

© 2023 Sai Charan Dekkata, Sun Yi, M. A. Muktadir and Selorm Garfo. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Mechatronics and Robotics

Original Research Paper

LiDAR-Based Obstacle Detection and Avoidance for

Navigation and Control of an Unmanned Ground Robot Using

Model Predictive Control

Sai Charan Dekkata, Sun Yi, M. A. Muktadir and Selorm Garfo

Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, United States

Article history

Received: 02-02-2023

Revised: 04-02-2023

Accepted: 22-02-2023

Corresponding Author:

Sai Charan Dekkata

Department of Mechanical

Engineering, North Carolina

A&T State University,

Greensboro, United States
Email: sdekkata@aggies.ncat.edu

Abstract: Unmanned Ground Vehicles (UGVs) have, as of late, been

utilized in a wide assortment of utilizations because of their flexibility,

diminished expense, and quick response, among other benefits. Search and

Rescue (SAR) is quite possibly the most conspicuous zones for the work of

UGVs instead of a monitored mission, mainly due to its impediments on the

expenses, human resources, and view of the human administrators. An

ongoing way of arranging to utilize numerous helpful UGVs for the SAR

mission is proposed in this study. This study aims to introduce the initial

moves towards a Model Predictive Control (MPC) based peril evasion

calculation for UGVs representing the vehicle elements through high

constancy models and uses just surrounding data about the environment as

given by the available onboard sensors. In particular, the paper presents the

MPC definition for peril evasion utilizing a Light Detection and Ranging

(LiDAR) sensor and applies it to a contextual of the effect of model

constancy on the calculation's presentation, where execution is estimated

principally when to arrive at the objective point. The Robot Operating

System (ROS) is used to drive the sensors and visualize the data in RVIZ.

This study presents MPC development for navigating Husky A200 by

adjusting the longitudinal, lateral, and yaw motion command behaviors. The

proposed algorithm for Husky A200 is tested indoors and compared the

results with the simulation results plotted using MATLAB and GAZEBO. A

novel simulator package is developed for the Husky using RVIZ and

GAZEBO. The efficiency of the proposed MPC design is tested through

simulation and compared with real world experiments, the real-time

longitudinal movement follows the simulation results closely. For MPC's

short-term optimization, an optimized control signal from a linear framework

is utilized for a linear quadratic controller. According to the Husky position

and orientation, applying a transformation to convert the map coordinate

system to the Husky coordinate system. Transforming the map coordinate

system helped in computing the errors because the initial vector considers

position and orientation as zero.

Keywords: Model Predictive Control, Unmanned Ground Robot,

Autonomous Vehicles, Robust Adaptive Control, Vehicle Dynamics,

Control and LiDAR

Introduction

Model Predictive Control (MPC) has been of great

interest to both industry and academia when initial

versions of the MPC are for Dynamic Matrix Control

(DMC) and Identification Command Algorithm (ICA).

The terminal constraints, terminal cost function, and local

control law are the three essential ingredients that

guarantee the MPC’s stability (Mayne and Michalska,

1988). Despite MPC’s significant practical importance

and general use, almost no hypothesis to direct these

regulators design and tuning for execution, particularly in

the non-linear system, is complicated and rarely

implemented. MPC generates discontinuous control

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

28

moves for implementing simplified computations for

single input single output and multi-input and multi output

process models. The MPC is robust for many reasons and

forms a vital problem class for many applications and

arises as subproblems, in general, constrained

optimization methods, such as sequential programming or

interior point methods (Goodwin, 2005). Having the

waypoints generated by the planner and the GPS

coordinates, MPC can consider future waypoints/events

and act accordingly. Convex optimization is a subclass of

numerical streamlining with favorable hypothetical and

functional properties, which will be used as significant

control parameters (Kirches, 2011). To some extent, step

response models are a subset of the transfer function. MPC

encompasses a range of control methods used in the single

input, single output, multi-input, and multi output processes

(Gardezi and Hasan, 2018). In this research, the initial step

is to recurrent some fundamental theoretical results and

outline the optimization method used for Husky A200. The

traditional MPC issue is settled by executing an

improvement routine, which has limited the use of model

regulators to moderate dynamic measures. Lately, various

strategies have been created with the objective of optimizing

MPC to be utilized for quickly inspected frameworks.

Over a considered prediction horizon, find the J(u) and

use the non-linear optimization technique

(Muraleedharan et al., 2021). Where Q is the positive

semi definite, R is the positive definite. As mentioned, the

sequence of control inputs U, a series of desired states Xd,

and the sequence of predicted states X would minimize the

unknown disturbances and mode the Husky dynamics by

representing the Gaussian process. With favorable practical

and theoretical properties, mathematical optimization has

a convex optimization subclass (Boyd et al., 2004). The

speculation of the classical function hypothesis can be

productively utilized in multiple mathematical analyses.

Here articulating the theoretical implicit function, which

uses the stability analysis for the control algorithm

improves the sequence of predicted states. Because of the

progression in computational forces, practical

calculations are being utilized. The model infers a

mathematical connection between network weights and

the exchange transfer function limits. For multi-input

multi-output systems in the model, a distinguish technique

algorithm was proposed using the closed loop method.

Husky A200

The Husky series has been used by industrial and

military engineers and robotic researchers who spend time

researching and developing UGV prototypes. The Husky

A200 Unmanned Ground Vehicle (UGV) is engineered to

thrive in harsh outdoor and indoor conditions. Husky has

rugged all terrain tires, a powerful 4  4 zero maintenance

drivetrain, class leading ground clearance, and ample

internal space for custom hardware. For extreme terrain, 13

lug tires with a high torque 4  4 drive are available. On top of

the Husky industrial standard rail for rapid payload, mounting

is available. Charging is made easy with a field chargeable 24

V battery with a toolless access panel. Husky bundle involves

fundamental segments, as it comes pre-introduced with a small

ITX with Linux and ROS. The top plate considers the simple

mounting of any detecting, control, or PC equipment associate

sensors to the locally available PC and Husky managed power

supplies to begin Husky A200.

Simulation

Initially, for obstacle detection using LiDAR,

simulation results are plotted using MATLAB and

GAZEBO, using the results are compared. Robot

Operating System (ROS) is used to drive the sensors,

launch packages containing the sensor fusion algorithms,

and visualize the data in RVIZ. A novel simulator package

was designed by modeling the Husky using RVIZ and

GAZEBO. GAZEBO’s powerful physics engine and

cross compatibility with ROS allowed for an easy way to

test essential torque and angle inputs. A customized scene

can be generated with simulated vehicles in the

background using the math works automated driving

toolbox. Because of ROS's heavy use for the actual

implementation, Gazebo made it easy to move back and

forth from the simulated environment to accurate testing

of the vehicle with a slight modification to the software.

This study presents MPC development instead of a

conventional PID for navigating the Husky A200 by

adjusting the longitudinal, lateral, and yaw motion

command behaviors. The purpose of using MPC instead of

PID is its ability to optimize current time slots while taking

future time slots into account to provide a more proactive and

smoother control mechanism. The planner and the GPS

coordinates generate the waypoints, and MPC considers

future waypoints/events and acts accordingly.

Simulation

MATLAB and Simulink

The LiDAR sensor data has been recorded using a 3D

simulation environment to test the algorithm. The

recorded data helps to develop the perception algorithm.

Simulating sensor detections and testing the reliability

and predicting potential complex events during autonomous

driving can be generated in the simulation environment

(Muktadir and Yi, 2021). In the automated driving scenario

generation, vehicle models are defined and help to create a

road network and control the simulated vehicle behavior

using the driving scenario application.

In the simulation environment, multiple scenes are

available in the automated driving toolbox. To create a

driving scenario and place a moving vehicle in the

background, LiDAR has been configured and placed on the

vehicle using MATLAB. The perception algorithm is tested

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

29

in the simulation environment with different static and

dynamic objects. The developed algorithm can be used in the

simulation environment for a wide range of custom scenes

and tested on numerous available scenes in the toolbox.

Figure 1, ROS has been used to view the LiDAR sensor

point cloud and LiDAR sensor properties are configured.

The automated driving toolbox has been used to integrate a

3D simulation environment to view sensor readings. LiDAR

is mounted on top of the vehicle's front center and configured

to model a typical Velodyne VLP-16. The point cloud data

is recorded through the simulated sensor over the vehicle and

data is visualized. The data is filtered for any noise or

disturbance before testing the algorithm. A 3D map is built

in the simulation environment using the LiDAR sensor data

and the perception algorithm is tested in the simulated

environment. If multiple moving objects are defined in the

simulation, the algorithm is tested for extracting the

moving vehicle's distance from the LiDAR point cloud.

When the record mode is set to true in the scenario setup,

the model records and visualizes the synthetic LiDAR data;

when the record mode is set to false, the model runs the

perception algorithm. During the simulation, the record

mode is closed, and visualize the subsystem and develop a

way to record data. Updating the simulation stops time to end

when the reference path is completed, then the simulation

can be executed. Finally, from the recorded data, a point

cloud data array is created. A LiDAR map builder is

designed and loops through the point cloud array and updates

the map with a new LiDAR frame and updates the top view

display. To build the LiDAR map, closing the high-definition

figure recorder and setting the record mode and algorithm

can be stress tested under different scenarios.

The Simulink model is modified to generate code for

path planning and vehicle control algorithms and verify the

generated code using Software in the Loop (SiL) simulation.

In the implementation and simulation, it helps to generate

and verify code from the algorithm model. The algorithm test

bench is used to partition the algorithm and test bench

specifying the path planning and vehicle control

functionality. The test bench model defines the stimulus and

environment to test the algorithms. Simulating the test bench

to test the algorithm model reference in various simulation

models and the cost map creator block creates the

environment's cost map. The behavior planner block triggers

navigation tasks and the controller is applied to the vehicle

model block. The path planner plans a feasible path through

the environment map and the trajectory generator smoothens

the reference path by fitting splines. The vehicle controller

controls longitudinal and lateral movement. The variable size

poses signal has been split into a fixed size outport and the

cost map bus is associated with the cost map input port.

Configuring the model to generate code includes

setting C++ code with entry points for each rate and

applying standard optimizations. A report is generated to

facilitate exploring the generated code and finally, set and

view model parameters to enable C++ code generation.

SIL helps test the source code on our development

computer. The numerical test equivalence between the

model components and production code generated from

the elements by using Software in the Loop (SiL) and

Processor in the Loop (PiL) simulations.

Figure 2, shows the architecture of the unreal engine

connected to the bridge model on a separate MATLAB

instance which transfers messages like speed, vehicle

controls, and sensor readings. The model is a proportional

controller introduced in the system to configure a model

to generate C++ code for standalone ROS nodes.

Configuration of the connection to the ROS device in the

Simulink coder, the code generated for the standalone

ROS node is connected to the ROS device. The standalone

ROS node is generated and can automatically transfer,

build, and run on the ROS device. Tested the generated

ROS node using a ROS master running on the ROS

device. Finally, the newly built ROS node is executed, and

its behavior is verified using a MATLAB-based robot

simulator. ROS nodes generated can be managed by

simulink with the ROS device object and stop the node at

any point without rebuilding it in the simulink.

Fig. 1: LiDAR 3D point cloud

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

30

Fig. 2: Unreal engine connected to ROS.

Gazebo and RVIZ

ROS is the middleware opted for due to its incredible

support and its broad compatibility with the sensors. ROS is

used to drive the sensors, launch packages containing the

sensor fusion algorithms, and visualize the data in RVIZ. The

LiDAR sends information about the environment in front of

the Husky, including static and dynamic objects; this data can

be visualized in RVIZ. Husky is modeled using differential

drive equations; a novel simulator package was designed by

modeling the Husky using RVIZ and Gazebo. Gazebos'

powerful physics engine and cross compatibility with ROS

allowed for an easy way to test essential torque and angle

inputs as well as testing GPS path tracking algorithms

(Vougioukas et al., 2007).

Rigid body dynamic equations are:

() () ()cosx t v t t= (1)

() () ()siny t v t t= (2)

() ()t t = (3)

In this research, an integral reinforcement learning

method is used to decide the ideal control framework with

totally obscure elements. The proposed approach assesses

the ideal control utilizing essential support, using the

framework distinguishing proof rather than function

approximation. This methodology delivers the test

process to control with the automated ground vehicle

elements ideally (Gao et al., 2010):

()
0

2 2 21

1
:

N ref ref

t t Nu i Q Q QN
P z Minimize x x u x x

−

=
− + + − (4)

Subject to:

()1 , , 0,...., 1t t tx f x u t N+ = = − (5)

min max , 0,...., 1tu u u t N  = − (6)

0x z= (7)

where, x0 is the position and orientation of the Husky.

u = (v, w) is the linear and angular velocity, and xref is the

orientation and target position:

(), ,x yx p p = (8)

()

()

()

cos

, sin

x s

y s

s

p t v

f x u p t v

t w







 +
 

= + 
 

+  

 (9)

Gazebo is a 3D simulator proposed to have rational

recreations of almost realistic test scenarios of mechanical

situations. Simultaneously, ROS fills in as the Husky

interface, consolidating bring about an incredible robot

test system. With Gazebo, a 3D problem can be recreated

on the computer with obstacles and numerous different

and complex situations. The Gazebo likewise utilizes a

physical engine for illumination, inertia, and gravity.

Advantages of the Gazebo help in assessing and testing

the Husky in troublesome and hazardous conditions with

no harm to the robot. It is regularly quicker to run a test

system as opposed to starting the Husky. To create a

simulation, launching the files in the Gazebo gives a 3D

model of the Husky and a portrayal of joints and sensors.

The ROS interface is designed to suit Husky's joints to

establish a workspace environment.

The more exact model of the Husky is available in the

robot model's directory from a differential drive. Gazebo

allows custom worlds and environments to be designed

and includes an extensive library of objects, structures,

and buildings. ROS's heavy use for actual accurate testing

of the Husky with a slight modification to the software.

An interesting thing about the designed simulator is that

the exact code used for simulation can be implemented for

the Husky with almost no change in the code. With the

collection of robots and objects, recreating the world for

testing Husky under different scenarios is feasible. A few

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

31

Gazebo objects replicate real world dimensions such as a

dumpster, construction cone, fire hydrant, and

construction barrel. A few objects in the Gazebo world

that have only collision geometry are identified as static

objects. Objects which have both collision and inertia

geometry are identified as dynamic objects. Simple

objects can be added like a box, sphere, or cylinder from

the render window. Also, load the model database where

each section is labeled with a path.

The pose of each model may be altered through

translation and rotation tools. Inserted objects can be

moved in the x, y, and z-axis. The three-axis visual maker

will appear on the object, which helps move the object in

the x, y, and z directions. Rotate tool helps to orient mode

around the x, y, and z-axis. Scale tools can resize a model

in x, y, and z directions. The generated model is converted

to Simulation Description Format (SDF) in the recording

registry, as this is a standard way we can work in Gazebo.

Nonetheless, utilizing the Unified Robotic Description

Format (URDF) document produced by Xarco and

moving it in the depiction bundle with ROS. The URDF

is an XML record design utilized in ROS as the local

arrangement to portray all the Husky components. Xarco

is an XML macro language that is valuable to make more

limited and more exact robot depictions and the total

portrayal needs must be inside the robot tag. Consists of

three robot labels; one of the labels is utilized for the

visual rendering engine, the second is the physics engine

and the last is the collision detection engine. The orange

cones in the scene are all static and barriers are placed to

act as a wall to block Husky's navigation. All the objects

placed in the scene have collision geometry.

RVIZ is a 3D visualization tool for ROS, and various

formats of presentations are frequently helpful for

multiple uses of the visualizer. A practical design for a full

PR2 isn't precious for a test robot. The visualizer allows

to load and save of various setups and contains display

properties, camera type settings for the initial viewpoint,

and tool properties for the underlying perspective. With

RVIZ for Groovy, the design document changes from

VGC/INI to.rviz/YAML, presumably the inside setup

environment. The RVIZ in Groovy isn't in reverse viable,

so it is impossible to open or change over old.rviz

documents in the Groovys' RVIZ. There are various

diverse camera types accessible in the visualizer and the

camera types compromise multiple methods of

controlling the camera and numerous sorts of

projection. The camera essentially turns around a focal

point while continuously seeing that point and is

pictured as a bit of a circle while moving the camera.

RVIZ utilizes the tf change framework for exchanging

information from the coordinate frame to the global

reference frame. There are two facilitate frames out of

which the fixed frame is the most important and is also

the reference frame used to signify the world frame.

Figure 3 shows, on the left-hand side of the image, a

custom-built scenario in Gazebo to test Husky's

perception, control, and behavior. On the right-hand side

of the picture, LiDAR data is visualized in the 2D format

in rviz. The odometry frame on the off chance that the

fixed frame is incorrectly set to show the Husky base

points towards all the items in the map move concerning

the Husky. For better results, the specified frame ought

not to be moving comparatively with the global frame.

Fig. 3: 2D mapping in RVIZ

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

32

The target frame is the reference outline for the

camera; if the target frame is the guide, the Husky will be

moving around in that direction. If the target frame is the

Husky base, the Husky will remain in a similar place

while other things move comparatively. The 2D

navigation goal lets to set an objective for the ROS points

on an area in the ground plane. The 2D pose sets an

underlying posture to seed the initial pose for localization

to the initial pose ROS topic.

Materials and Methods

Model Predictive Control Design

Despite MPC's significant practical importance and

general use, there is almost no hypothesis to direct these

regulators' design and tuning for execution, particularly in

the non-linear case (Sutton and Bitmead, 2000). The

analysis of the MPC stability and robustness to non-linear

systems is complicated and rarely implemented. Referring

to Eqs. 10-12, which are linear prediction model's general

prediction (Mayne et al., 2000):

() () () () () ()x t A t x t B t u t E t= + +
 (10)

() 00x x= (11)

() () () () ()y t C t x t D t u t= +
 (12)

Here we have state time as (t) and manipulated

variables are u(t) and y(t) are the controlled variables. The

system is called linear time variant if the A(t), B(t), C(t),

and D(t) are functions of time (Mayne and Langson,

2001). Equations 13-15 represents a nonlinear system that

is time-invariant in most cases and g, and f are considered

continuous differential functions (Diehl et al., 2002). Based

on the goals of this study, objective functions are chosen:

() () ()(), ,x t f x t u t t= (13)

() 00x x= (14)

() () ()(), ,y t g x t u t t= (15)

Equation 16 assumes; the plant is nth order time

invariant multi-input and multi-output process:

() () () () ()

() () ()

1 0

1

n n

i i

n

i

y k A i y k i B i u k i

C i v k i e k

= =

=

= − + −

+ − +

 


 (16)

where, y(k) is a vector of ny output, v(k) is a vector of nv

disturbances, u(k) is a vector of nu manipulated inputs, and

e(k) is the white noise. MPC generates discontinuous

control moves for implementing simplified computations.

The model is a set of multi-input single output process

models (Dekkata, 2018):

() () () () ()

() () ()

1 0

1

n n

j j j

i i

n

j j

i

y k a i y k i B i u k i

C i v k i e k

= =

=

= − + − +

− +

 


 (17)

There are two types of constraints: Equality and

inequality. But in most of the systems inequality constraints

are used (Grüne, 2012). In the model, imposing constraints

and limitations on the system's state, and boundary

conditions to stay within some bounds and constrain input

significantly. So, in many control strategies, the actuation is

a continuous variable. Often the controller will make an

unrealistic demand if the controller is designed severely. It

might command to use of unphysical scenarios, like going a

million miles an hour for a fraction of a second and slowing

down. MPC can essentially put boundaries on the control

signal while running this optimization loop. For every time

step when this optimization runs, it can effectively constrain

the optimization to hit these maximum or minimum values.

So, it can run hard constraints and soft constraints on the state

or the input (Wang and Boyd, 2009).

Non-Linear Systems

Linearizing the non-linear model about a particular state

and linear optimization are applied to the problem because

optimization is the MPC's utmost function. It is built around

optimization for every single time step. Consider a couple of

approaches but imagine having a linear structure with some

noise and disturbances to the bigger picture model. The

optimized control signal from a linear framework utilizes a

linear quadratic controller for the MPC's short-time

optimization. Changing the framework and disturbances'

boundaries will repay over time (Richards, 2005).

System Formulation

The system formulation of discrete time control

(Zeilinger, 2011):

() () () ()1 ,x k Ax k Bu k w k k+ = + +  (18)

Equation 18 is subject to the below constraints, refer

to Eqs. 19-20:

() ,nx k X k    (19)

() ,mu k X k    (20)

Equations 19-20, the control input is u(k), the state vector

is x(k), and the disturbance in the system is w(k). Having the

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

33

polytopic constraints X and U with two sets of disturbances

in the model as convex and compact in the framework of

w(k) (Dekkata, 2021). Equation 21 is for the closed loop

system with a control law consisting of u = k(x):

() () ()() ()1x k Ax k Bk x k w k+ = + + (21)

In the initial states x (0), for an unprecedented system

with a closed loop model having disturbances w is

formulated using Ø(k, x(0), w). Considering an optimal

model where having no disturbances in the system is

given by Bock and Plitt (1984):

() () ()1x k Ax k Bu k+ = + (22)

Equation 22 for an initial state x (0), represented as

Ø(k, (0), w). The closed loop formulation of the system is

given from the below equation, refer to Eq. 23 for a

controlled law u = k(x):

() () ()()1x k Ax k Bk x k+ = + (23)

The system may be unstable, but it may satisfy the steady

state at each sampling time with a few assumptions.

Steady State Parameterization

For a nominal state, we can characterize the steady

state (Muske, 1997):

() s sI A x Bu− = (24)

Equation 24 may have eigenvalues in matrix A, so it is

not possible sometimes to parameterize the input. The

partitions of M are Mx and Mu and they were considered

as an orthogonal matrix:

s x

s u

x M
M

u M
 

   
=   

      

 (25)

Finite Prediction Horizon

Assuming [P  (0, )] MPC compromises addressing a

finite prediction horizon over a control problem at sample

time k. After this, the original input vector of the optimal

grouping is applied to the framework in non-trivial time

considered for the computation of an open loop system

(Dekkata and Sun Yi, 2019). If the dynamics are given

below, refer to Eqs. 26-27, assuming the plant is linear:

() () () () ()p p p px t A t x t B t u t= + (26)

() () () () ()p p py t C t x t D t u t= + (27)

The system is assumed to be time-invariant (LTI system),

constant if all the matrices Ap(t), Bp(t), Cp(t), and Dp(t) are

constant. But at least one or more than one matrix varies in

time; it is assumed to be the time-invariant system.

State Reduction

For Husky, yaw stability control, the tire forces must

show the lagged characteristics of the prediction model. The

MPC-based yaw stability control calculations cause a critical

computational weight in finding the ideal arrangements. The

desired yaw rate is generated by the calculated bicycle model

based on the linear approximation. Husky lateral front and

rear tire models are based on the bicycle model to plan Husky

behavior (Li et al., 2009):

b bw = (28)

()r rk s s = (29)

Linearizing the error dynamics around the reference

path Xr. Assuming the unmanned ground vehicle Husky

framework elements are linear time invariant over a

specific vehicle condition. In this research, distinguishing

the linear model by breaking down and analyzing the

input and output data information tests from a straight

relapse viewpoint. This approach could compute the

vehicle dynamics and use the optimization algorithm with

a conjugate gradient (Rakovic et al., 2005).

Linear model:

1

2

3

1 0 10 0 0

0 0 00 0

0 1 00 0 0 0

0 0 10 0 0 0

e ed r

e ed r r

e e

ee

x xk u
u

y yk u u
u

u
 



      
       
 −      = +        
                   

 (30)

Constraints

Linearizing the non-linear model with states around the

stability point to produce the linear model. During this

research, uncovered the assessed linear model and were able

to get a final form of the algorithm and differentiate it from

the linear model which was obtained (Dekkata et al., 2020).

()
1

2

3

sinR e

R r

m b

s uu

u u k s s

u w w





   +
  

= −  
  

−   

 (31)

Husky's rotation and translation are controlled

separately because of omnidirectional; and rewrite the

equations as below, refer to Eq. 32 as the decoupling

translation and refer to Eq. 33 for rotation:

() () ()(),X t f X t U t= (32)

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

34

() 00X X= (33)

()
T

m m mX t x y  =   (34)

()
T

m m mU t u v w =   (35)

X(t) is the state vector and U(t) is the vector of Husky

velocities in the body frame. The Husky's front wheels'

center linear speed and rear wheels' center are relative to

the ground surface. Husky wheel radius times the angular

velocity gives us the tangential velocity of each wheel. For

Husky's body frame, Husky can move forward or backward

with only one axis; as the kinematic model is being used,

velocity in a fixed structure is essential:

cos sin 0

sin cos 0

0 0 1

m mm m

m m m m

mm

x u

y v

w

 

 



    −
    

= −    
    

    

 (36)

m m

m m

mm

x u

y v

w

   
   

=   
   
   

 (37)

cos

sin

m R t

m R t

t R

mm

x u

y u

u

w





 



   
   
   

=   
   
   

  

 (38)

Change of acceleration with the help of the rotation

matrix is achieved in the fixed frame. The difference between

the estimated speed and desired speed is the error signal

given to the controller to generate the required torque to send

the wheels to meet the desired velocity (Muktadir et al.,

2022). Determining the curvature and the Husky

translation velocities, refer to Eq. 39. Experiencing errors

in the steady state in the yaw angle. So, minimizing the

lateral deviation to zero eliminates the yaw angle's steady

state error. The plant model minimizes the steady state

error to control Husky's longitudinal and lateral motion:

()

()

cos

sin

R t mm

m R t m

uu

v u

 

 

 − 
 = 
 −    

 (39)

Concepts of Prediction

Through model equations, the estimation of the

unknown state x(1|k), is determined by the current state

x(k|k). The size of the prediction issue presented in this

manner increments straight with the number of

estimations. For a prediction method to be

computationally possible, the option to bind the number

of factors is assessed. The group assessment issue can be

adjusted to utilize a fixed size moving horizon state in

which several predictions are based on the plant size

(Rawlings et al., 1994):

()
()()

()() ()

() () ()

1|

1

1

min , 1|

1
1| 1|

2

1| | |

ex k m k

e

ke

l k m

J p x k m k

x k m k P k m k

x k m k v l k R v l k

− +

−

= − +

− +

 
 − + − +



 − + +




 (40)

Subject to:

() ()()| | , , 1,...,p

lv l k y g x l k p l k m k= − = − + (41)

() ()()1| | , , , 1,...,lx l k f x t k u p l k m k−= = − + (42)

Initially, the prediction is the number of measurements

modeled to estimate the horizon's size at the next step.

Predicting the least squares (k – m + 1|k) at t = tk - m + 1

given at time tk-1. The weighting matrices predict the

confidence in the state (k - m + 1|k - 1) with the conditional

inverse covariance matrix. Repeating the procedure at

each time step, with all the future time's probabilistic

interpretation for the optimization of the model at

constant covariance of the prediction model (k - m + 1|k)

- x(k - m + 1|k - 1), then we obtain the 𝑃−1(k - m + 2|k),

from P−1(k - m + 1|k - 1) using the filter technique

(Ferreau et al., 2017).

The size of the assessment issue presented in this

manner increments with the number of estimations. For

an assessment strategy to be computationally possible

several factors are assessed (Diehl, 2021). The number of

estimates based on the size of the optimization remains

constant for the moving horizon problem over at a time 𝑡𝑘
and m - 1, as the horizon size. A linearized model is

utilized when the proportionality between Extended

Kalman Filter (EKF) method and the moving least square

calculation method is evaluated. At a moment when m = 1,

the state conditions try not to show up in the control

problem and the issue turns into a direct least squares

problem. The acquired arrangement relates to the

estimation adjustment step of the EKF. In this manner, the

moving horizon estimator based on EKF is identical at

point m = 1, (Ferreau et al., 2012). Moreover, the

prediction horizon size is solitary with extra tuning

boundaries other than those utilized in the EKF method.

Controller Tuning

Controller tuning is done by logging various vehicle

kinematic data sets during testing, such as acceleration

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

35

torque inputs and yaw rate (Kong et al., 2015). After

careful analysis of collected data and documentation,

changes are then applied to the control parameters and

tested again. If drastic changes are made to the control

parameters or structure, they are pushed through

simulation first. All control inputs are carefully

observed before implementation, which helps limit any

surprise responses that may occur. After tuning,

following control input before the performance tuning

by sending minimum and maximum command values

are further suggested abnormalities. Software

protections such as saturation blocks are added to

enforce the control output limits. Repeating this

procedure several times is an ongoing approach to

generate a smooth trajectory for Husky.

Process Modelling

LiDAR Measurements

One VLP-16 from Velodyne is mounted on top of the

Husky parallel to the ground surface with a 360 view.

This coverage will allow the Husky to cover close objects

approaching from all directions and for more precise

localization; with the localization information, the

Husky's current position can also be detected along with

the landmarks around.

Figure 4, the architecture of LiDAR ground surface

estimation, from LiDAR and IMU, the azimuth and

relative position changes are integrated at a rate of 5 hz.

The measurement model is given. This model is used

when the LiDAR and IMU are loosely coupled:

3 3lidar ins lidar ins lidar ins x y zx x y y A A I   
    −   −    =       (43)

where, ∆𝑥𝑖𝑛𝑠, ∆𝑦𝑖𝑛𝑠, and ∆𝐴𝑖𝑛𝑠 are:

cos sininsx v p A T =   (44)

cos cosinsy v p A T =   (45)

l

ins zA T = (46)

where:
l

z
 = The angular velocity along the vertical axis

T = The sampling time

The angular velocity along the vertical axis is

projected in the horizontal plane. LiDAR is mounted on

the Husky and is connected to the computing platform

using the ethernet cable.

LiDAR-Based System Components

Entities are detected in the surrounding space and are

segmented using range information provided by LiDAR. On

2D laser range images, several possible segmentation

methods to perform the segmentation stage a linear Kalman

Filter (KF) based method have been used. From the extracted

segments, tracking and data association techniques are

performed in the referential laser system.

Figure 5, the block diagram illustration of LiDAR-based

detection, and the detected elements are segmented and

classified using filtering and feature detection. Tracker

prediction under tracking is considered to evolve

according to a stochastic dynamic model driven by

process noise. The state and measurement uncertainties

are considered white Gaussian noise with zero mean and

known covariance matrices. Object tracking using a

multi-independent KF strategy is performed in cartesian

space (Abbas et al., 2017).

Figure 6 shows, a LiDAR map builder has created and

loops through the point cloud array and updates the map

with a new LiDAR frame and updates the view display.

Detecting and Tracking Objects

Feature extraction from the segments under tracking,

probable objects' interest, and a feature vector is extracted

to perform the classification stage. This feature vector has

the following components:

f1) Segment centroid: x

f2) Normalized cartesian dimension: This feature

corresponds to the root mean square of the segment

width (X) and length (∆Y) dimensions:

2 22f X Y=  +  (47)

f3) Internal standard deviation: Denotes the standard

deviation of the range points (m) for the segmented

centroid:

11
3

1
nj

f r x
n

= −
−
 (48)

f4) Radius: Denotes the radius of the circle extracted

from the segment points. The used circle fitting is

based on Guivant's method

f5) Deviation: The mean average deviation from the

median feature is expressed by:

11
5

1
nj

f r x
n

= −
−
 (49)

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

36

LiDAR-Based Classifier

In the classifier, which was implemented based on

the data from the LiDAR. Each object category is

modeled by a finite distribution whose parameters were

estimated during supervised training. The decision rule

is based on the posterior probability that each object

belongs to the class interest. The objects are modeled

by a weighted combination of Gaussian probability,

referred to as Gaussian of the mixture model describing

the class (object category).

Figure 7 shows, the detection, and tracking of multiple

objects in the frame. The probability capacities are

converted into more extensive planning, which keeps

communicating the object's undoubted location.

Fig. 4: LiDAR ground surface estimation

Fig. 5: Block diagram illustration of LiDAR-based detection

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

37

Fig. 6: LiDAR VLP-16 point cloud

Fig. 7: Detecting multiple objects

Segment Clusters

The segment clusters which define an object are a cloud

of range points. The centroid of each cluster calculates all the

characteristic points i.e., with respect to the centroid of the

cluster, the object's behavior is described in the kinematic

model. Intrinsically connected with tracking, data

association is performed considering two situations.

Segment to segment is the process of associating detected

segments with the other segments (non-classified objects)

in the current scan (Garfo et al., 2020).

Figure 8, the LiDAR 3D map is the association of

observed segments with existing objects. The first

situation occurs when one or more current segments are

probably related to a past segment under tracking. To

deal with this situation, a combination of rectangle gate

and feature matching techniques are used. The second

data association problem is the observation of tracker

association, which is solved in a specific manner that

accounts for object classification.

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

38

Fig. 8: LiDAR 3D map

Fig. 9: LiDAR static and moving objects detection

Figure 9, using GPS coordinates to localize the Husky,

based on the high-level decisions and a path is generated

(whether to go straight or turn), following immediate

waypoints will be generated. In a segment-to-object

tracker, the maintenance process is the association of

observed segments with existing objects. The first

situation occurs when one or more current segments are

probably related to a past segment under tracking. To deal

with this situation, a combination of rectangle gate and

feature matching techniques are used. The second data

association problem is the observation of tracker

association, which is solved in a specific manner that

accounts for object classification (Asvadi et al., 2016).

Results and Discussion

Simulation Results

Figure 10, the efficiency of the proposed model

predictive control paradigm is tested through

simulation. The automated driving toolbox from math

works is used for performing the simulation. The

Husky under control is assumed to be 1 m long. The

actual state and input state of Husky at each time step t

is defined in equations below, refer to Eqs. 50-51

(Dekkata et al., 2022):

() () ()c e ry t y t y t= + (50)

() () ()c e rv t v t v t= + (51)

Controlled by the Husky's nominal input, the nominal

disturbance of free state and nominal input of the Husky is

evaluated using the below equations, refer to Eqs. 52-53:

() () ()c e ry t y t y t= + (52)

() () ()c e rv t v t v t= + (53)

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

39

Based on the plant's feedback, Husky's reference

trajectory is calculated using the actual and free state:

()
2

6.9 0.55sin
3.8

r

t
x t

 
= +  

 
 (54)

()
4

4.6 0.55sin
3.8

r

t
y t

 
= +  

 
 (55)

() () ()()2 ,r r rt arctan x t y t = (56)

Comparing Simulation and Implementation Results

Figure 11, the real-time longitudinal movement

follows the simulation results closely. The time-based

tracking performance of the Husky in simulation is

compared with the real-time implementation's ideal

control strategy. The MPC could stabilize the Husky

longitudinal motion with a more modest value of the

corrective yaw moment.

Figure 12 shows that the real-time lateral movement

follows the simulation closely. The MPC could stabilize

the Husky lateral motion with a more modest value of the

corrective yaw movement.

The Ark bridge map generates a set of waypoints as

the desired trajectory. All the waypoints in the reference

trajectory are fitted in a polynomial order. For a curvy

path, in this study, a 3rd degree polynomial worked

well. According to the Husky position and orientation,

applying a transformation to convert the map

coordinate system to the Husky coordinate system.

Transforming the map coordinate system would help

compute the errors because the initial state vector

considers position and orientation zero.

Fig. 10: Husky simulation results

Fig. 11: Longitudinal error to the reference trajectory

Fig. 12: Lateral error to the reference trajectory

Conclusion

In this study, an advanced MPC method was

developed for autonomous navigation systems

combined with control theories. The goal is to design

an advanced MPC for Husky A200 to navigate

autonomously based on the Husky dynamics. The

Husky A200 ground robot can navigate autonomously

with waypoints, and it is tested indoors in unstructured

conditions without deduced data about the

obstructions. This research also presents a new obstacle

avoidance algorithm calculation MPC based, which

improves longitudinal speed and guiding point while

exploring the region, Husky securely yet as quickly as

possible to the target area. By reducing the cross-track

error and orientation error in the active set method, the MPC

is optimized. The best possible route is extracted, and the

trajectory is generated based on Husky's current events and

position. Husky can avoid obstacles for optimal path

planning and target following. The proposed algorithm for

Husky A200 is tested indoors and compared the results with

the simulation results which are plotted using MATLAB and

Gazebo. A novel simulator package is designed by

modeling the Husky using RVIZ and Gazebo. Software

protections such as saturation blocks are added to

enforce the control output limits, repeating this

procedure several times during the approach generated

0 50 100 150 200 250 300

Time in sec

 0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

E
rr

o
r

in
 c

m

 Longitudinal error

Simulation
Real-time

Simulation
Real-time

0 50 100 150 200 250 300

Time in sec

1

0.5

0

-0.5

E
rr

o
r

in
 c

m

 Lateral error

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

40

a smooth trajectory for Husky. For MPC's short-term

optimization, an optimized control signal from a linear

framework is utilized for a linear quadratic controller. The

real-time longitudinal movement follows the simulation

closely. Based on the plant's feedback Husky's reference

trajectory is calculated using the actual state and free state.

Acknowledgment

This study was supported by the Center for Advanced

Transportation Mobility (CATM) at North Carolina A&T

State University.

Funding Information

The authors gratefully acknowledge the support of the

center for advanced transport mobility and the department of

energy Minority Serving Institution Partnership Program

(MSIPP) managed by Savannah River national laboratory

for providing funds to pursue this research.

Author’s Contributions

Sai Charan Dekkata: Designed and developed the

MPC and object detection and avoidance algorithm for the

unmanned ground vehicle Husky A200.

Sun Yi: Supported MPC designed, reviewed the

journal, and supervised the research.

M. A. Muktadir and Selorm Garfo: Proofread the

manuscript.

Ethics

This article contains information which is published in

my Ph.D. dissertation. The corresponding author confirms

that all the other authors have read and approved the

manuscript and that no ethical issues are involved.

References

Abbas, M. A., Milman, R., & Eklund, J. M. (2017).

Obstacle avoidance in real time with nonlinear model

predictive control of autonomous vehicles. Canadian

Journal of Electrical and Computer Engineering,

40(1), 12-22.

https://doi.org/10.1109/CJECE.2016.2609803

Asvadi, A., Premebida, C., Peixoto, P., & Nunes, U.

(2016). 3D Lidar-based static and moving obstacle

detection in driving environments: An approach based

on voxels and multi region ground planes. Robotics and

Autonomous Systems, 83, 299-311.
 https://doi.org/10.1016/j.robot.2016.06.007
Bock, H. G., & Plitt, K. J. (1984). A multiple shooting

algorithm for direct solution of optimal control
problems. IFAC Proceedings Volumes, 17(2),
1603-1608.

 https://doi.org/10.1016/S1474-6670(17)61205-9

Boyd, S., Boyd, S. P., & Vandenberghe, L.

(2004). Convex optimization. Cambridge university

press. https://web.stanford.edu/~boyd/cvxbook/

Dekkata, S. C. (2018). Steering and adaptive cruise

control for autonomous vehicles using model

predictive control (Doctoral dissertation, North

Carolina Agricultural and Technical State University.

Dekkata, S. C. (2021). Model Predictive Control for

Unmanned Ground Vehicles Using Robot Operating

System (Doctoral dissertation, North Carolina

Agricultural and Technical State University).

Dekkata, S. C., & Yi, S. (2019). Improved steering and

adaptive cruise control for autonomous vehicles

using model predictive control. Journal of

Mechatronics and Robotics, 3(1), 378-388.

 https://doi.org/10.3844/jmrsp.2019.378.388

Dekkata, S. C., Okore-Hanson, T., Yi, S., Hamoush, S.,

Seong, Y., & Plummer, J. (2020, July). Autonomous

Navigation and Control of UGVs' in Nuclear Power

Plants-20381. WM Symposia, Inc., PO Box 27646,

85285-7646 Tempe, AZ (United States).

 https://www.osti.gov/biblio/23028007

Dekkata, S. C., Yi, S., Muktadir, M. A., Garfo, S., Li,

X., & Tereda, A. A. (2022). Improved Model

Predictive Control System Design and

Implementation for Unmanned Ground Vehicles.

 https://doi.org/10.3844/jmrsp.2022.90.105

Diehl, M. (2021). Optimization algorithms for model

predictive control. In Encyclopedia of Systems and

Control (pp. 1619-1626). Cham: Springer

International Publishing.

 https://doi.org/10.1007/978-3-030-44184-5_9

Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy,

Z., & Allgöwer, F. (2002). Real-time optimization and

nonlinear model predictive control of processes

governed by differential-algebraic equations. Journal of

Process Control, 12(4), 577-585.

 https://doi.org/10.1016/S0959-1524(01)00023-3

Ferreau, H. J., Almér, S., Verschueren, R., Diehl, M., Frick,

D., Domahidi, A., ... & Jones, C. (2017). Embedded

optimization methods for industrial automatic control.

IFAC-Papers OnLine, 50(1), 13194-13209.
 https://doi.org/10.1016/j.ifacol.2017.08.1946

Ferreau, H. J., Kraus, T., Vukov, M., Saeys, W., & Diehl,

M. (2012, December). High-speed moving horizon

estimation based on automatic code generation.

In 2012 IEEE 51st IEEE Conference on Decision and

Control (CDC) (pp. 687-692). IEEE.

 https://doi.org/10.1109/CDC.2012.6426428

Gao, Y., Lin, T., Borrelli, F., Tseng, E., & Hrovat, D.

(2010, January). Predictive control of autonomous

ground vehicles with obstacle avoidance on slippery

roads. In Dynamic Systems and Control Conference

(Vol. 44175, pp. 265-272).

https://doi.org/10.1115/DSCC2010-4263

https://doi.org/10.1109/CJECE.2016.2609803
https://doi.org/10.1016/j.robot.2016.06.007
https://doi.org/10.1016/S1474
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1016/S1474-6670(17)61205-9
file:///C:/Users/PC/Downloads/
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.3844/jmrsp.2019.378.388
https://www.osti.gov/biblio/23028007
https://doi.org/10.3844/jmrsp.2022.90.105
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1007/978-3-030-44184-5_9
https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/10.1016/S0959-1524(01)00023-3
https://doi.org/10.1016/j.ifacol.2017.08.1946
https://doi.org/10.1109/CDC.2012.6426428
https://doi.org/10.1115/DSCC2010-4263
https://doi.org/10.1115/DSCC2010-4263
https://doi.org/10.1115/DSCC2010-4263

Sai Charan Dekkata et al. / Journal of Mechatronics and Robotics 2023, Volume 7: 27.41

DOI: 10.3844/jmrsp.2023.27.41

41

Gardezi, M. S. M., & Hasan, A. (2018). Machine

learning based adaptive prediction horizon in finite

control set model predictive control. IEEE

Access, 6, 32392-32400.
 https://doi.org/10.1109/ACCESS.2018.2839519

Garfo, S., Muktadir, M. A., & Yi, S. (2020). Defect

detection on 3D print products and in concrete

structures using image processing and convolution

neural network. Journal of Mechatronics and

Robotics, 4(1), 74-84.

 https://doi.org/10.3844/jmrsp.2020.74.84

Goodwin. G. C. (2005). Constrained Control and

Estimation. Heidelberg: Springer-Verlag ISBN:

185233-548-3.

https://books.google.com.sb/books?id=Rp2F_StqjA

EC&printsec=frontcover#v=onepage&q&f=false

Grüne, L. (2012). NMPC without terminal constraints. IFAC

Proceedings Volumes, 45(17), 1-13.
 https://doi.org/10.3182/20120823-5-NL-3013.00030

Kirches, C. (2011). Fast numerical methods for mixed-

integer nonlinear model-predictive control.

Wiesbaden, Germany: Vieweg + Teubner Verlag.

https://doi.org/10.1007/978-3-8348-8202-8

Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F.

(2015, June). Kinematic and dynamic vehicle models

for autonomous driving control design. In 2015 IEEE

intelligent vehicles symposium (IV) (pp. 1094-1099).

IEEE. https://doi.org/10.1109/IVS.2015.7225830

Li, M., Imou, K., Wakabayashi, K., & Yokoyama, S.

(2009). Review of research on agricultural vehicle

autonomous guidance. International Journal of

Agricultural and Biological Engineering, 2(3), 1-16.

http://ijabe.org/index.php/ijabe/article/view/160

Mayne, D. Q., & Langson, W. (2001). Robustifying

model predictive control of constrained linear

systems. Electronics Letters, 37(23), 1422-1423.

https://digital-

library.theiet.org/content/journals/10.1049/el_20010951

Mayne, D. Q., & Michalska, H. (1988, December).

Receding horizon control of nonlinear systems.

In Proceedings of the 27th IEEE Conference on

Decision and Control (pp. 464-465). IEEE.

https://doi.org/10.1109/CDC.1988.194354

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert,

P. O. (2000). Constrained model predictive

control: Stability and optimality. Automatica,

36(6), 789-814.

 https://doi.org/10.1016/S0005-1098(99)00214-9

Muktadir, M. A., & Yi, S. (2021, July). Machine Vision-

Based Detection of Surface Defects of 3D-Printed

Objects. In 2021 ASEE Virtual Annual Conference

Content Access. https://peer.asee.org/machine-

vision-based-detection-of-surface-defects-of-3d-

printed-objects

Muktadir. M A., Yi, S., Hamoush, S., Garfo, S., Dekkata,

S. C., Li, X., Tereda, A., Mckee, R., Brown, K., &

Klawah, N. (2022). Uncrewed Ground Vehicles

(UGVs) and Nature-Inspired Designed Robot DIGIT

and SPOT: A Review. American Journal of

Engineering and Applies Sciences, 15(4), 274-287

https://doi.org/10.3844/ajeassp.2022.274.287

Muraleedharan, A., Okuda, H., & Suzuki, T. (2021). Real-

time implementation of randomized model predictive

control for autonomous driving. IEEE Transactions

on Intelligent Vehicles, 7(1), 11-20.

 https://doi.org/10.1109/TIV.2021.3062730

Muske, K. R. (1997, June). Steady-state target optimization

in linear model predictive control. In Proceedings of the

1997 American control conference (Cat. No.

97CH36041) (Vol. 6, pp. 3597-3601). IEEE.

 https://doi.org/10.1109/ACC.1997.609493

Rakovic, S. V., Kouramas, K. I., Kerrigan, E. C.,

Allwright, J. C., & Mayne, D. Q. (2005). The

minimal robust positively invariant set for linear

difference inclusions and its robust positively

invariant approximations. Automatica.

Rawlings, J. B., Meadows, E. S., & Muske, K. R. (1994).

Nonlinear model predictive control: A tutorial and

survey. IFAC Proceedings Volumes, 27(2), 185-197.

https://doi.org/10.1016/S1474-6670(17)48151-1

Richards, A. G. (2005). Robust constrained model

predictive control (Doctoral dissertation,

Massachusetts Institute of Technology).

 https://dspace.mit.edu/handle/1721.1/28914
Sutton, G. J., & Bitmead, R. R. (2000). Performance and

computational implementation of nonlinear model

predictive control on a submarine. In Nonlinear Model

Predictive Control (pp. 461-472). Birkhäuser Basel.

https://doi.org/10.1007/978-3-0348-8407-5_27

Vougioukas, S., Arvanitis, K., & Sigrimis, N. (2007,

July). A nonlinear model predictive tracking

controller for agricultural vehicles. In 2007 European

Control Conference (ECC) (pp. 4937-4943). IEEE.

https://doi.org/10.23919/ECC.2007.7068764

Wang, Y., & Boyd, S. (2009). Fast model predictive control

using online optimization. IEEE Transactions on

Control Systems Technology, 18(2), 267-278.

 https://doi.org/10.1109/TCST.2009.2017934

Zeilinger, M. N. (2011). Real-time Model Predictive,

Published dissertation in partial fulfillment of the

requirements for the degree Doctor of Philosophy,

ETH ZURICH, Keplerstrabe, Stuttgart, Germany.

https://doi.org/10.3929/ethz-a-6619878

https://doi.org/10.1109/ACCESS.2018.2839519
https://doi.org/10.3844/jmrsp.2020.74.84
https://books.google.com.sb/books?id=Rp2F_StqjAEC&printsec=frontcover#v=onepage&q&f=false
https://books.google.com.sb/books?id=Rp2F_StqjAEC&printsec=frontcover#v=onepage&q&f=false
https://books.google.com.sb/books?id=Rp2F_StqjAEC&printsec=frontcover#v=onepage&q&f=false
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.3182/20120823-5-NL-3013.00030
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1007/978-3-8348-8202-8
https://doi.org/10.1109/IVS.2015.7225830
https://doi.org/10.1109/CDC.1988.194354
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.1016/S0005-1098(99)00214-9
https://doi.org/10.3844/ajeassp.2022.274.287
https://doi.org/10.1109/TIV.2021.3062730
https://doi.org/10.1109/ACC.1997.609493
https://doi.org/10.1016/S1474-6670(17)48151-1
https://doi.org/10.1016/S1474-6670(17)48151-1
https://doi.org/10.1016/S1474-6670(17)48151-1
https://doi.org/10.1016/S1474-6670(17)48151-1
https://doi.org/10.1016/S1474-6670(17)48151-1
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.1007/978-3-0348-8407-5_27
https://doi.org/10.23919/ECC.2007.7068764
https://doi.org/10.1109/TCST.2009.2017934
https://doi.org/10.3929/ethz-a-6619878
https://doi.org/10.3929/ethz-a-6619878
https://doi.org/10.3929/ethz-a-6619878
https://doi.org/10.3929/ethz-a-6619878
https://doi.org/10.3929/ethz-a-6619878

