a normal deviation. So KF equations must be 

linear. Unlike the Kalman filter, Extended Kalman Filter 

(EKF) and Unscented Kalman Filter are also used. 

The Kalman Filter consists of two main parts: 

“Prediction” and “Correction” (Kalman, 1960; Rhudy et al., 

2017). Figure 8 shows the principle of the Kalman 

filter as a diagram. In the first part, the state vectors are 

calculated according to the data from the last iteration. Also 

the covariance matrix is updated: 

  11
ˆ ˆ

k kk k
X Ax Bu

   (9) 

 

x̂(k|k-1) is the predicted state vector, x̂(k-1) is the previous 

estimated state vector, u is the input vector, A and B are 

matrices that define the system dynamics. In the next 

step, the state error covariance matrix will be predicted 

using Equation (10): 

 

  11

T

kk k
P AP A Q

   (10) 

 

Covariance is a measure of how two random 

variables change together. If one of the variables 

increases or decreases while the other changes in the 

same way, the covariance is positive. If the variables 

change in a way that is opposite to each other the 

covariance is negative. Covariance is zero when the 

variables are independent of each other. 

 

 
 

Fig. 7: Low Pass Filter Result 

 

 
 

Fig. 8: Kalman filter diagram
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Fig. 9: Circuit diagram 

 

Process noise covariance “q” is taken as arbitrary 

according to (Al Tahtawi, 2018). Measurement noise 

covariance “r” value varies from sensor to sensor. To 

find this value, a group of raw data is first taken from 

the sensor. The covariance of these data is found with 

the “cov” command in MATLAB. Results are found 

using r = 0.0324 and q = [1e-3, 1e-4, 1e-5]. 

In the second part (correction), an update is made 

according to the estimates and measurements. Once the 

predicted values are obtained, Kalman Gain (K) is 

calculated by Equation (11): 

 

    
1

1 1

T T

k k k k k
K P H HP H r



 
   (11)

 

 

The model estimate is compared with the 

observation and this difference is scaled by a value 

known as the Kalman Gain (K). Then Kalman Gain, 

feedback as an input to the model to improve the next 

estimates. Measurements are followed more closely if 

high gain is used but the noise cannot be fully removed. 

If low gain is used, model estimations are more closely 

followed. The noise is completely removed, but 

reaction rate decreases. 

H is a matrix that necessary to define the output 

equation. r is the measurement noise covariance: 

 

    1 1
ˆ ˆ ˆ

k k kk k k k
x x K z Hx

 
    (12) 

Table 1: Variable names
 

Variable Description 

x State vector 
z Measurement vector 
A Process matrix 
B Control matrix 
H Observation matrix 
u Input vector 
P Covariance matrix 
K Kalman gain 
q Process noise covariance  
r Measurement noise covariance 

 

 
 
Fig. 10: Algorithm flowchart 
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The Kalman filter receives its information from 

errors, noise and uncertainties. The purpose of the filter 

is to process this imperfect information and reduce 

uncertainty and noise: 

 

   1k k k k
P I K H P


   (13)

 

 
Table 1 shows the variables used in the Kalman 

filter. While preparing the algorithm flowchart in Fig. 

10, some assumptions were made. As mentioned 

earlier, the values A and B are related to the dynamics 

of the system. A = [1] has been adopted to obtain a 

scalable value according to the measure. Since there is 

no control input, B = [0]. With the assumption of H = 

[1], it is ensured that the output depends on the 

observation data. 

EKF is used for nonlinear models (Kerimoğlu, 

2011). Linearization is performed using the Taylor 

expansion and the best estimate for the Gaussian mean 

is made using the HJ Jacobian matrix instead of the H 

Matrix (Angrisani et al., 2009). UKF offers a different 

solution. Instead of linerizing the transformation 

function, it makes an approximation for next step. We 

know that the distribution after the nonlinear 

transformation is not Gaussian, but we assume it as 

Gaussian and try to approach the best real 

distribution. Sigma points are used to find this 

approach. A few points are taken around the expected 

position and nonlinear transformation is applied 

(Tellex et al., 2018). 

EKF works very well in nonlinear transformations, but 

UKF works better in high-level nonlinear transformations. 

Results 

Experiments were performed using Raspberry Pi 3 

and an ultrasonic distance sensor, as in the circuit 

shown in Fig. 9. Ultrasonic sensors can measure 

distance using sound waves. Microcontroller sends a 

signal to trigger pin of the sensor and then after the 

signal is sent, the sensor sends an ultrasonic wave and 

starts counting. After the wave hits the obstacle, it 

returns and the echo pin is triggered. Then the counter 

stops and the time difference is calculated. Distance 

can be obtained because the speed of the sound wave 

and the duration of the wave are known. HC-SR04 

ultrasonic sensor used in this study. This sensor 

provides ultrasonic waves with a frequency of 40 kHz 

and it can measure up to 400 cm distance with a 

resolution of 3 mm. 

The effect of the Kalman Filter was observed by 

changing the distance. As shown in the Fig. 13, the noisy 

data received from the sensor has been transformed into a 

more stable shape with the Kalman Filter. Tests are made 

with different q covariance values. By taking q = 1e-3, the 

response time was very close to the measurement speed, 

but a negligible amount of noise measurement was taken 

due to sensor noise. By taking q = 1e-4 and q = 1e-5, 

sensor noise has been eliminated, but response time has 

increased. In summary, the response rate slows down as 

the noise variance decreases.  

Figure 14 shows measurements made with an 

ultrasonic sensor attached to the UAV. The vehicle was 

lifted 1.8 m above the ground and then landed as shown 

in the Fig. 11. As can be seen from the graph, as the 

distance increases, the sensor sensitivity decreases and 

more noisy data occurs. If these data are used in the 

control system, there may be instability in the system 

and may cause an accident. 

Kalman filter and low pass filter were compared as 

shown in the Fig. 15. q = 1e-4 in this the graph and 

more accurate data is obtained with the Kalman filter. 

A low pass filter filters out frequencies above a 

passband. But a Kalman filter is suitable when there is 

a dynamic model that you can use to predict the value 

of a signal in the future. 

 

 

 
Fig. 11: Test platform
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Fig 12: RMSE graph 

 

 
 

Fig 13: Responses with Different Covariance 

 

 
 

Fig 14: Flight result
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Fig 15: Kalman filter and low pass filter comparison 

 

Discussion 

Root Mean Squared Error (RMSE) is used to 

determine the error rate between measurement values 

and model estimates (Chai and Draxler, 2014). The 

RMSE value is asked to approach zero. It is expressed 

mathematically as follows: 
 

 
2

1

ˆ.n
i i

i

y y
RMSE

n


   (14)

 
 

As shown in the Fig. 12, with q = 1e-4 covariance, 

the system would be more useful. The error rate has been 

reduced with the Kalman Filter. If rapid reactions are 

desired in the system in which the filter will be used, it is 

more efficient to have a high covariance. 

Conclusion 

The Kalman filter has been successfully applied to the 

ultrasonic distance sensor. In fact, noisy data obtained 

from the sensor has been made more stable using the 

Kalman Filter. Less noisy altitude data provided more 

stable altitude control of the vehicle. In addition, the 

results of the Kalman filter with different covariance 

values were examined. With smaller covariance, the 

amount of noise decreases but the time response increases. 

Basically, the Kalman Filter is a tool which estimates 

and predicts values using model equations under the 

assumptions that noise has a Gaussian distribution. The 

model in this paper is assumed to be linear but it will 

become non-linear as the angle of the vehicle changes. 

For future work, the Extended Kalman Filter (EKF) 

could be implemented for more efficient filtering as it 

can be applied to non-linear models. EKF linearizes the 

non-linear model around the Gaussian mean using the 

Taylor Series and Jacobian Matrix. At this point, EKF 

should be used to get the altitude data more efficiently. 
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