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Abstract: Autonomous ground robots autonomously are being used in the 

places where it is very hazardous for human beings to reach and operate, such 

as nuclear power plants and chemical industries. The aim of the research 

presented here is to develop a control system that enables such ground robots 

navigate autonomously with various sensors as the depth camera, 2D scanning 

laser, 3D Lidar, GPS, and IMU. The controller uses the current position 

measured using the sensors on the Husky A200, given the waypoints of the 

destination. Then it calculates the best possible route based on the recent events 

provided using IMU data and GPS. The Model Predictive Control (MPC) 

improves the robot’s motion, by using a path planner for the robot’s trajectory 

generation. The use of global reference frame waypoints is planned to create 

the appropriate path and the actions required to follow the motion planner’s 

direction. The path planner depends on the active sensor data such as locations 

and size of obstacles. Then, a feasible path is generated based on the sensor 

data. The desired trajectory consists of a set of waypoints fit in a 3rd-order 

polynomial. They determine the path’s feasibility for the ground robot’s 

dynamics and a series of points generated with a certain velocity and 

acceleration profile. The MPC adjusts the robot’s lateral, longitudinal, yaw 

motions and approximates a continuous trajectory with discrete paths to 

command behaviors. The kinematic model of a robot, Husky is used as the 

dynamic model for transient and steady-state characteristics. The camera 

captures the images and other types of data processed through the 

computational framework used to build machine learning models. TensorFlow 

is used for deep learning and to identify and classify various objects around 

the Husky. This research has limitations such as using the linear dynamic 

model as the LQR method. Also on vehicle models, the vehicle model 

considered in this research considers a constant value to describe the slope in 

the most linear region. Detailed discussion on MPC development with a major 

system design factor has been emphasized with logical steps in MPC. 
 
Keywords: Model Predictive Control, Unmanned Ground Robot, 

Autonomous Navigation, Trajectory Generation 
 

Introduction  

The Model Predictive Control (MPC) is a control method 
for optimization strategy in a feedback control system (Xie and 

Fierro, 2008). It runs a set of forecasts of the model forward 
in time, optimizing control input for different actuation 
strategies. In the immediately following control action, it 
reinitializes the optimization to find the subsequent control 
inputs. The objective is to convey a custom-made MPC law 
to the framework and equipment viable and to meet the 

computational necessities, specifically regarding the 
continuous limitations (Carlos and Garcia, 1989).  

The ideal MPC law gives closed-loop stability and 
requirement fulfillment consistently under certain 

presumptions on the complex arrangement (Yoon et al., 
2009). The computational necessities depend on 
calculating the optimal control activity by addressing a 
finite horizon optimal control problem. For example, it is 
needed to optimize control over every new time step and 
reassess the optimizing control input over moving horizons 
(Zanon et al., 2013). It depends on the robust control activity 
calculation by addressing a compelled ideal control issue for 
the plant’s present status at each sample time 
(Bahadorian et al., 2011). The authors introduced an 
objective in delicate obliged MPC with a focal point of 
convergence for developing continuous and sensitive 
obliged systems which are consistently relinquishing in 
common articulations (Dekkata and Yi, 2019). 
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Thinking about the computational necessities of the MPC 
on an additional room for the estimation, time is considered 
for the utilization of interest. Highspeed applications, for 
instance, force problematic ongoing limitations on the 
arrangement of the MPC issue (Ferreau et al., 2008). For 
example, a breaking point on the calculation time is 
accessible to process the control input. A higher perspective 
here is that instead of doing the control streamlining one time 
disconnected to use with a linear quadratic regulator. 
Consistently doing this enhancement at each framework’s 
progression (Kuhne et al., 2004), adjusting the Husky’ s 
controller behavior if framework begins to veer off or if the 
elements begin to change. MPC has driven a considerable 
measure of interest in system identification since it 
depends on a framework model. Keen on getting great 
system models that can be utilized due to the model's 
predictive control force, so the system’ s non-linear and 
linear models can handle (Maynea et al., 2005). 

Figure 1 husky A200 from Clear path Robotics is 
mounted with LiDAR in the image to the right. The 
LiDAR point cloud data is visualized with laptop 
connected to the LiDAR. The work presented in this study 
mainly concentrates on the control system for unmanned 
ground vehicles and designing an effective control system 
for Husky’s autonomous navigation. The unmanned ground 
robot Husky A200 is equipped with Velodyne 3D Lidar, 
Intel depth camera (D435i), Hokuyo 2D scanning laser, 
M1125 axis camera, Global Positioning System (GPS), and 
Inertial Measurement Unit (IMU). In door, GPS is unreliable 
and IMU helps navigate through waypoints. The Lidar data 
is to identify objects and M1125 axis camera is to identify 
humans using the TensorFlow models and the Intel depth 
camera D435i to identify static and dynamic obstacles more 
precisely and determine the objects’ time-varying position 
(Mayne et al., 2009). The Husky’ s relative position gives the 
objects’ position in the local frame and estimates detected 
objects attitude for the Husky’ s absolute positioning. 

Figure 2 the control design system architecture of 

the Husky is illustrated. Most sensors communicate 

through the ethernet cable and all the sensors are 

connected to a switch on-board. 
 

 
 
Fig. 1: Husky A200-clear path robotics 

 
 
Fig. 2: Control design architecture 
 

Materials and Methods  

Vehicle Modeling 

The use of the Kinematic model helps simplify the Husky 

physics and consider a set of models suitable for model-

based control design. The kinematic model describes Husky’ 

s kinematic motion and the dynamic model of the Husky is 

designed to consider the transient and steady-state 

characteristics of the Husky (Ko and Song, 2010).  

Figure 3 the vehicle coordinate system calculates 

the force acting on the Husky’s center of gravity with 

the body frame of references x, y, and z are 

longitudinal, lateral, and vertical axes, respectively. 

The forces acting on the center of gravity of the Husky 

are formulated as longitudinal and lateral, Fx and Fy, 

and the rotating moment of the z-axis is Mz. 

Rigid body dynamic equations are: 

 

,xmx F my= +   (1) 

 

,mx Fy my= −  (2) 

 

,z zI M =  (3) 

 

where: 

I = The Husky’s moment of inertia about the z-axis 

m = The vehicle mass 

Fx = Longitudinal 

Fy = Lateral 

 

The longitudinal dynamics, lateral dynamics, yaw 

dynamics, and wheel dynamics are modeled. The roll 

dynamics, pitch dynamics, and vertical dynamics are 

ignored since the Husky moves at relatively low velocity 

(Kiencke and Nielsen, 2005): 
 

cos sin ,X x y = −  (4) 
 

sin cosY x y = +  (5) 

 

Four-Wheel Model 

Figure 4 all the forces on the Husky are illustrated the 

simplified vehicle dynamics model is used to develop the 

controller to minimize the deviations in the accelerations and 

the variations in the Husky velocity. Assuming constant 

normal tire loads, using the four-wheel model to describe the 

dynamics of the Husky, the dynamic model is given by: 
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, , , ,, , ,zf l zf r zr l zr rF F F F constant=  (6) 

 

, , , ,xf l xf r xr l xr rmx my F F F F= + + + +  (7) 

 

, , , ,yf l yf r yr l yr lmy mx F F F F= − + + + +  (8) 

 

( ) ( ) ( ), , , , , , , ,yf l yf r yr l yr l xf l xf r xr l xr rI a F F b F F c F F F F = + − + + − + − +  (9) 

 
where: 

Ff, l = Front left tire 

Ff, r = The front right tire 

Fr, l = The rear left tire 

Fr, r = The rear right tire 

 

The forces are applied on the center of gravity due to 

all four tires’ longitudinal and lateral forces: 
 

sinsin coscosy l cF F F = +  (10) 

 

coscos sinsinx l cF F F = −  (11) 

 
This model incorporates the vehicle body’s pitch and 

move, the movement of four wheels in the accelerating or 

down braking measure, the non-linear coupling of the vehicle 

body, and the unsprung mass, just as the air drag coefficient 

wind impact. The total vertical load of the vehicle is distributed 

between the front and rear wheels as (Dekkata, 2021): 
 

( )2
zf

bmg
F

a b
=

+
 (12) 

 

 
 
Fig. 3: Husky coordinate system 
 

 
 
Fig. 4: Forces acting on each tire 

( )2
zr

amg
F

a b
=

+
 (13) 

 
where: 

a = The longitudinal distance between center of gravity 

and front-axle 

b = The longitudinal distance between center of gravity 

and rear-axle 
 

The model can be utilized for the examination of different 

moves of the four-wheel directing vehicles. Also, the 

previous model can be considered an extraordinary instance 

of this model. The compact differential equation is calculated 

by describing the non-linear vehicle dynamics by assuming 

slip ratio s and µ friction coefficient: 
 

( ), ,s uf u =  (14) 

 

( )h =  (15) 

 
While accelerating and down braking with tires, the 

Husky tires observed angular velocity doesn’ t coordinate the 

average speed of rolling motion, implying sliding movement 

in rare instances. As Husky moves with much lower speeds 

than a regular automobile, the slip ratio is negligible: 

State vectors are defined as: 
 

 , , , , , ,y y x Y X  =  (16) 

 

Input vector is given by: 

 

fu =  (17) 

 

Model Predictive Control 

Model Predictive Control depends on calculating the 

ideal control activity by tackling a finite horizon with an 

ideal control issue for the plant’s present status at each 

sample time. Control for the Husky is designed using 

MPC instead of Proportional Integral plus Derivative 

(PID) control. The designed controller adjusts the 

Husky’s longitudinal, lateral, and yaw motion to 

command behaviors. The main reason for shifting from 

PID to MPC is that it can optimize current time slots while 

taking future time slots into account to provide a smoother 

and more proactive control mechanism. 

Model 

Figure 5 the MPC schematic is illustrated. The model 

requires prediction and thus, logically are tackled first. To 

automate MPC, it is necessary the concepts in 

mathematical terms are evaluated first. Simple manipulation 

and algebra need linear models as the superposition can be 

used. Typically, linear models are transfer function or state-

space (Mikael Eklund et al., 2012).  
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Fig. 5: Model predictive control schematic 
 

Process Model 

The optimization algorithm minimizing the cost 

function using the control input and obtains the optimal 

control action based on the current state and evaluation of 

PWA coefficients. This study approaches the control 

problem without violating the constraints low or high 

limits with the weighting coefficient reflecting Husky's 

relative motion, initially introducing the highspeed 

frameworks forcing on demanding ongoing requirements 

to calculate the MPC control law. The MPC activity is 

obtained by executing an advancement that is pre-

computed and stored (Dekkata, 2018): 

 

1k k kx Ax Bu+ = +  (18) 

 

k k ky Cx Du= +  (19) 

 

Generally, the MPC models’ complex dynamical 

behaviors require the model to minimize the difference 

between predicted output and desired output. It reduces to the 

linear quadratic regulator if there are no constraints in MPC. 

The succession of optimal control input is registered for an 

anticipated advancement of the framework model over a 

limited period (Berntorp et al., 2014). To recover an 

imperfect arrangement or post-process, the figured ideal 

setup reduces the intricacy of the express regulator. 

Mathematical Formulation 

It is challenging to acquire a mathematical model 

because of the convoluted wheel-ground kinematics 

limitations. A satisfactory mathematical model is 

achieved after making a few assumptions: 
 
i. The vehicle’s focal point coincides with its 

mathematical focus 

ii. Vehicle motion pictures with the wheels consistently 

in contact on the ground 

iii. Two wheels on either side turn at a similar speed 

while taking turns and slip is the only force acting on 

the tires (Gonzalez et al., 2009) 
 

To design the optimal control by augmenting the 

system model with integral of the steady-state error. Here 

f(Xk, Uk) is specified as a priority model and it will remain 

unchanged. The disturbance model d(Xk, Vk, Uk) will 

compensate for the errors which the priority model does 

not minimize. The non-linear, state-space system Xk+1 and the 

unknown Vk+1 as h. Having Uk, as the control input at time k, 

separating states into two parts Xk, and Vk, and trying to 

formulate Xk through the path-tracking control model 

(Yu et al., 2015). Minimizing the cost function for the 

coming timesteps, the new Jacobian is determined: 

 

( ) ( )1 , , ,k k k k k kX f X U d X V U+ = +  (20) 

 

( )1 ,k k kV h V U+ =  (21) 

 

( ) ( )
T

T

d dJ u x x Q x x u Ru = − − +   (22) 

 

State Reduction 

In the model as continuous and, discrete-time systems 

are directly proportional to the time step. Carefully 

choosing continuous and discrete-time systems, as the 

time horizon and time step are affected. The time horizon 

and time step are also used to compute the number of 

nodes for the model. Another parameter of the cost 

function is to penalize the control inputs for getting a 

smooth control action. The cost function is minimized in 

each time step (Shladover et al., 1991): 

 
T

r r r r bX x y   =    (23) 

 

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

e m rr r

e m rr r

e

e t r

e m b

x x x

y y x
X

 

 

  

  

   − 
    

−−    = =     −    
     −    

 (24) 

 

where: 

uR = The forward velocity 
s  = The rate of progression 

Xr = The state vector 

Xe = The error state 

Kr(s) = The path curvature at the path lengths 
 

The dynamic error model is chosen in a rotated 

coordinate frame and the prediction model includes an 

unmeasured disturbance. MPC expects to encounter 

disruptions in the plant and the UD model is an integrator 

with its input assumed to be white noise. The output from 

the model is added to the relative yaw angle. Although the 

calculations’ presentation is sensibly acceptable, a few 

issues should be considered for the MPC-based yaw 

stability control as indicated by real Husky test or 

simulation results. The vehicle prediction formulation 

for vehicle yaw dependability control usually is around 

0.2-0.4 sec (Dekkata et al., 2020): 
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( ) cose e r R ex y k s s s u = − +
 (25) 

 

( ) sine e r R ey x k s s u = − +
 (26) 

 

( )e R ru k s s = −
 (27) 

 

e m bw w = −
 (28) 

 

Constraints 

The constraints add stability to the controller even if 

the prediction horizon is finite. The optimization of MPC is 

subjected to the mixed or general state of constraints; 

equality constraints are seldomly used in this research 

compared to inequality constraints. Using the equality 

constraints rarely because a non-linear equality constraint 

can never be satisfied in a finite number of algorithm 

iterations. MPC prediction step can have two constraints of 

the form (Richards and How, 2006): 

Equality constraints: 

 

( ) ( )( ), , 0k x t u t t =  (29) 

 

Inequality constraints: 

 

( ) ( )( ), , 0h x t u t 
 (30) 

 

Maximum velocity constraints, if all the inequality 

constraints are positive, which corresponds to the 

Lagrange multiples, an optimal solution for control 

problem is found. The line search boundary doesn’ t 

devaluates the disparity requirements near the limit. The 

specific calculation boundaries size and diminishing pace 

rely upon the strategy for decision: 

 

min maxy y y   (31) 

 

min maxu y u     (32) 

 

min maxu y u   (33) 

 
Generating the desired yaw rates to control the Husky 

using the bicycle model does not give back the tire’s 

forces frictional limitations: 

 

maxu u  (34) 

 

Desired forward and rotational velocities: 

 

( )mind Ru u=  (35) 

Velocity magnitude constraints: 

 

g g
u

k k

 
   (36) 

 

max0 min , ,d

g
u u u

k

 
   

 
 

 (37) 

 

Husky’s translation and rotation can be controlled 

separately because of omnidirectional; rewriting Eq. 38 as 

the decoupling translation and Eq. 39 as rotation: 

 

( ) ( ) ( )( ) ( ) 0, , 0X t f X t U t X X= =  (38) 

 

( )
T

m m mX t x y  =    (39) 

 

( )
T

m m mU t u v w =    (40) 

 

where: 

X(t) = The state vector 

U(t) = The vector of the Husky velocities in the body frame 

 

The Husky’ s front wheels’ center linear speed and 

rear wheels’ center are relative to the ground surface. 

Husky wheel radius time the angular velocity gives us the 

tangential velocity of each wheel. Husky can move 

forwards or backward with only one axis: Using the 

kinematic model, velocity in a fixed structure is essential. 

After experiencing errors in the steady state in the yaw 

angle, minimized the lateral deviation to zero to eliminate 

the yaw angle’s steady-state error. The plant model 

minimizes the steady-state error to control Husky’s 

longitudinal and lateral motion (Wu et al., 2001). 

Optimization criterion: 

 

( ) ( ) ( ) 

( ) ( ) ( ) 

2 2 2

1 1 2 2

0

2 2 2

1 1 2 2

1

....

....

p

c

N

k k n n k

k

N

k k r r k

k

Q e t Q e t Q e t

R u t R u t R u t

=

=

     = + + +
     

     +  +  + + 
     





 (41) 

 

Introducing two manipulate variables for longitudinal 

and lateral deviation and zero weights are applied in the 

plant model. The standard cost function and the state 

function are specified as Jacobian. From Eq. 41, the 

weighting matrices Q and R tune the relative importance 

of the output vector elements. For every state 

implementing a trajectory linearization control for Husky, 

reach the reference trajectory (Vougioukas, 2007), with 

minimum effect on the cross-track error.  
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Discrete or Continuous 

While processed operate in constant time and do 

classical control laws such as PI, decision-making tends 

to be more of a discrete process. Decision-making requires 

processing time and cannot be instantaneous, especially 

interacting inputs/outputs/constraints and performance. 

Common predictive laws are implemented in discrete time.  

Subject to: 

 

0 , , ,
dx

f x y p
dt

 
=  

 
 (42) 

 

0 , , ,
dx

g x y p
dt

 
  

 
 (43) 

 

The model captures the time delays and plant 

interactions; the internal model predicts plant behavior 

over a future horizon in time. The optimizer and the 

controller adjust the control signals without violating the 

reference set points. Modeling errors are compensated by 

feedback and disturbance is rejected (Shojaei et al., 2009). 

Transfer Function 

The most common transfer function model with MPC 

is the so-called CARIMA model. This model subsumes in 

its structures many other popular forms. It is used because 

the uncertainty is included in a way that is a good 

presentation of slowly varying disturbances that could 

have a non-zero steady state: 

 

           
         
         
         

1 1 5 2 9 3

2 1 6 2 10

3 1 7 3 11

4 2 8 3 12

x u x u x u

x u x u x

x u x u x

x u x u x







= = =

= = =

= = =

= = =

 (44) 

 

With A and B matrices, the differentially flat system 

with controllable states is expressed as four independently 

translation states and sub-matrices As and Bs are defined 

as below: 

 

( )

( )

( )

( )

( )

, 0 0 0

0 , 0 0
, ,

0 0 , 0

0 0 0 ,

s r

s r

r

s r

s

A t a

A t a
A t a a

A t a

A t a





 
 
 
  =
 
 
 
 

 (45) 

 

( )

( )

( )

( )

( )

,

,
, ,

,

,

s r

s t r

t r

s r

s

B t b

B b
B b b

B t b

B t b





 
 
 
  =
 
 
  

 (46) 

( )

2

1
2

, 0 1

0 0

s

t
t

A t a t

a

 
 

 
 =  

 
 
  

  (47) 

 

( )

2

2

,s

b t

A t a b t

b

 
 
 

 =  
 
 
  

 (48) 

 

In the system, the transfer function between the 

acceleration and the input has sample time t br, b, ar, a 

as constants, the control order could be found exclusively 

with MPC. Nonetheless, because of the conceivably long 

reference trajectory and the tested states’ critical 

importance, that alternative isn’ t plausible (Wang and Qi, 

2001). Because of the number of the autonomous 

boundaries of the quadratic development in the length 

of the horizon. The Husky direction would require the 

arrangement of the MPC with numerous stages of 

prediction stages. This is unreasonable, given the 

current innovation and the installed computational 

power of the Husky. On the other hand, the proposed 

method consistently addresses MPC with just a few 

inadequately conveyed steps because of not being 

obliged by Husky’ s natural elements. The number of 

steps is a plain boundary, which relies upon the speed, 

given this can be tackled at 240 Hz progressively locally 

available with the robot (Fang et al., 2006): 

 

( ) ( ) ( ) k
k ka z y b z u T z


= +


 (49) 

 

T(z) could arise from model identification; in practice, 

it is treated as design parameter with reference set points.  

Concepts of Prediction 

The predicted state variables are calculated along 

the predicted horizon using the future control input 

(Kraus et al., 2013): 

 

( ) ( ) ( )

( ) ( ) ( )( )

ˆ |

ˆ | 1

p p c

p c p

x k N k Ax k BU k N

EW k N K x k x k k

+ = + +

+ + + − −
 (50) 

 

( ) ( ) ( )

( ) ( ) ( )( )

ˆ |

| 1

p p c

p y p

y k N k Cx k DU k N

GW k N F K y k y k k

+ = + +

+ + − + − −
 (51) 
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The prediction model is based on the current measured 

state and the future control actions and the correction 

factor corrects the prediction. Discrete models are one 

step ahead in prediction models; given data at sample k, 

one can determine data at sample k+1: 
 

( ) ( )k k ka z y b z u d= +  (52) 

 

( ) 1

11 ....... n

na z a z a z− −= + + +  (53) 

 

( ) 1

1 ....... m

mb z b z b z− −= + +  (54) 

 

1 1 1 1 2 1 1k k n k n k k m k m ky a y a y b u b u b u d+ − + − − ++ + + = + + + +  (55) 

 

1 1 2 1 1 1 1k k k m k m k k n k ny b u b u b u d a y a y+ − − + − += + + + + − − −  (56) 

 
The one-step-ahead prediction can be used recursively 

to find an n-step-ahead prediction as follows: 
 

1 1 1 1 2 1 1k k n k n k k m k my A y A y b u b u b u+ − + − − ++ + + =  +  + +   (57) 

 

2 1 1 2 1 1 2 2k k n k n k k m k my A y A y b u b u b u+ + − + + − ++ + + =  +  + +   (58) 

 

3 1 2 3 1 2 2 1 3k k n k n k k m k my A y A y b u b u b u+ + − + + + − ++ + + =  +  + +   (59) 

 

4 1 3 4 1 3 2 2 4k k n k n k k m k my A y A y b u b u b u+ + − + + + − ++ + + =  +  + +   (60) 

 
Using the 1 step ahead to find yk+1, then substitute this 

into the following Eq. 57 to find yk+2, then use yk+1 and 

yk+2 to determine yk+3 and keep the iterating through yk+n. 

Solving for the outer predictions, simultaneous equations 

can be represented using matrix/vector format, after 

which the solution is obvious. An illustration and some 

suitable notations are given here, which separates the past 

and future variables: 
 

1 1 1 1 2 3 4

1 2 3

k k n k n A k k k k

A k k k k

y A y A y C y y y y

H y y y y

+ − + + + + +

− − −

 + + + =  

 +  

 (61) 

 

GPS Measurements 

Using GPS coordinates to localize the Husky in the 

environment. Based on the high-level decisions and 

generated path (whether to go straight or turn), the 

following immediate waypoints will be generated. Then, 

GPS/IMU sensor readings will then be used to control the 

Husky to follow the generated waypoints by employing 

the controller. After initial tests to determine the 

GPS/IMU system’ s accuracy nearly 5-8 cm by placing 

markers collecting various data. Where GPS signals are 

available in outdoor environments, position and velocity 

can be integrated from IMU at the rate of 1 Hz; in the loosely 

coupled the measurement model for GPS/IMU as: 

 

gps imu pgs imu p vp p v v     − − =     (62) 

Navigation 

Husky navigates through a series of waypoints/points 
of interest to perform autonomous navigation by avoiding 
obstacles and bring the Husky to the destination point. 
Leveraging the navigation ArcMap to search and geocode 
points of interest by utilizing ArcMap functionalities. 
Based on Husky’ s current location of the point of interest 
and the destination address location, determining the 
shortest route by parsing the map data.  

Routing 

The map data comes in Protobuf format and offset 
encoded to minimize their storage requirements. The maps’ 
logical data model is based on the navigation map that 
describes the surface topology based on the links, nodes, 
polylines, shape points, and their attributes. Creating a 
switching weighted directional graph using links and nodes 
to transform the routing problem into finding the maps’ 
shortest path. The weight of an edge in the graph is the length 
of a link between two nodes. It is the length of the path along 
the segment. Adopting the map to be a switching graph to 
handle static obstacles and simplify the rerouting problem. 

Figure 6 the Ark bridge map is illustrated, the Ark bridge 
map shows the set of waypoints as the desired trajectory. 
After creating a switching map, applying Dijkstra’ s 
algorithm to find the shortest path. In this case, assuming the 
minimum number of dynamic obstacles on the route to the 
destination. The approach for routing initially planned to 
import the map data and geocode the points of interest. 
Husky’ s current location is sent to the controller and from 
the map data, the nearest node to Husky’ s location is 
discovered. Set of links that connect the node to the first node 
and form the shortest path. Then, proceed to find a set of 
connections that create the most straight forward route 
among consecutive nodes. Return set of ordered links from 
Husky’ s current location to the destination.  

Rerouting 

The Husky may face dynamic and static obstacles 

from the current location to the destination address. In 

such scenarios, the Husky is supposed to reroute to avoid 

obstacles and navigate through obstacles free path.  
 

 

 

Fig. 6: Ark bridge map 
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Using lidar data and vision-based detection to determine the 

position of obstacles along the path (Muktadir and Yi, 2021). 

In the lidar detection algorithm, considering the obstacles 

that Husky might encounter during navigation. In vision-

based detection, training the convolution neural network to 

detect the obstacles blocking the path (Garfo et al., 2020). 

Once noticing the obstacles on the way, localizing the 

location of the obstacles by finding the nearest node to the 

obstacle by utilizing the map data. Localizing other objects 

helps us identifying the link on which the obstacle is located. 

Updating the weighted directional graph by removing the 

edge representing the obstacles on the path, Husky can 

reroute. After updating the map, applying Dijkstra’ s 

algorithm to find the shortest route. The navigation 

framework has three essential parts: localizations, path 

planning, and motion control (Tereda, 2021).  

Figure 7 EKF algorithm is picturized in a block 

diagram, from setting the initial values in the first step 

to the final step until the compute error is minimized 

and covariance is adjusted. The localization has three 

significant steps, in the first step, the GPS and IMU 

data are fused using an Extended Kalman Filter (EKF).  
The shortest route is generated by Dijkstra’s algorithm, 

which is characterized by a vector of nodes and node ID, a 

vector of links, and a link ID beside the map tile ID. Based 

on these, it is extracting the position of the Husky in x and y 

coordinates. Husky should localize itself and other objects on 

the path to precisely navigate along the route. It should 

determine a drivable path and predict the behavior of 

different obstacles that are moving around Husky. This issue 

is addressed in the navigation framework below.  

Localization 

Localization helps the Husky determine its position on 

the map. Finding the Husky’ s location on the map 

requires the active sensor data from fusing all the sensors 

data with GPS and IMU data. 

Furthermore, localization helps Husky determine 

other objects’ s location on the path and thereby predict 

their behavior. Set the initial values and predict the state 

and error covariance as shown in Eq. 63, 64: 

 

( )1
ˆ ˆ

k k
x f x

−
=  (63) 

 

1

T

kk
p AP A Q−= +  (64) 

 

Localization helps Husky determine other objects’ 

location on the path and compute the Kalman gain from 

Eq. 65 to fuse the GPS and IMU data using an Extended 

Kalman Filter (EKF). Computing the state estimates from 

the measurements in Eq. 66, the system’ s final 

assessment is calculated. Finally, compute the error 

covariance in Eq. 67 and send it to the predicted state to 

reduce the error: 

( )
1

T T

k k k
K P H HP H R

−

= +  (65) 

 

( )( )ˆ ˆ ˆ
k kk k

x x K z h x= + −  (66) 

 

k k k
P P KHP= −  (67) 

 

Set localization estimates the pose, linear velocity, and 

yaw rate of Husky in real-time is the basis for Husky 

navigation. Using the map data with the combination of GPS 

and IMU for real-time, in other words, leveraging the GPS 

and IMU sensors data fusion to interface with the accurate 

positioning. In this research, the localization method fuses 

the GPS and IMU data using an EKF and determines the 

detected obstacles’ lateral distance (Razvan and Rafaila, 

2015). The localization has three significant steps: In the first 

step, the GPS and IMU data are fused using an EKF 

(Hoshiya and Saito, 1984). The second step involves 

determining the Husky position in bird’s eye view in x, and 

y coordinates from the map data. In the final stage, the map 

matches the surrounding information from sensors with the 

available map data. The localization algorithm will match the 

detected obstacles to the map coordinate from the map data. 

The estimation of the Husky state using EKF is based on the 

following kinematic model of the Husky: 

 

( )cosx v  = +  (68) 

 

( )siny v  = +  (69) 

 

f

v

L
 =  (70) 

 

v a=  (71) 

 

where: 

v = The velocity of the Husky 

a = The acceleration of the Husky 

 

From the above Eq. 68 to 71 having v is the velocity of 

the Husky, a is the acceleration, and x, y are coordinates of 

the center of the mass of the Husky in the frame. The steering 

angle and the acceleration are input to the system. Let the 

kinematic and the measurement model be given as: 

 

( )x f x w= +  (72) 

 

( )z h x v= +  (73) 

 
where: 

x = The state of the Husky 

w = The process noise 

v = The measurement noise 
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Assuming p(w)~N (0, Q) and p(v)~N (0, R) and 

determining Jacobean matrices as: 

 

k

df
A x

dx
  (74) 

 

k

dh
H x

dx
  (75) 

 

The IMU measurement data is used in the prediction 

stage, while the GPS's measurement data is used to 

estimate the Husky pose from the GPS. After fusing GPS 

and IMU, the next step is determining the detected 

obstacles’ lateral distance and drivable path from the map 

data. The drivable path is modeled using clothoid in the 

camera reference frame, with a third-order Taylor 

expansion can approximate. The slope, curvature, and 

curvature derivative of the drivable path is calculated and 

marked. The lateral distance from the drivable path is 

calculated and minimized by reducing the cross-track 

error. It is used in conjunction with map data to determine 

the current position of the Husky. 

Localizing other objects after Husky determines its 

position, it classifies other objects around it, and relies on 

lidar and camera detections to localize other objects on the 

map. Husky assigns a particular link to each object based 

on the object’ s location on the map coordinate system. 

The objects around Husky can be static, dynamic and the 

dynamic obstacles may vary in speed. Assuming detected 

objects’ rate doesn’ t considerably differs, implementing 

a Kalman filter algorithm with a single integrator equation 

of motion to predict their behavior. For solving the 

optimization problem, the control signals in system matrix 

evaluated with description of the system: 

 

   
( )        ( )

1

,
1

1
min , Re

2t t

m
T T

i i i iv x
i

U x v e v Sv
−

=

= +  (76) 

 

 1 t tt
x Ax Bv

+
= +  (77) 

 

   
_max

t t
x x  (78) 

 

   
_min

t t
x x  (79) 

 

The control error’s notion with the horizon is 

predicted at the input control action (Mayne et al., 

1988). Penalizing the error using the cost function from 

the quadratic semi-positive definite constraints. At a 

predefined zone, probability capacities are made to 

determine the probability of restricting the item at a 

given area. The probability capacities are converged 

into more extensive planning, which keeps 

communicating the objects’ undoubted location.  

Husky’s control algorithm for detecting the Most 

Important Object (MIO) of numerous detections from 

the lidar sensor are produced from the Probability 

Density Function (PDF) format to amplify the 

probability of recognizing the object interest. This 

methodology’ s principal potential constraint is that it 

may not effectively reach out to a self-assertive number 

of items. Limiting a moving object detection would be 

a complicated process (Frasch et al., 2013).  

 

 

 

Fig. 7: EKF algorithm 

 

 

 

Fig. 8: Localizing other objects 
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Figure 8 detecting multiple objects with respect to 

Husky relative motion, LiDAR detection helps in 

detecting objects around the Husky and localize the objects 

in the map. The detected objects are tracked to avoid collision 

with the Husky using Kalman filter algorithm. 

Path Planning  

The main objective of path planning is to extract 
waypoints from the start to destination address point, 
followed by generating a feasible and smooth trajectory. The 
waypoints are segmented into several center coordinate 
points between the links extracted from the map. Path 
planning relies on the information from localization, 
perception, tracking, and map data to navigate Husky and a 
series of addresses and point of interests.  

In the behavior planner, implementing heuristic 

conditions based on the Husky’ s coordinate location, the 

path in which the Husky is moving, location of objects, their 

respective positions in the map are evaluated and distance is 

calculated from the behavior point of interest of the Husky. 

Then, for each action, determining a safe target speed that 

respects the Husky speed limitations. Relying on map data 

and sensor detection data to generate suitable waypoints 

from start to destination while executing the missions safely. 

Geocode the point of interest and destination address from a 

weighted graph representing the map data’ s network. 

Implementing Dijkstra’ s shortest path algorithm to find the 

shortest route from start to the destination address, localizing 

the Husky considering the objects detected by sensors, and 

determining the Husky behavior considering the action of the 

objects around the Husky.  

Figure 9 the architecture design of MPC with mission 

planner, the input commands from mission planner helps the 

Husky movement through a feed forward system. As MPC 

generates the difference between the actual states of the 

Husky to reference, the controller’ s predicted output is sent 

to feed-forward action to calculate the error-free results, 

which will be applied to the real-time system. From the 

reference trajectories, defining the control inputs for 

the feed-forward system. The reference control 

velocity for the Husky and the yaw rate for the Husky 

are calculated from the reference trajectory: 
 

( ) ( )
2 2

h h

r r rv x y=  +  (80) 

 

( ) ( )
2 2

h h h h
h r r r r
r

h h

r r

x y y x

x y


−
=

+
 (81) 

 
The positive sign indicates that Husky moves 

forward and the negative sign suggests that Husky 

navigates in the reverse direction. Control action for 

feed-forward is calculated for Husky, assuming 

steering angle is small and considering the steady-state 

behavior between steering angle and longitudinal 

velocity is considered: 

h h
h r
r

L

vr


 =  (82) 

 

In nature, trajectory generation is considered a non-

linear problem. This study uses the non-linear feedback 

controller, so Husky can be asymptotically stabilized. 

The internal reference frame is attached to the ground 

because they are considered moving frames. The error 

state expressed in the Husky frame is written below: 

 

e rY T Y Y =  −   (83) 

 

Between the reference frames, T is the 

transformation matrix: 

 

( ) ( )

( ) ( )

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

t t

t t

T

 

 

 
 
 −

=  
 
 
 

 (84) 

 

Calculating the error state and deriving the system 

model into the below Eq. 85, 86, and 87: 

 

( )cosh h h h

e e r ex y v v = − +  (85) 

 

( )sinh h h h

e e r ey x v = − +  (86) 

 

( ) ( )tan tanh h

r rh

e h

v v

L

 


 − 
=  (87) 

 

Linearizing the error model, the Husky trajectory in 

the state space with the reference trajectory is below: 
 

e e eY AY Bu= +  (88) 

 
0 0 0

0 0 1
0 0

0 0 0

0 0 0
0 0

1
0 0 0

0 0

h

rr

h
hr

e e er r d

h

v

L

Y Y uv v L

L

K









 
 

   
   −   

=   +  
   
   −
    

 
 

 (89) 

 

 
 
Fig. 9: Block diagram for feedback MPC 
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Fig. 10: Trajectory generator block diagram 
 

The control vectors and state vectors for error-based 

models on the trajectory tracking are Ye and ue (Klančar and 

Škrjanc, 2007): 
 

T
h h h

e e e e eY x y v =    (90) 

 
T

h

e e eu   =    (91) 

 

Figure 10 the desired trajectory is generated from 

the lateral controller for Husky, and the main purpose 

of the lateral controller is to adjust the Husky heading 

angle to the desired path. A smooth trajectory is generated 

from the extracted waypoints for a smooth movement by 

fitting a third-order polynomial function. For this purpose, it 

is important to transform the waypoints coordinates from the 

global frame to Husky’ s frame, then select the first six 

waypoints coordinates to fit the cubic polynomial function. 

This helps the system to determine the y-coordinate and the 

heading direction of the Husky: 

 

( ) 3 3 2

3 2 2 1 0my f x a x a x a x a x a= = + + + +  (92) 

 

2

3 2 1tan 3 2
dy

a x a x a
dx

 = + +  (93) 

 

Results 

Control Design Implementation 

After generating a smooth trajectory, designing the 

MPC to control the Husky’ s longitudinal and lateral 

motion at each sampling timestep, an optional control 

problem is solved over a finite horizon. The optimal 

control signal is applied to the Husky during the following 

sample interval. A new optimal control problem based on 

unique measurements is solved over a shift horizon at the 

next time step. Therefore, finding the optimal solution 

relies on the Husky model, input and output constraints, 

and the cost function adopted to capture the trajectory 

tracking problem. Actuations are forward and backward 

torque and lateral motion of the Husky, applying the 

prediction to the models’ state at sample time t+1, 

considering the previous state as t (Quirynen et al., 2012): 

( )1 cost tx x v dt+ = +    (94) 

 

( )1 sint ty y v dt+ = +    (95) 

 

1
t

t t t

f

v
dt

L
  + = +   (96) 

 

1t t tv v a dt+ = +   (97) 

 
The distance between the Husky’s center of gravity 

and the front center of the tires is Lf, vector [x y  v] as the 

Husky state and actuation [ a]. 

Input Trajectory 

The Ark bridge map generates a set of waypoints as 

the desired trajectory. After generating a smooth 

trajectory. All the waypoints in the reference trajectory are 

fitted in a polynomial in order. For a curvature path in this 

research, a 3rd-degree polynomial worked well. The 

Husky position and orientation apply a transformation to 

convert the map coordinate system to the Husky 

coordinate system. Transforming the map coordinate 

system to the Husky coordinate system would help 

compute the errors because the initial state vector 

considers position and orientation as zero. 

Errors and Cost Function 

Defining new states to capture the transformed model 

from a global frame to a mobile frame. These errors are 

cross-track error in Eq. 98 and orientation error in Eq. 99: 
 

( ) ( )1 sint m t tcte f x y v dt+ = − +    (98) 

 

1
t

t

f

v
e dt

L
 + =   (99) 

 
Cross-track error is the difference between the current 

position of the Husky and the desired position: 
 

t t desiredcte y y= −  (100) 

 
For the input trajectory, computing the desired values 

of y by fitting a polynomial and computing for x at time t: 
 

( ) 3 2

desired ty f x ax bx cx d= = + + +  (101) 

 
Cross-track error is computed accordingly at time t+1, 

considering error at t and error at the next step: 
 

( )

( ) ( )

1 sin

sin

t t t

t t

cte cte v e dt

y f x v e dt





+ = + 

= − +  
 (102) 

 
Orientation error is the difference between the current 

orientation and desired orientation of the Husky: 
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t t desirede  = −  (103) 

 

For the input trajectory computing the desired values of 

 by fitting a polynomial and computing for x at time t: 

 

( )( ) ( )2 1arctan arctan 3 2desired tf x ax bx c = = + +  (104) 

 

The orientation error is computed at time t+1, 

considering the error at t and error at the next step: 

 

( )( )

1

arctan

t
t t t t

f

t
t t

f

v
e e dt

L

v
f x dt

L

   



+ = +  =

− +  

 (105) 

 

Building the cost function considering the cross-track 

error and orientation error to guide the vehicle near the 

reference trajectory. To keep the Husky moving, the , 

which is the difference between the current speed and the 

reference speed. Setting constraints on maximum 

longitudinal and lateral range for the Husky.  

Implementation 

During Implementation, adding weights at cost function 

to each term to identify each term’ s impact on the 

streamlining the error. Cross-track error weight is for 

stability, adding higher weights to make sure Husky is close 

to the desired trajectory. From Fig. 11, the mean error is -0.1. 

Figure 11 higher the weight, lower the cross-track 

error. Cross-track error is reduced when higher weights 

are applied. As applying higher weights, the Husky tends 

to stay close to the desired trajectory. 
Figure 12 lower the weight, higher the cross-track 

error. As applying lower weight, the Husky tends to move 
away from the desired trajectory. The weighting matrices 
Q and R tune the relative importance of the output vector 
elements. For every state implementing a trajectory 
linearization control for Husky and the Husky reaches the 
reference trajectory with minimum effort on the cross-
track error. From Fig. 12, the mean error is -0.3 
Orientation error is for stability, adding higher weights to 
make sure Husky is close to the desired orientation. From 
Fig. 13, the mean error is 0.02. 

Figure 13 higher the weight, lower the orientation 
error. Orientation error is reduced when higher weights 
are applied. 

Figure 14 lower the weight, higher the orientation 
error. Applying lower weight, Husky tends to oscillate or 
move abruptly away from the center. 

Figure 15 the higher the actuation weights, Husky tends 

to stay close to the reference path. Higher the actuation 

weight, the smoother the trajectory. The lateral motion of the 

Husky is smooth with the higher actuation weights. 

Actuation weights, higher weights on the actuation are used 

to reduce the actuation error because higher actuation 

smoother the trajectory. 

Figure 16 a lower actuation weight tends the Husky to 

swirl away from the center. Lower actuation weight, 

uneven the trajectory. Applying lower actuation weight, 

more jerky the response. Comparing the higher actuation 

weights and lower actuation weights in Fig. 15 and 16. 

Actuation delta weights, adding a delta between the 

subsequent timesteps and actuation also reduces the 

jerkiness during the movement of Husky. Comparing the 

higher actuation delta weight and lower actuation delta 

weights in Fig. 17 and 18. 

Figure 17 the higher the actuation delta weight, 

smoother the trajectory. The longitudinal motion of the 

Husky is much smoother when the actuation delta 

weights are increased. 

Figure 18 lower the actuation delta weights, uneven 

the trajectory. More jerky response for the lower 

actuation delta weights. 
 

 
 
Fig. 11: Higher the weights, the lower the cross-track error 
 

 
 
Fig. 12: Lower the weights, the higher the cross-track error 
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Fig. 13: Higher the weights, the lower the orientation error 

 

 
 
Fig. 14: Lower the weights, the higher the orientation error 
 

 
 
Fig. 15: Higher actuation weights 

 
 
Fig. 16: Lower actuation weights 
 

 
 
Fig. 17: Higher actuation delta weights 
 

 
 
Fig. 18: Lower actuation delta weights 
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Conclusion 

The Husky A200 ground robot can navigate 

autonomously with waypoints, and it is tested indoors in 

unstructured conditions without reduced data about the 

obstructions. The significance of this research is to 

present a new obstacle avoidance algorithm calculation 

MPC based, which improves longitudinal speed and 

guiding point while exploring the environment securely 

and reaching the target area as quickly as possible. Even 

with the limitations, the acceleration of the Husky showed 

much greater results in experimental runs. The system 

was tested using the data sequences (like image frames 

and laser points) with poses and lightning conditions. The 

Lidar helps to track the objects around the Husky and 

gives the distances from the obstacles. The MPC time 

length prediction horizon fluctuates because a variable 

speed direction is arranged until the sensor range. The 

Husky’s power calculation from motor and brake 

elements is thought through for Husky’s longitudinal sped 

limits to reduce the jerk. The controller depends on the 

active sensor data such as static and dynamic objects; 

based on the sensor data, a feasible path is generated. By 

reducing the cross-track error and orientation error in an 

active set method the MPC is optimized. The best possible 

route is extracted, and trajectory is generated based on 

Husky’s current events and position. Husky can avoid 

obstacles for optimal path planning and target following. 

To provide a smooth trajectory for the Husky, cost 

function formulation is assigned a more significant value 

to reduce the more prominent variations. Multiple 

arrangements of mathematical creations are directed to 

exhibit the adequacy of the calculation. The kinematic and 

dynamic model of the robot presented in this research is 

used for transient and steady-state characteristics. The 

waypoints improve the execution of the Husky by 

permitting it to navigate to the dynamical limits. In future, 

this research work will require more vehicle models 

which consider variable value describing the slope in the 

most linear region. This helps MPC adjust the robot’s 

lateral, longitudinal, yaw motions and helps approximate 

a continuous trajectory with discrete path to command 

behaviors by improving the kinematic and dynamic 

models of the robot. 

Acknowledgment 

This study was supported by the Center for Advanced 

Transportation Mobility (CATM) at North Carolina A&T 

State University. 

Funding Information 

The Authors gratefully acknowledge the support of 

Center for Advanced Transport Mobility and Department of 

Energy Minority Serving Institution Partnership Program 

(MSIPP) managed by Savannah River National Laboratory 

for providing funds to pursue this research.  

Author’s Contributions 

Sai Charan Dekkata: Designed and developed the 

MPC for the unmanned ground vehicle. 

Sun Yi: Reviewed the journal and supervised the 

research.  

MA Muktadir: Tuned lidar detection algorithm to 

determine the position of obstacles.  

Selorm Garfo: Trained the convolution neural 

network to detect the obstacles  

Xingguang Li: Worked on kinematic model to 

simplify the Husky physics.  

Amanuel Abrdo Tereda: Helped in conducting the 

experiments.  

Ethics 

This article contains information which is published in 

Ph.D. dissertation. The corresponding author confirms 

that all the other authors have read and approved the 

manuscript and no ethical issues involved.  

References 

Bahadorian, M., Savkovic, B., Eaton, R., & Hesketh, T. 
(2011). Toward a robust model predictive 
controller applied to mobile vehicle trajectory 
tracking control. IFAC Proceedings Volumes, 
44(1), 13552-13557. 

 https://doi.org/10.3182/20110828-6-IT-1002.01786  
Berntorp, K., Olofsson, B., Lundahl, K., & Nielsen, L. 

(2014). Models and methodology for optimal 
trajectory generation in the safety-critical road–
vehicle manoeuvres. Vehicle System Dynamics, 
52(10), 1304-1332. 

 https://doi.org/10.1080/00423114.2014.939094  
Carlos, E., & Garcia, D. M. (1989). Model Predictive 

Control: Theory and practice -A survey. Automatica, 
335-348. https://doi.org/10.1016/0005-
1098(89)90002-2  

Dekkata, S. C. (2018). Steering and adaptive cruise control 
for autonomous vehicles using model predictive 
control (Doctoral dissertation, North Carolina 
Agricultural and Technical State University). 
https://www.proquest.com/openview/3b32319f9b4b
89adf8778167b9c848c8/1?pq-
origsite=gscholar&cbl=18750  

Dekkata, S. C. (2021). Model Predictive Control for 
Unmanned Ground Vehicles Using Robot Operating 
System (Doctoral dissertation, North Carolina 
Agricultural and Technical State University). 

 https://www.proquest.com/openview/3f97b9c10e4af

c7b97d3cedf7cbe869b/1?pq-

origsite=gscholar&cbl=18750&diss=y  

https://doi.org/10.3182/20110828-6-IT-1002.01786
https://doi.org/10.1080/00423114.2014.939094
https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1016/0005-1098(89)90002-2
https://www.proquest.com/openview/3f97b9c10e4afc7b97d3cedf7cbe869b/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/3f97b9c10e4afc7b97d3cedf7cbe869b/1?pq-origsite=gscholar&cbl=18750&diss=y
https://www.proquest.com/openview/3f97b9c10e4afc7b97d3cedf7cbe869b/1?pq-origsite=gscholar&cbl=18750&diss=y


Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2022, Volume 6: 90.105 

DOI: 10.3844/jmrsp.2022.90.105 

 

104 

Dekkata, S. C., & Yi, S. (2019). Improved steering and 

adaptive cruise control for autonomous vehicles 

using model predictive control. Journal of 

Mechatronics and Robotics, 3(1), 378-388. 

 https://pdfs.semanticscholar.org/b3ca/d00bed76e379

a3a5690a92e86e3d24b793c7.pdf  

Dekkata, S. C., Okore-Hanson, T., Yi, S., Hamoush, S., 

Seong, Y., & Plummer, J. (2020, July). Autonomous 

Navigation and Control of UGVs' in Nuclear Power 

Plants-20381. WM Symposia, Inc., PO Box 27646, 

85285-7646 Tempe, AZ (United States). 

https://www.osti.gov/biblio/23028007  

Fang, H., Fan, R., Thuilot, B., & Martinet, P. (2006). 

Trajectory tracking control of farm vehicles in 

presence of sliding. Robotics and Autonomous 

Systems, 54(10), 828-839. 

 https://doi.org/10.1016/j.robot.2006.04.011  

Ferreau, H. J., Bock, H. G., & Diehl, M. (2008). An online 

active set strategy to overcome the limitations of 

explicit MPC. International Journal of Robust and 

Nonlinear Control: IFAC‐Affiliated Journal, 18(8), 

816-830. https://doi.org/10.1002/rnc.1251  

Frasch, J. V., Gray, A., Zanon, M., Ferreau, H. J., Sager, 

S., Borrelli, F., & Diehl, M. (2013, July). An auto-

generated nonlinear MPC algorithm for real-time 

obstacle avoidance of ground vehicles. In 2013 

European Control Conference (ECC) (pp.                

4136-4141). IEEE. 

 https://doi.org/10.23919/ECC.2013.6669836  

Garfo, S., Muktadir, M. A., & Yi, S. (2020). Defect 

detection on 3d print products and in concrete 

structures using image processing and convolution 

neural network. Journal of Mechatronics and 

Robotics, 4(1), 74-84. 

 https://doi.org/10.3844/jmrsp.2020.74.84  

Gonzalez, R., Fiacchini, M., Guzmán, J. L., & Alamo, T. 

(2009, December). Robust tube-based MPC for 

constrained mobile robots under slip conditions. 

In Proceedings of the 48 h IEEE Conference on 

Decision and Control (CDC) held jointly with 2009 

28th Chinese Control Conference (pp. 5985-5990). 

IEEE. https://doi.org/10.1109/CDC.2009.5400508  

Hoshiya, M., & Saito, E. (1984). Structural identification 

by extended Kalman filter. Jour. of Eng. Mech., 

ASCE, 110(12).  

Kiencke, U., & Nielsen, L. (2005). Vehicle 

modelling. Automotive Control Systems: For Engine, 

Driveline and Vehicle, 301-349. 

 https://doi.org/10.1007/b137654  

Klančar, G., & Škrjanc, I. (2007). Tracking-error 

model-based predictive control for mobile robots 

in real time. Robotics and Autonomous Systems, 

55(6), 460-469. 

 https://doi.org/10.1016/j.robot.2007.01.002  

Ko, Y. E., & Song, C. K. (2010). Vehicle modeling with 

nonlinear tires for vehicle stability analysis. 

International Journal of Automotive Technology, 

11(3), 339-344. 

 https://link.springer.com/article/10.1007/s12239-

010-0042-0 

Kraus, T., Ferreau, H. J., Kayacan, E., Ramon, H., De 

Baerdemaeker, J., Diehl, M., & Saeys, W. (2013). 

Moving horizon estimation and nonlinear model 

predictive control for autonomous agricultural 

vehicles. Computers and Electronics in Agriculture, 98, 

25-33. https://doi.org/10.1016/j.compag.2013.06.009  

Kuhne, F., Lages, W. F., & da Silva Jr, J. G. (2004, 

September). Model predictive control of a mobile robot 

using linearization. In Proceedings of mechatronics and 

robotics (Vol. 4, No. 4, pp. 525-530). 
 https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.461.2651&rep=rep1&type=pdf  

Mayne, D. Q., & Michalska, H. M. (1988). Receding horizon 

control of nonlinear systems. Proceedings of the 27th 

IEEE Conference on Decision and Control. Austin, TX: 

IEEE. https://doi.org/10.1109/CDC.1988.194354  

Mayne, D. Q., Raković, S. V., Findeisen, R., & Allgöwer, 

F. (2009). Robust output feedback model predictive 

control of constrained linear systems: Time varying 

case. Automatica, 45(9), 2082-2087. 

 https://doi.org/10.1016/j.automatica.2009.05.009  

Maynea, D. Q., Seronb, M. M., & Rakovića, S. V. (2005). 

Robust model predictive control of constrained 

linear systems with bounded disturbances. 

Automatica, 219-224. 
 https://doi.org/10.1016/j.automatica.2004.08.019  

Mikael Eklund, J., Sprinkle, J., & Shankar Sastry, S. (2012). 

Switched and Symmetric Pursuit/Evasion Games Using 

Online Model Predictive Control with Application to 

Autonomous Aircraft. IEEE Transactions on Control 

Systems Technology, 20(3), 604-620. 

 https://doi.org/10.1109/TCST.2011.2136435  

Muktadir, M. A., & Yi, S. (2021, July). Machine Vision-

Based Detection of Surface Defects of 3D-Printed 

Objects. In 2021 ASEE Virtual Annual Conference 

Content Access. https://peer.asee.org/machine-

vision-based-detection-of-surface-defects-of-3d-

printed-objects 

Quirynen, R., Vukov, M., & Diehl, M. (2012). Auto 

generation of implicit integrators for embedded 

NMPC with microsecond sampling times. IFAC 

Proceedings Volumes, 45(17), 175-180. 

 https://doi.org/10.3182/20120823-5-NL-3013.00013  

Razvan, C., & Rafaila, G. L. (2015). Nonlinear model 

predictive control for autonomous vehicle steering. 

International Conference on System Theory, Control 

and Computing. Cheile Gradistei, Romania: IEEE. 

https://doi.org/10.1109/ICSTCC.2015.7321337  

https://pdfs.semanticscholar.org/b3ca/d00bed76e379a3a5690a92e86e3d24b793c7.pdf
https://pdfs.semanticscholar.org/b3ca/d00bed76e379a3a5690a92e86e3d24b793c7.pdf
https://www.osti.gov/biblio/23028007
https://doi.org/10.1016/j.robot.2006.04.011
https://doi.org/10.1002/rnc.1251
https://doi.org/10.23919/ECC.2013.6669836
https://doi.org/10.3844/jmrsp.2020.74.84
https://doi.org/10.1109/CDC.2009.5400508
https://doi.org/10.1007/b137654
https://doi.org/10.1016/j.robot.2007.01.002
https://link.springer.com/article/10.1007/s12239-010-0042-0
https://link.springer.com/article/10.1007/s12239-010-0042-0
https://doi.org/10.1016/j.compag.2013.06.009
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.2651&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.2651&rep=rep1&type=pdf
https://doi.org/10.1109/CDC.1988.194354
https://doi.org/10.1016/j.automatica.2009.05.009
https://doi.org/10.1016/j.automatica.2004.08.019
https://doi.org/10.1109/TCST.2011.2136435
https://peer.asee.org/machine-vision-based-detection-of-surface-defects-of-3d-printed-objects
https://peer.asee.org/machine-vision-based-detection-of-surface-defects-of-3d-printed-objects
https://peer.asee.org/machine-vision-based-detection-of-surface-defects-of-3d-printed-objects
https://doi.org/10.3182/20120823-5-NL-3013.00013
https://doi.org/10.1109/ICSTCC.2015.7321337


Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2022, Volume 6: 90.105 

DOI: 10.3844/jmrsp.2022.90.105 

 

105 

Richards, A., & How, J. (2006, June). Robust stable 

model predictive control with constraint 

tightening. In 2006 American Control Conference 

(pp. 6-pp). IEEE. 

 https://doi.org/10.1109/ACC.2006.1656440  

Shladover, S. E., Desoer, C. A., Hedrick, J. K., Tomizuka, 

M., Walrand, J., Zhang, W. B., ... & McKeown, N. 

(1991). Automated vehicle control developments in the 

PATH program. IEEE Transactions on Vehicular 

Technology, 40(1), 114-130.  

 https://doi.org/10.1109/25.69979  

Shojaei, K., Tarakameh, A., & Shahri, A. M. (2009, 

August). Adaptive trajectory tracking of WMRs 

based on feedback linearization technique. In 2009 

International Conference on Mechatronics and 

Automation (pp. 729-734). IEEE. 

 https://doi.org/10.1109/ICMA.2009.5246126  

Tereda, A. A. (2021). Path Planning and Sensing for 

Autonomous Control of Robot Manipulators 

(Doctoral dissertation, North Carolina Agricultural 

and Technical State University). 

 https://www.proquest.com/docview/2622624694?pq

-origsite=gscholar&fromopenview=true 

Vougioukas, S. G. (2007, April). Reactive trajectory 

tracking for mobile robots based on nonlinear model 

predictive control. In Proceedings 2007 IEEE 

International Conference on Robotics and 

Automation (pp. 3074-3079). IEEE. 

 https://doi.org/10.1109/ROBOT.2007.363939  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wang, D., & Qi, F. (2001, May). Trajectory planning for 

a four-wheel-steering vehicle. In Proceedings 2001 

ICRA. IEEE International Conference on Robotics 

and Automation (Cat. No. 01CH37164) (Vol. 4, pp. 

3320-3325). IEEE. 

 https://doi.org/10.1109/ROBOT.2001.933130 

Wu, D., Zhang, Q., & Reid, J. F. (2001). Adaptive steering 

controller using a Kalman estimator for wheel-type 

agricultural tractors. Robotica, 19(5), 527-533. 

https://doi.org/10.1017/S0263574701003459  

Xie, F., & Fierro, R. (2008, June). First-state 

contractive model predictive control of 

nonholonomic mobile robots. In 2008 American 

control conference (pp. 3494-3499). IEEE. 

 https://doi.org/10.1109/ACC.2008.4587034  

Yoon, Y., Shin, J., Kim, H. J., Park, Y., & Sastry, S. 

(2009). Model-predictive active steering and obstacle 

avoidance for autonomous ground vehicles. Control 

Engineering Practice, 17(7), 741-750. 

 https://doi.org/10.1016/j.conengprac.2008.12.001 

Yu, S., Li, X., Chen, H., & Allgöwer, F. (2015). Nonlinear 

model predictive control for path following 

problems. International Journal of Robust and 

Nonlinear Control, 25(8), 1168-1182. 

 https://doi.org/10.1002/rnc.3133  

Zanon, M., Frasch, J. V., & Diehl, M. (2013, July). 

Nonlinear moving horizon estimation for combined 

state and friction coefficient estimation in 

autonomous driving. In 2013 European Control 

Conference (ECC) (pp. 4130-4135). IEEE. 

https://doi.org/10.23919/ECC.2013.6669832 

https://doi.org/10.1109/ACC.2006.1656440
https://doi.org/10.1109/25.69979
https://doi.org/10.1109/ICMA.2009.5246126
https://www.proquest.com/docview/2622624694?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/2622624694?pq-origsite=gscholar&fromopenview=true
https://doi.org/10.1109/ROBOT.2007.363939
https://doi.org/10.1109/ROBOT.2001.933130
https://doi.org/10.1017/S0263574701003459
https://doi.org/10.1109/ACC.2008.4587034
https://doi.org/10.1016/j.conengprac.2008.12.001
https://doi.org/10.1002/rnc.3133
https://doi.org/10.23919/ECC.2013.6669832

