

© 2022 Liviu Mihai Sima and Miron Zapciu. This open access article is distributed under a Creative Commons Attribution (CC-BY)

4.0 license.

 Journal of Mechatronics and Robotics

Original Research Paper

Testing the Interfaces for Mechatronic Systems

1Liviu Mihai Sima and 1,2,3Miron Zapciu

1Department of Robots and Production Systems, University Politehnica of Bucharest, Bucharest, Romania
2Academy of Romanian Scientists, Bucharest, Romania
3Transport Research Institute Incertrans S.A., Bucharest, Romania

Article history

Received: 23-02-2022

Revised: 23-03-2022

Accepted: 28-03-2022

Corresponding Author:

Liviu Mihai Sima

Department of Robots and

Production Systems, University

Politehnica of Bucharest,

Bucharest, Romania
E-mail: liviusima23@gmail.com

Abstract: The evolution of mechatronic systems had a large impact in recent

years. When comparing them in terms of their mechanical, electrical and

electronic components with their older variants, responds to a more elevated

level of commands and requirements. Their testing has become more

complicated and hybrid methods are often used. Hardware and software

interfaces are used for this software. Hardware interfaces use a predictive

approach method, developed linearly in the form of a "cascade". The

software approach includes system requirements, where using a hybrid

combination of test methods is preferred. Testing of hardware and software

interfaces must be as accurate as possible, as is choosing the right models for

the respective component or integrated system. This study discusses the use

of "Waterfall" and "V" as a hybrid test method. The purpose of this article is

to present such a test method.

Keywords: Hardware and Software Interfaces, “Waterfall-V” Testing,

Mechatronic System

Introduction

The mechatronics field has had substantial

development in recent years, due to the compaction of

the components and varying the functions of a

mechatronic system (Carryer et al., 2011).

These systems incorporate mechanical, electrical and

electronic components. The control of this system is

performed by the implemented software code. This allows

functions to be properly carried out, making the final

product that much more precise (Alciatore, 2007).

A mechatronic system is usually industrial and can be

a production line in a factory, which is the system

considered in this study. As this is relatively complex, it

will be tested using the "V" model. The “Waterfall” test

model is also used for simpler systems (Gausemeier and

Moehringer, 2003).

It has several components, which, depending on the

complexity, use either the “Waterfall” or "V" model. In

the presented test, the stages of the “Waterfall-V” model

are followed (Graham et al., 2012).

Most mechatronic systems involve the same

movement or action. This motion or action can be

applied to anything- from a single direction to a large

articulated structure. Movement is created by a force or

torque that results in acceleration and displacement.

Actuators are the devices used to produce this movement

or action (Ballas et al., 2009).

A sensor is a device, module, machine, or subsystem

whose purpose is to detect events or changes in its

environment and to send information to other electronic

components. This is often a computer processor, as a

sensor is always used with other electronic components

(Sima and Zapciu, 2021).

The computer elements used in mechatronic systems

are the hardware and software used.

In addition to obtaining such a system, the

manufacturing and management requirements need to be

followed (Bishop, 2007).

Materials and Methods

In Fig. 1, the testing of mechatronic systems was

studied. Hardware components repeat certain methods,

such as "Waterfall" testing, although this depends on the

methods. In terms of the software, various testing methods

are used. This is mainly due to the complexity of the

system and the interfaces. To test the system, an eloquent

example was taken from each component with the

representative test method, i.e., a sensor and an actuator.

The test methods studied are those related mainly to

software testing, which is successfully applied to a

mechatronic system. Based on the experience regarding

the structure of the components of the mechatronic

system, it was considered that a combination of 2 test

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Dorothy+Graham&text=Dorothy+Graham&sort=relevancerank&search-alias=books

Liviu Mihai Sima and Miron Zapciu / Journal of Mechatronics and Robotics 2022, Volume 6: 22.27

DOI: 10.3844/jmrsp.2022.22.27

23

methods ("Waterfall" and "V") is a solution that covers

very well the testing process during the manufacture of

the mechatronic system.

The Components of the Mechatronic System

The mechanical elements that make up the

mechanical structure are the mechanism, the thermo-

fluid and the hydraulic aspects (Brusa, 2015).

Electromechanical elements refer to sensors and

actuators. A servomotor is an element that turns energy

into motion. It can also be used to apply force.

The servomotor is a mechanical device that takes

energy, electricity, or liquid - and turns it into a motion.

This movement can be in any form, such as locking,

gripping, or removing.

Actuators are commonly used in manufacturing or

industrial applications and can be used in devices such as

motors, pumps, switches and valves.

Fig. 1 presents a schematic of a mechatronic system, with

its components (Fotso et al., 2012).

These types of components are found in a

mechatronic system. Certain testing strategies are used

for all system testing.

The specification of the system needs to contain the

elements with an order execution center (where the

software program is executed), with an interface between

the software (digital) and the analog. This is needed to

control the mechanical parts, which are operated together

through a software program and a real-time response of

when the system executes the defined commands.

Fig. 1: The components of the mechatronic system

The specifications of the system need to be as clear as

possible, mentioned in the contract signed with the client.

From test methods, the “Waterfall” model is a breakdown

of project activities into linear sequential phases, in which

each phase depends on previous results and corresponds

to a specialization of tasks. The approach is typical for

certain areas of engineering design. It tends to be among

the less iterative and flexible approaches, due to the

progress flow in one direction ("down" as a cascade)

through the phases of design, initiation, analysis, design,

construction, testing, implementation and maintenance.

The “Waterfall” development model was originally

part of the manufacturing and construction industries. A

highly structured physical environment has made the

design changes to be more costly much earlier in the

development process. There were no recognized alternatives

to knowledge-based creative work afterward. Thus, the

“Waterfall” model argues that it should move to another

phase only when the previous phase is reviewed and verified.

The “V” model is a simple version of the traditional

“Waterfall” system or software development model. It is

based on the “cascading” model emphasizing verification

and validation. Model “V” takes the bottom of the

“Waterfall” model and bends it upwards in a “V” shape so

that the activities on the right check or validate the work

products of the activity on the left. The left side of Model “V”

represents the analysis activities that break down users' needs

into small, easy-to-manage pieces, while the right side of “V”

shows the corresponding synthesis activities that agree (and

test) these parts into a system that satisfies user needs. In

the “Waterfall” model, the “V”-shaped life cycle is a

sequential way of executing processes. Each phase must

be completed before the start of the next phase. Product

testing is planned in parallel with a corresponding

development phase in model “V”.

In the “incremental” model, the whole requirement

is divided into various variants. Several development

cycles take place, which makes the life cycle "multi-

cascade". The cycles are then divided into smaller,

easier-to-manage modules. Each module goes through

the stages of requirements, design, implementation and

testing. A working version of the software is produced

during the first module. This creates a faster working

version during the software lifecycle. Each later

version of the module adds previous versions. The

process continues until it is completed.

An “iterative” or “evolutive” life cycle model is also

called evolutionary as it does not try to start with a

complete specification of the requirements but evolves as

the product is developed. Instead, development begins by

specifying and implementing only a portion of the

software, which can then be revised to identify additional

requirements. This process is then repeated, producing a

new version of the software for each cycle of the model

Liviu Mihai Sima and Miron Zapciu / Journal of Mechatronics and Robotics 2022, Volume 6: 22.27

DOI: 10.3844/jmrsp.2022.22.27

24

(Karnopp et al., 2006).

The “agile” development model is a type of incremental

model as it is developed in fast, incremental cycles. This

leads to small incremental versions with each version of

previous features. Each version is thoroughly tested to ensure

the quality of the software is maintained. This model is used

for time-critical applications. Extreme Programming (XP) is

currently one of the most popular “agile” development

lifecycle models (Sima and Zapciu, 2020).

The System and its Interfaces

Now, we must insert the proper components and realize

their interfaces. The specialized teams are working in

parallel. Interfaces are the compatible connections between

components. These can be external, which refers to the

interaction between the mechatronic system and the external

environment and internal, made between the components of

the mechatronic system.

A mechatronic system contains a "chain" of interfaces

of its components, which are of several types (mechanical,

electrical, electronic).

These interfaces are classified according to the type of

input and output signal conversion (Dolga, 2011):

▪ Modifies physical properties (mechanical signal ->

electrical)

▪ Changes the signal encoding mode (analog -> digital)

▪ Changes the signal transfer mode (parallel transfer -

> serial; asynchronous -> synchronous, etc.)

Another classification is based on the adaptation of the

input and output signals (Dolga, 2007):

▪ Zero interface - does not involve any conversion

▪ Passive interface - no power source

▪ Active interface - implies the existence of an

additional source of energy for conversion

▪ Intelligent interface, which involves programmable

signal conversion, in the case of a microprocessor

The complexity of design issues has led to various

approaches to construction. This assembles the need for

the "V" model, which includes all the steps from idea

generation to product creation.

Simple and clearly defined systems are the only ones

that can start from functional requirements, leading to

system design and development of components in the

mechanical, electronic and IT fields, to have a

mechatronic system. The communication between the

team members helps to achieve this properly.

Communication between team members helps achieve a

correctly made mechatronic system.

The interface is a "border" between two subsystems.

The exchange of information between two components of

the system is possible if there is a common concept and a

common coding system. The interface refers to all the

ways (buttons, graphic display, etc.) to supervise and

assist the processes in a system.

The interface of the electronic instruments (multimeter,

signal generator, oscilloscope, etc.), computer systems,

sensors, actuators, etc. needs to be performed with the

centralized computing system when doing an electrical test.

Afterward validating the software from a

technological point of view is required. The human-

machine interface and the machine-machine interfaces

are considered in this process.

Testing the System

The testing of the mechatronic system is performed

depending on the field (mechanical, electrical,

information theory). For the mechanical part, standard

methods are defined for the three fields participating in

the mechatronic integration.

For the mechanical field we need to specify the

problem, define functions and structures, find solutions

and principles, do a division of feasible modules (into

sub-activities), model on components, modeling on the

final product and draw up the execution plan and the

instructions for use.

For the electrical and electronic field, we need to

have clear specifications, a description of the system

with an overview, a description of the algorithms used,

of the interfaces, the logical functioning and integration

needs to be done.

For information technology (software code) we need

to define the problem, to do a requirements analysis,

design and implementation and component testing,

system testing, to finally use the product.

One controller that meets the requirements of a

mechatronic system is the Arduino. Even if it is not

industrial, it can be used on systems where interfaces are

tested (Sima, 2022).

It is difficult to distinguish between a mechatronic

system and an electronic system.

In terms of structure, an electronic circuit is part of the

mechatronic system, but it is not a mechatronic product.

Because the mechatronic system encompasses these

areas, the finished product is easy to confuse.
Throughout this process, the design must be kept in mind.

Design procedures consist of rules to follow; recommended
sequences that provide acceptable solutions.

Depending on the product development lifecycle, a
specific model may be used. Often, a combination of the
“Waterfall” and “V” models is used, represented in Fig. 2.

Fig. 2: The “waterfall-V” model

Liviu Mihai Sima and Miron Zapciu / Journal of Mechatronics and Robotics 2022, Volume 6: 22.27

DOI: 10.3844/jmrsp.2022.22.27

25

In product development, some steps repeat. These are

highlighted in a different colors.

The complexity of the mechatronic system may vary. The

“Waterfall” approach is used for deliverables in any field of

activity where there are detailed, clear, measurable and

demonstrable initial specifications. These are specified in the

financing agreement (predictability in execution). This

approach is one of the simplest.

The “agile” adaptive approach is used for deliverables

in areas where the initial specifications are very general,

with no need for a detail.

The hybrid approach combines the predictive and

adaptive approaches.

In this case, the following are highlighted some

components of the deliverable that are clearly defined

from the beginning and for them, the “cascade” method

is adopted (predictive) and other components are

completed during the project and the “agile” (adaptive)

method is adopted for them.

The testing of the mechatronic system is performed

depending on the field (mechanical, electrical, information

theory). Based on the test methods, using a hybrid method,

“incremental”, “iterative” or “agile” give the best results. The

production of the product must follow its life cycle, with its

phases. It starts with guidance, then designs, development,

integration, verification and validation.

Results and Discussion

The results indicate that upon knowing the test methods and

how they intertwine, along with the characteristics of the

mechatronic system, a hybrid test method can be realized.

This test method applies to only one component type.

Applying a test method for a mechatronic element that does

not require this leads to too little or excessive testing. Both

cases would lead to inaccurate results. For linear

components, an actuator was chosen as the representative

element. For a more complex element, a sensor was chosen.

The Testing of an Actuator

A more predictive approach can be used as the

properties of an actuator (for example, a motor, with its

type) is known, along with a need for a more precise tool.

There are generally no variable functionalities.

However, they are known by their specifications. The

actuator is only operated according to the technical

specifications, while the integration with other

components does not have to be done beforehand.

To test the actuator software, the limitations of the

motor versus the functionalities used must be identified.

The software code checks whether the motor has reached

a certain position after the motor has been switched off.

Regarding the implementation and testing, once the

design is complete, the requirements are divided into

modules and code implementation begins. There is

motion detection by other parts of the mechatronic

system. The system detects TRUE: The desired position

has been detected for the moving object and the engine

must be stopped or FALSE: The engine is moving.

The approach method is the predictive one of the

“Waterfall” types, because they can be tracked (in “cascade”)

if the functionalities are reached (sub-activity A).

Limit check is performed: The tape is moving and

FALSE is maintained; the object is identified and the status

changes to TRUE. This is a “black-box” test (or so-called

"black box", where only the inputs and outputs are known),

the result (detection) is checked for a certain condition.

In the next step (sub-activity B) we can use the

“Waterfall-V” method because we have some interactions

between the motor and LEDs, for example (to indicate a

certain position or status of the system). For simplicity,

when the object is not detected (by the sensor), an LED is lit.

For this second sub-activity, one actuator is not enough as

other components (sensors, LEDs, etc.) need to be integrated.

Exploratory testing is thus more effective because more

outputs must be verified (object detection, LED lighting,

etc.) and the purpose is more ambiguous or vaguely defined

- no specific test design, plan, or approach is used.

Exploratory testing is an unwritten approach to software

testing, where the tester is free to select any possible

methodology for testing the software. This is a common

practice of software developers who use their personal skills

to test developed and/or coded software. Exploratory testing

simultaneously tests the functionality and operations of the

software, while identifying any functional or technical issues

in it. The purpose of exploratory testing is to optimize and

improve the software in every way possible. In the

development of the software actuator product, testing is

performed on several levels: On modules (actuator only, sub-

activity A), integration testing (LED, actuator, sensor: Sub-

activity B), system testing and acceptance testing

(validation). The “V” test model is more suitable in the

developed phases of the mechatronic system because the

hardware’s integrated parts must be made so the actuator

code can be tested. To test the actuator hardware, the

connections of the actuator assembly (motors plus

adapter) within the mechatronic system need to be

followed. In this situation we need to power the actuator

(motor with adapter), which must provide the necessary

power for the movement; In the mechatronic system

created, a separate power source helps the system to

operate the actuator better and create the connections to

the control module, where the commands in the software

code are supplied to the engine (actuation or shutdown).

In this type of testing, the “monkey”-testing type can be

used, which is a technique in which the user tests the

application or system by providing random inputs and

verifying behavior or seeing if the application or system

will crash. This "monkey” test is implemented as random

unit tests and fits these hardware components. During

Liviu Mihai Sima and Miron Zapciu / Journal of Mechatronics and Robotics 2022, Volume 6: 22.27

DOI: 10.3844/jmrsp.2022.22.27

26

hardware testing, current and resistance testing must be

performed with the meter.

The Testing of a Sensor

A more adaptive approach can be used, despite the

properties of the sensor being known, as their placement and

role can vary. In addition, other dependencies may be

added for reporting multiple intermediate states and

integration with other components must be done

beforehand. For software testing of the sensor, its functions

are known. These are state detection and are reported at a

defined interval in the. In the software code, only the Boolean

state is implemented. From this sensor point of view, testing

is easier, shown through the actuator hardware. The method

of approach is predictive because the functionalities can be

followed. The “black-box” test, i.e., the response is checked

for a certain state (object detection). Even if the test is

predictive, the code executed and the method of execution

can create many problems if a specific command does not

result in the desired outcome.

As a test, it is performed at an advanced stage, after

most components have already been installed and

integrated into the system. The implementation of the

sensor in the system is done at the end, as a last

"adjustment" of the system functions. The positioning of

a sensor is complicated. As such, the experience of the

team from other projects and the general manager is very

important. Position sensors can vary in number. However,

too much implementation of several sensors makes detection

difficult. For hardware testing of the sensor, its connections

must be tracked, along with the required response (object

detection) within the mechatronic system.

The approach method is software testing of the sensor.

As a general test procedure, a test method should be

considered: “Waterfall”, “agile”, “incremental”, “RAD”,

“iterative”, “spiral”, “prototype” or "V" model and variations

of “V”. The chosen testing strategy needs to cover all

components of the system. The "Waterfall" and "V" models

would cover all the phases necessary for the test. Only in

exceptional cases (complex system functions, one of the

general testing procedures should be selected. The test

procedure according to the component subsystems (sensor

type, actuator, system power supply) must follow the

specifications of the specification and the standards for the

electronic equipment must be followed. These would be

those of electromagnetic compatibility, checking at low

voltage currents, heating/operating temperature, etc.

Conclusion

As a test method, the mechatronic system must be

divided into parts: Electrical, mechanical and electronic.

On each side, there are standard methods for mechatronic

integration. It tested two components of the mechatronic

system: The actuator and the sensor. They encompass

virtually all the testing methods discussed for a

mechatronic system, which is why we chose them.

Apart from the model presented in Fig. 2, some other

models of testing could be used. It could be “incremental”,

“iterative” or “evolutive”, or the “agile” type. Given the

constraints of the projects and the complexity of the solution,

the direction of the product development is chosen from one

of the types enumerated. Regarding the testing of hardware

and software interfaces in mechatronic systems, this study

brings novelty elements in terms of testing.

Mechatronic systems are gradually evolving and

becoming more complex. Solutions are increasingly

appearing on a company's digital platform and testing must

take these solutions into account. Without this digital

platform, a certain product would be common, more

ordinary, without the latest elements desired by users.

Once an improved product is created, it needs to be tested

correctly as soon as possible and delivered to the customer.

As a pure test method, the “Waterfall” or “V” testing can be

too simple (“Waterfall”) or too complex (in “V”). Therefore,

a hybrid method is chosen for testing, so that the team fits

within the budget and in time.

The “Waterfall-V” method offers one of the best testing

solutions for mechatronic systems, where elements with

known status and characteristics are combined with complex

elements and integrated software.

Acknowledgment

The authors thank the members of the Department of

Robots and Production Systems from the Faculty of

Industrial and Robotics Engineering, University

POLITEHNICA of Bucharest, Romania for their support

and useful suggestions.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of the
other authors have read and approved the manuscript and
no ethical issues are involved.

References

Alciatore, D. G. (2007). Introduction to mechatronics and
measurement systems. McGraw-Hill Education.
ISBN: 978-0-070-64814-2.

Ballas, R.G., Pfeiffer, G., & Werthschützky, R. (2009).
Elektromechanische Systeme der Mikrotechnik und
Mechatronik, 2. Auflage, Springer,
Berlin/Heidelberg, Germany,

 ISBN: 978-3-540-89320-2.

Liviu Mihai Sima and Miron Zapciu / Journal of Mechatronics and Robotics 2022, Volume 6: 22.27

DOI: 10.3844/jmrsp.2022.22.27

27

Bishop, R. H. (2007). The Mechatronics Handbook, CRC

Press, Boca Raton, USA, ISBN-10: 978-0-8493-

9257-3.

Brusa, E. (2015). Mechatronics: Principles, Technologies

and Applications, Nova Science Publishers Inc, New

York, USA, ISBN-10: 978-1-6348-2801-7.

 https://novapublishers.com/shop/mechatronics-

principles-technologies-and-applications/

Carryer, J. E., Ohline, R. M., & Kenny, T. W. (2011).

Introduction to mechatronic design.

Dolga, V. (2007). Proiectarea sistemelor mecatronice, Ed.

Politehnica, ISBN-10: 978-973-625-573-1.

Dolga, V. (2011). Mecatronică. Teoria sistemelor, Ed.

Politehnica, ISBN-10: 978-606-554-235-8.

Fotso, A. B., Wasgint, R., & Achim, R., (2012), State of

the art for mechatronic design concepts, 8th

IEEE/ASME International Conference on

Mechatronics and Embedded Systems and

Applications (MESA), Suzhou, China.

 ISBN-10: 978-1-4673-2347-5.

Gausemeier, J., & Moehringer, S. (2003). New guideline

VDI 2206 A flexible procedure model for the design

of mechatronic systems. In DS 31: Proceedings of

ICED 03, the 14th International Conference on

Engineering Design, Stockholm.

Graham D., van Veenendaal, E., Evans, I., & Black, R.

(2012). Foundations of Software Testing: ISTQB

Certification, Third Edition Cengage Learning,

ISBN: 978-1-4080-4405-6.

Karnopp, D. C., Margolis, D. L., & Rosenberg R. C.

(2006). System Dynamics: Modeling and Simulation

of Mechatronic Systems, Fourth Edition, Wiley, New

Jersey, USA, ISBN-10: 978-0-4717-0965-7.

Sima, L. M. (2022). Using Arduino PLC and Robot within

Mechatronic Systems, International Journal of Ad

hoc, Sensor and Ubiquitous Computing (IJASUC),

February 2022, Volume 13, Number 1, Chennai,

India, ISSN (print) 0976-2205, (online) 0976-1764.

https://airccse.org/journal/ijasuc/vol13.html

Sima, L. M., & Zapciu, M. (2020). Connections and

Interfaces of Mechatronic Components on Digital

Factory, Conference Proceedings of the Academy of

Romanian Scientists, PRODUCTICA Scientific

Session, Volume 12, Number 1/2020, Bucharest,

Romania, ISSN (print) 2067-2160, (online) 2067-9564.

http://aos.ro/editura/proceedings/archive/vol-12-no-

1-2020

Sima, L. M., & Zapciu, M. (2021). A Testing Model for

the Mechatronic System, U.P.B. Sci. Bull., Series D,

Vol. 83, Issue 1, 2021, ISSN (print) 1454-2358,

(online) 2286-3699, pg. 113-124.

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Dorothy+Graham&text=Dorothy+Graham&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Erik+van+Veenendaal&text=Erik+van+Veenendaal&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=Isabel+Evans&text=Isabel+Evans&sort=relevancerank&search-alias=books
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Rex+Black&text=Rex+Black&sort=relevancerank&search-alias=books
https://en.wikipedia.org/wiki/ISBN_(identifier)

