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Abstract: Unmanned Ground Vehicles (UGVs) have, as of late, been 

utilized in a wide assortment of utilizations because of their flexibility, 

diminished expense, and quick response, among other benefits. Search and 

Rescue (SAR) is quite possibly the most conspicuous zones for the work of 

UGVs instead of a monitored mission, mainly due to its impediments on the 

expenses, human resources, and view of the human administrators. An 

ongoing way of arranging to utilize numerous helpful UGVs for the SAR 

mission is proposed in this study. This study aims to introduce the initial 

moves towards a Model Predictive Control (MPC) based peril evasion 

calculation for UGVs representing the vehicle elements through high 

constancy models and uses just surrounding data about the environment as 

given by the available onboard sensors. In particular, the paper presents the 

MPC definition for peril evasion utilizing a Light Detection and Ranging 

(LiDAR) sensor and applies it to a contextual of the effect of model 

constancy on the calculation's presentation, where execution is estimated 

principally when to arrive at the objective point. The Robot Operating 

System (ROS) is used to drive the sensors and visualize the data in RVIZ. 

This study presents MPC development for navigating Husky A200 by 

adjusting the longitudinal, lateral, and yaw motion command behaviors. The 

proposed algorithm for Husky A200 is tested indoors and compared the 

results with the simulation results plotted using MATLAB and GAZEBO. A 

novel simulator package is developed for the Husky using RVIZ and 

GAZEBO. The efficiency of the proposed MPC design is tested through 

simulation and compared with real world experiments, the real-time 

longitudinal movement follows the simulation results closely. For MPC's 

short-term optimization, an optimized control signal from a linear framework 

is utilized for a linear quadratic controller. According to the Husky position 

and orientation, applying a transformation to convert the map coordinate 

system to the Husky coordinate system. Transforming the map coordinate 

system helped in computing the errors because the initial vector considers 

position and orientation as zero.  

 

Keywords: Model Predictive Control, Unmanned Ground Robot, 

Autonomous Vehicles, Robust Adaptive Control, Vehicle Dynamics, 

Control and LiDAR 

 

Introduction  

Model Predictive Control (MPC) has been of great 

interest to both industry and academia when initial 

versions of the MPC are for Dynamic Matrix Control 

(DMC) and Identification Command Algorithm (ICA). 

The terminal constraints, terminal cost function, and local 

control law are the three essential ingredients that 

guarantee the MPC’s stability (Mayne and Michalska, 

1988). Despite MPC’s significant practical importance 

and general use, almost no hypothesis to direct these 

regulators design and tuning for execution, particularly in 

the non-linear system, is complicated and rarely 

implemented. MPC generates discontinuous control 
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moves for implementing simplified computations for 

single input single output and multi-input and multi output 

process models. The MPC is robust for many reasons and 

forms a vital problem class for many applications and 

arises as subproblems, in general, constrained 

optimization methods, such as sequential programming or 

interior point methods (Goodwin, 2005). Having the 

waypoints generated by the planner and the GPS 

coordinates, MPC can consider future waypoints/events 

and act accordingly. Convex optimization is a subclass of 

numerical streamlining with favorable hypothetical and 

functional properties, which will be used as significant 

control parameters (Kirches, 2011). To some extent, step 

response models are a subset of the transfer function. MPC 

encompasses a range of control methods used in the single 

input, single output, multi-input, and multi output processes 

(Gardezi and Hasan, 2018). In this research, the initial step 

is to recurrent some fundamental theoretical results and 

outline the optimization method used for Husky A200. The 

traditional MPC issue is settled by executing an 

improvement routine, which has limited the use of model 

regulators to moderate dynamic measures. Lately, various 

strategies have been created with the objective of optimizing 

MPC to be utilized for quickly inspected frameworks.  

Over a considered prediction horizon, find the J(u) and 

use the non-linear optimization technique 

(Muraleedharan et al., 2021). Where Q is the positive 

semi definite, R is the positive definite. As mentioned, the 

sequence of control inputs U, a series of desired states Xd, 

and the sequence of predicted states X would minimize the 

unknown disturbances and mode the Husky dynamics by 

representing the Gaussian process. With favorable practical 

and theoretical properties, mathematical optimization has 

a convex optimization subclass (Boyd et al., 2004). The 

speculation of the classical function hypothesis can be 

productively utilized in multiple mathematical analyses. 

Here articulating the theoretical implicit function, which 

uses the stability analysis for the control algorithm 

improves the sequence of predicted states. Because of the 

progression in computational forces, practical 

calculations are being utilized. The model infers a 

mathematical connection between network weights and 

the exchange transfer function limits. For multi-input 

multi-output systems in the model, a distinguish technique 

algorithm was proposed using the closed loop method.  

Husky A200  

The Husky series has been used by industrial and 

military engineers and robotic researchers who spend time 

researching and developing UGV prototypes. The Husky 

A200 Unmanned Ground Vehicle (UGV) is engineered to 

thrive in harsh outdoor and indoor conditions. Husky has 

rugged all terrain tires, a powerful 4  4 zero maintenance 

drivetrain, class leading ground clearance, and ample 

internal space for custom hardware. For extreme terrain, 13 

lug tires with a high torque 4  4 drive are available. On top of 

the Husky industrial standard rail for rapid payload, mounting 

is available. Charging is made easy with a field chargeable 24 

V battery with a toolless access panel. Husky bundle involves 

fundamental segments, as it comes pre-introduced with a small 

ITX with Linux and ROS. The top plate considers the simple 

mounting of any detecting, control, or PC equipment associate 

sensors to the locally available PC and Husky managed power 

supplies to begin Husky A200.  

Simulation  

Initially, for obstacle detection using LiDAR, 

simulation results are plotted using MATLAB and 

GAZEBO, using the results are compared. Robot 

Operating System (ROS) is used to drive the sensors, 

launch packages containing the sensor fusion algorithms, 

and visualize the data in RVIZ. A novel simulator package 

was designed by modeling the Husky using RVIZ and 

GAZEBO. GAZEBO’s powerful physics engine and 

cross compatibility with ROS allowed for an easy way to 

test essential torque and angle inputs. A customized scene 

can be generated with simulated vehicles in the 

background using the math works automated driving 

toolbox. Because of ROS's heavy use for the actual 

implementation, Gazebo made it easy to move back and 

forth from the simulated environment to accurate testing 

of the vehicle with a slight modification to the software. 

This study presents MPC development instead of a 

conventional PID for navigating the Husky A200 by 

adjusting the longitudinal, lateral, and yaw motion 

command behaviors. The purpose of using MPC instead of 

PID is its ability to optimize current time slots while taking 

future time slots into account to provide a more proactive and 

smoother control mechanism. The planner and the GPS 

coordinates generate the waypoints, and MPC considers 

future waypoints/events and acts accordingly.  

Simulation 

MATLAB and Simulink  

The LiDAR sensor data has been recorded using a 3D 

simulation environment to test the algorithm. The 

recorded data helps to develop the perception algorithm. 

Simulating sensor detections and testing the reliability 

and predicting potential complex events during autonomous 

driving can be generated in the simulation environment 

(Muktadir and Yi, 2021). In the automated driving scenario 

generation, vehicle models are defined and help to create a 

road network and control the simulated vehicle behavior 

using the driving scenario application.  

In the simulation environment, multiple scenes are 

available in the automated driving toolbox. To create a 

driving scenario and place a moving vehicle in the 

background, LiDAR has been configured and placed on the 

vehicle using MATLAB. The perception algorithm is tested 
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in the simulation environment with different static and 

dynamic objects. The developed algorithm can be used in the 

simulation environment for a wide range of custom scenes 

and tested on numerous available scenes in the toolbox.  

Figure 1, ROS has been used to view the LiDAR sensor 

point cloud and LiDAR sensor properties are configured. 

The automated driving toolbox has been used to integrate a 

3D simulation environment to view sensor readings. LiDAR 

is mounted on top of the vehicle's front center and configured 

to model a typical Velodyne VLP-16. The point cloud data 

is recorded through the simulated sensor over the vehicle and 

data is visualized. The data is filtered for any noise or 

disturbance before testing the algorithm. A 3D map is built 

in the simulation environment using the LiDAR sensor data 

and the perception algorithm is tested in the simulated 

environment. If multiple moving objects are defined in the 

simulation, the algorithm is tested for extracting the 

moving vehicle's distance from the LiDAR point cloud.  

When the record mode is set to true in the scenario setup, 

the model records and visualizes the synthetic LiDAR data; 

when the record mode is set to false, the model runs the 

perception algorithm. During the simulation, the record 

mode is closed, and visualize the subsystem and develop a 

way to record data. Updating the simulation stops time to end 

when the reference path is completed, then the simulation 

can be executed. Finally, from the recorded data, a point 

cloud data array is created. A LiDAR map builder is 

designed and loops through the point cloud array and updates 

the map with a new LiDAR frame and updates the top view 

display. To build the LiDAR map, closing the high-definition 

figure recorder and setting the record mode and algorithm 

can be stress tested under different scenarios.  

The Simulink model is modified to generate code for 

path planning and vehicle control algorithms and verify the 

generated code using Software in the Loop (SiL) simulation. 

In the implementation and simulation, it helps to generate 

and verify code from the algorithm model. The algorithm test 

bench is used to partition the algorithm and test bench 

specifying the path planning and vehicle control 

functionality. The test bench model defines the stimulus and 

environment to test the algorithms. Simulating the test bench 

to test the algorithm model reference in various simulation 

models and the cost map creator block creates the 

environment's cost map. The behavior planner block triggers 

navigation tasks and the controller is applied to the vehicle 

model block. The path planner plans a feasible path through 

the environment map and the trajectory generator smoothens 

the reference path by fitting splines. The vehicle controller 

controls longitudinal and lateral movement. The variable size 

poses signal has been split into a fixed size outport and the 

cost map bus is associated with the cost map input port.  

Configuring the model to generate code includes 

setting C++ code with entry points for each rate and 

applying standard optimizations. A report is generated to 

facilitate exploring the generated code and finally, set and 

view model parameters to enable C++ code generation. 

SIL helps test the source code on our development 

computer. The numerical test equivalence between the 

model components and production code generated from 

the elements by using Software in the Loop (SiL) and 

Processor in the Loop (PiL) simulations.  

Figure 2, shows the architecture of the unreal engine 

connected to the bridge model on a separate MATLAB 

instance which transfers messages like speed, vehicle 

controls, and sensor readings. The model is a proportional 

controller introduced in the system to configure a model 

to generate C++ code for standalone ROS nodes. 

Configuration of the connection to the ROS device in the 

Simulink coder, the code generated for the standalone 

ROS node is connected to the ROS device. The standalone 

ROS node is generated and can automatically transfer, 

build, and run on the ROS device. Tested the generated 

ROS node using a ROS master running on the ROS 

device. Finally, the newly built ROS node is executed, and 

its behavior is verified using a MATLAB-based robot 

simulator. ROS nodes generated can be managed by 

simulink with the ROS device object and stop the node at 

any point without rebuilding it in the simulink. 

 

 

 

Fig. 1: LiDAR 3D point cloud 
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Fig. 2: Unreal engine connected to ROS. 

 

Gazebo and RVIZ  

ROS is the middleware opted for due to its incredible 

support and its broad compatibility with the sensors. ROS is 

used to drive the sensors, launch packages containing the 

sensor fusion algorithms, and visualize the data in RVIZ. The 

LiDAR sends information about the environment in front of 

the Husky, including static and dynamic objects; this data can 

be visualized in RVIZ. Husky is modeled using differential 

drive equations; a novel simulator package was designed by 

modeling the Husky using RVIZ and Gazebo. Gazebos' 

powerful physics engine and cross compatibility with ROS 

allowed for an easy way to test essential torque and angle 

inputs as well as testing GPS path tracking algorithms 

(Vougioukas et al., 2007).  

Rigid body dynamic equations are: 
 

( ) ( ) ( )cosx t v t t=  (1)  

 

( ) ( ) ( )siny t v t t=  (2)  

 

( ) ( )t t =  (3)  

 

In this research, an integral reinforcement learning 

method is used to decide the ideal control framework with 

totally obscure elements. The proposed approach assesses 

the ideal control utilizing essential support, using the 

framework distinguishing proof rather than function 

approximation. This methodology delivers the test 

process to control with the automated ground vehicle 

elements ideally (Gao et al., 2010): 

  

( )
0

2 2 21

1
:

N ref ref

t t Nu i Q Q QN
P z Minimize x x u x x

−

=
− + + −  (4) 

 

Subject to: 

 

( )1 , , 0,...., 1t t tx f x u t N+ = = −  (5) 

 

min max , 0,...., 1tu u u t N  = −  (6) 

0x z=  (7) 

 

where, x0 is the position and orientation of the Husky. 

u = (v, w) is the linear and angular velocity, and xref is the 

orientation and target position: 

 

( ), ,x yx p p =  (8)  
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f x u p t v

t w







 +
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= + 
 

+  

 (9) 

 

Gazebo is a 3D simulator proposed to have rational 

recreations of almost realistic test scenarios of mechanical 

situations. Simultaneously, ROS fills in as the Husky 

interface, consolidating bring about an incredible robot 

test system. With Gazebo, a 3D problem can be recreated 

on the computer with obstacles and numerous different 

and complex situations. The Gazebo likewise utilizes a 

physical engine for illumination, inertia, and gravity. 

Advantages of the Gazebo help in assessing and testing 

the Husky in troublesome and hazardous conditions with 

no harm to the robot. It is regularly quicker to run a test 

system as opposed to starting the Husky. To create a 

simulation, launching the files in the Gazebo gives a 3D 

model of the Husky and a portrayal of joints and sensors. 

The ROS interface is designed to suit Husky's joints to 

establish a workspace environment.  

The more exact model of the Husky is available in the 

robot model's directory from a differential drive. Gazebo 

allows custom worlds and environments to be designed 

and includes an extensive library of objects, structures, 

and buildings. ROS's heavy use for actual accurate testing 

of the Husky with a slight modification to the software. 

An interesting thing about the designed simulator is that 

the exact code used for simulation can be implemented for 

the Husky with almost no change in the code. With the 

collection of robots and objects, recreating the world for 

testing Husky under different scenarios is feasible. A few 
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Gazebo objects replicate real world dimensions such as a 

dumpster, construction cone, fire hydrant, and 

construction barrel. A few objects in the Gazebo world 

that have only collision geometry are identified as static 

objects. Objects which have both collision and inertia 

geometry are identified as dynamic objects. Simple 

objects can be added like a box, sphere, or cylinder from 

the render window. Also, load the model database where 

each section is labeled with a path.  

The pose of each model may be altered through 

translation and rotation tools. Inserted objects can be 

moved in the x, y, and z-axis. The three-axis visual maker 

will appear on the object, which helps move the object in 

the x, y, and z directions. Rotate tool helps to orient mode 

around the x, y, and z-axis. Scale tools can resize a model 

in x, y, and z directions. The generated model is converted 

to Simulation Description Format (SDF) in the recording 

registry, as this is a standard way we can work in Gazebo. 

Nonetheless, utilizing the Unified Robotic Description 

Format (URDF) document produced by Xarco and 

moving it in the depiction bundle with ROS. The URDF 

is an XML record design utilized in ROS as the local 

arrangement to portray all the Husky components. Xarco 

is an XML macro language that is valuable to make more 

limited and more exact robot depictions and the total 

portrayal needs must be inside the robot tag. Consists of 

three robot labels; one of the labels is utilized for the 

visual rendering engine, the second is the physics engine 

and the last is the collision detection engine. The orange 

cones in the scene are all static and barriers are placed to 

act as a wall to block Husky's navigation. All the objects 

placed in the scene have collision geometry.  

RVIZ is a 3D visualization tool for ROS, and various 

formats of presentations are frequently helpful for 

multiple uses of the visualizer. A practical design for a full 

PR2 isn't precious for a test robot. The visualizer allows 

to load and save of various setups and contains display 

properties, camera type settings for the initial viewpoint, 

and tool properties for the underlying perspective. With 

RVIZ for Groovy, the design document changes from 

VGC/INI to.rviz/YAML, presumably the inside setup 

environment. The RVIZ in Groovy isn't in reverse viable, 

so it is impossible to open or change over old.rviz 

documents in the Groovys' RVIZ. There are various 

diverse camera types accessible in the visualizer and the 

camera types compromise multiple methods of 

controlling the camera and numerous sorts of 

projection. The camera essentially turns around a focal 

point while continuously seeing that point and is 

pictured as a bit of a circle while moving the camera. 

RVIZ utilizes the tf change framework for exchanging 

information from the coordinate frame to the global 

reference frame. There are two facilitate frames out of 

which the fixed frame is the most important and is also 

the reference frame used to signify the world frame. 

Figure 3 shows, on the left-hand side of the image, a 

custom-built scenario in Gazebo to test Husky's 

perception, control, and behavior. On the right-hand side 

of the picture, LiDAR data is visualized in the 2D format 

in rviz. The odometry frame on the off chance that the 

fixed frame is incorrectly set to show the Husky base 

points towards all the items in the map move concerning 

the Husky. For better results, the specified frame ought 

not to be moving comparatively with the global frame. 

 

 
 

Fig. 3: 2D mapping in RVIZ
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The target frame is the reference outline for the 

camera; if the target frame is the guide, the Husky will be 

moving around in that direction. If the target frame is the 

Husky base, the Husky will remain in a similar place 

while other things move comparatively. The 2D 

navigation goal lets to set an objective for the ROS points 

on an area in the ground plane. The 2D pose sets an 

underlying posture to seed the initial pose for localization 

to the initial pose ROS topic.  

Materials and Methods 

Model Predictive Control Design  

Despite MPC's significant practical importance and 

general use, there is almost no hypothesis to direct these 

regulators' design and tuning for execution, particularly in 

the non-linear case (Sutton and Bitmead, 2000). The 

analysis of the MPC stability and robustness to non-linear 

systems is complicated and rarely implemented. Referring 

to Eqs. 10-12, which are linear prediction model's general 

prediction (Mayne et al., 2000): 
 

( ) ( ) ( ) ( ) ( ) ( )x t A t x t B t u t E t= + +
 (10)  

 

( ) 00x x=  (11)  

 

( ) ( ) ( ) ( ) ( )y t C t x t D t u t= +
 (12)  

 

Here we have state time as (t) and manipulated 

variables are u(t) and y(t) are the controlled variables. The 

system is called linear time variant if the A(t), B(t), C(t), 

and D(t) are functions of time (Mayne and Langson, 

2001). Equations 13-15 represents a nonlinear system that 

is time-invariant in most cases and g, and f are considered 

continuous differential functions (Diehl et al., 2002). Based 

on the goals of this study, objective functions are chosen: 
 

( ) ( ) ( )( ), ,x t f x t u t t=  (13)  

 

( ) 00x x=  (14)  

 

( ) ( ) ( )( ), ,y t g x t u t t=  (15)  

 
Equation 16 assumes; the plant is nth order time 

invariant multi-input and multi-output process: 

  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0

1

n n

i i

n

i

y k A i y k i B i u k i

C i v k i e k

= =

=

= − + −

+ − +

 


 (16)  

 

where, y(k) is a vector of ny output, v(k) is a vector of nv 

disturbances, u(k) is a vector of nu manipulated inputs, and 

e(k) is the white noise. MPC generates discontinuous 

control moves for implementing simplified computations. 

The model is a set of multi-input single output process 

models (Dekkata, 2018): 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 0

1

n n

j j j

i i

n

j j

i

y k a i y k i B i u k i

C i v k i e k

= =

=

= − + − +

− +

 


 (17)  

 

There are two types of constraints: Equality and 

inequality. But in most of the systems inequality constraints 

are used (Grüne, 2012). In the model, imposing constraints 

and limitations on the system's state, and boundary 

conditions to stay within some bounds and constrain input 

significantly. So, in many control strategies, the actuation is 

a continuous variable. Often the controller will make an 

unrealistic demand if the controller is designed severely. It 

might command to use of unphysical scenarios, like going a 

million miles an hour for a fraction of a second and slowing 

down. MPC can essentially put boundaries on the control 

signal while running this optimization loop. For every time 

step when this optimization runs, it can effectively constrain 

the optimization to hit these maximum or minimum values. 

So, it can run hard constraints and soft constraints on the state 

or the input (Wang and Boyd, 2009).  

Non-Linear Systems  

Linearizing the non-linear model about a particular state 

and linear optimization are applied to the problem because 

optimization is the MPC's utmost function. It is built around 

optimization for every single time step. Consider a couple of 

approaches but imagine having a linear structure with some 

noise and disturbances to the bigger picture model. The 

optimized control signal from a linear framework utilizes a 

linear quadratic controller for the MPC's short-time 

optimization. Changing the framework and disturbances' 

boundaries will repay over time (Richards, 2005).  

System Formulation  

The system formulation of discrete time control 

(Zeilinger, 2011): 

 

( ) ( ) ( ) ( )1 ,x k Ax k Bu k w k k+ = + +   (18)  

 
Equation 18 is subject to the below constraints, refer 

to Eqs. 19-20: 
 

( ) ,nx k X k     (19)  

 

( ) ,mu k X k     (20)  

 
Equations 19-20, the control input is u(k), the state vector 

is x(k), and the disturbance in the system is w(k). Having the 
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polytopic constraints X and U with two sets of disturbances 

in the model as convex and compact in the framework of 

w(k) (Dekkata, 2021). Equation 21 is for the closed loop 

system with a control law consisting of u = k(x): 
 

( ) ( ) ( )( ) ( )1x k Ax k Bk x k w k+ = + +  (21)  

 

In the initial states x (0), for an unprecedented system 

with a closed loop model having disturbances w is 

formulated using Ø(k, x(0), w). Considering an optimal 

model where having no disturbances in the system is 

given by Bock and Plitt (1984): 
 

( ) ( ) ( )1x k Ax k Bu k+ = +  (22)  

 

Equation 22 for an initial state x (0), represented as 

Ø(k, (0), w). The closed loop formulation of the system is 

given from the below equation, refer to Eq. 23 for a 

controlled law u = k(x): 
 

( ) ( ) ( )( )1x k Ax k Bk x k+ = +  (23)  

 
The system may be unstable, but it may satisfy the steady 

state at each sampling time with a few assumptions.  

Steady State Parameterization  

For a nominal state, we can characterize the steady 

state (Muske, 1997): 

 

( ) s sI A x Bu− =  (24)  

 
Equation 24 may have eigenvalues in matrix A, so it is 

not possible sometimes to parameterize the input. The 

partitions of M are Mx and Mu and they were considered 

as an orthogonal matrix: 
 

s x

s u

x M
M

u M
 

   
=   

      

 (25)  

 

Finite Prediction Horizon  

Assuming [P  (0, )] MPC compromises addressing a 

finite prediction horizon over a control problem at sample 

time k. After this, the original input vector of the optimal 

grouping is applied to the framework in non-trivial time 

considered for the computation of an open loop system 

(Dekkata and Sun Yi, 2019). If the dynamics are given 

below, refer to Eqs. 26-27, assuming the plant is linear: 
 

( ) ( ) ( ) ( ) ( )p p p px t A t x t B t u t= +  (26)  

 

( ) ( ) ( ) ( ) ( )p p py t C t x t D t u t= +  (27)  

 
The system is assumed to be time-invariant (LTI system), 

constant if all the matrices Ap(t), Bp(t), Cp(t), and Dp(t) are 

constant. But at least one or more than one matrix varies in 

time; it is assumed to be the time-invariant system. 

State Reduction  

For Husky, yaw stability control, the tire forces must 

show the lagged characteristics of the prediction model. The 

MPC-based yaw stability control calculations cause a critical 

computational weight in finding the ideal arrangements. The 

desired yaw rate is generated by the calculated bicycle model 

based on the linear approximation. Husky lateral front and 

rear tire models are based on the bicycle model to plan Husky 

behavior (Li et al., 2009): 

 

b bw =  (28) 

 

( )r rk s s =  (29)  

 

Linearizing the error dynamics around the reference 

path Xr. Assuming the unmanned ground vehicle Husky 

framework elements are linear time invariant over a 

specific vehicle condition. In this research, distinguishing 

the linear model by breaking down and analyzing the 

input and output data information tests from a straight 

relapse viewpoint. This approach could compute the 

vehicle dynamics and use the optimization algorithm with 

a conjugate gradient (Rakovic et al., 2005). 

Linear model: 
 

1

2

3

1 0 10 0 0

0 0 00 0

0 1 00 0 0 0

0 0 10 0 0 0

e ed r

e ed r r

e e

ee

x xk u
u

y yk u u
u

u
 



      
       
 −      = +        
                   

 (30)  

  

Constraints  

Linearizing the non-linear model with states around the 

stability point to produce the linear model. During this 

research, uncovered the assessed linear model and were able 

to get a final form of the algorithm and differentiate it from 

the linear model which was obtained (Dekkata et al., 2020).  

 

( )
1

2

3

sinR e

R r

m b

s uu

u u k s s

u w w





   +
  

= −  
  

−   

 (31) 

 

Husky's rotation and translation are controlled 

separately because of omnidirectional; and rewrite the 

equations as below, refer to Eq. 32 as the decoupling 

translation and refer to Eq. 33 for rotation: 

 

( ) ( ) ( )( ),X t f X t U t=  (32) 
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( ) 00X X=  (33)  

 

( )
T

m m mX t x y  =    (34)  

 

( )
T

m m mU t u v w =    (35)  

 

X(t) is the state vector and U(t) is the vector of Husky 

velocities in the body frame. The Husky's front wheels' 

center linear speed and rear wheels' center are relative to 

the ground surface. Husky wheel radius times the angular 

velocity gives us the tangential velocity of each wheel. For 

Husky's body frame, Husky can move forward or backward 

with only one axis; as the kinematic model is being used, 

velocity in a fixed structure is essential: 

 

cos sin 0

sin cos 0

0 0 1

m mm m

m m m m

mm

x u

y v

w

 

 



    −
    

= −    
    

    

 (36)  

 

m m

m m

mm

x u

y v

w

   
   

=   
   
   

 (37)  
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

   
   
   

=   
   
   

  

 (38)  

 

Change of acceleration with the help of the rotation 

matrix is achieved in the fixed frame. The difference between 

the estimated speed and desired speed is the error signal 

given to the controller to generate the required torque to send 

the wheels to meet the desired velocity (Muktadir et al., 

2022). Determining the curvature and the Husky 

translation velocities, refer to Eq. 39. Experiencing errors 

in the steady state in the yaw angle. So, minimizing the 

lateral deviation to zero eliminates the yaw angle's steady 

state error. The plant model minimizes the steady state 

error to control Husky's longitudinal and lateral motion: 

 

( )

( )

cos

sin

R t mm

m R t m

uu

v u

 

 

 − 
 = 
 −    

 (39)  

  

Concepts of Prediction  

Through model equations, the estimation of the 

unknown state x(1|k), is determined by the current state 

x(k|k). The size of the prediction issue presented in this 

manner increments straight with the number of 

estimations. For a prediction method to be 

computationally possible, the option to bind the number 

of factors is assessed. The group assessment issue can be 

adjusted to utilize a fixed size moving horizon state in 

which several predictions are based on the plant size 

(Rawlings et al., 1994): 
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( )( )

( )( ) ( )

( ) ( ) ( )

1|

1

1

min , 1|

1
1| 1|
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1| | |

ex k m k

e
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−

= − +

− +

 
 − + − +



 − + +
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 (40) 

  

Subject to: 

 

( ) ( )( )| | , , 1,...,p

lv l k y g x l k p l k m k= − = − +   (41) 

 

( ) ( )( )1| | , , , 1,...,lx l k f x t k u p l k m k−= = − +  (42)  

 

Initially, the prediction is the number of measurements 

modeled to estimate the horizon's size at the next step. 

Predicting the least squares (k – m + 1|k) at t = tk - m + 1 

given at time tk-1. The weighting matrices predict the 

confidence in the state (k - m + 1|k - 1) with the conditional 

inverse covariance matrix. Repeating the procedure at 

each time step, with all the future time's probabilistic 

interpretation for the optimization of the model at 

constant covariance of the prediction model (k - m + 1|k) 

- x(k - m + 1|k - 1), then we obtain the 𝑃−1(k - m + 2|k), 

from P−1(k - m + 1|k - 1) using the filter technique 

(Ferreau et al., 2017).  

The size of the assessment issue presented in this 

manner increments with the number of estimations. For 

an assessment strategy to be computationally possible 

several factors are assessed (Diehl, 2021). The number of 

estimates based on the size of the optimization remains 

constant for the moving horizon problem over at a time 𝑡𝑘 
and m - 1, as the horizon size. A linearized model is 

utilized when the proportionality between Extended 

Kalman Filter (EKF) method and the moving least square 

calculation method is evaluated. At a moment when m = 1, 

the state conditions try not to show up in the control 

problem and the issue turns into a direct least squares 

problem. The acquired arrangement relates to the 

estimation adjustment step of the EKF. In this manner, the 

moving horizon estimator based on EKF is identical at 

point m = 1, (Ferreau et al., 2012). Moreover, the 

prediction horizon size is solitary with extra tuning 

boundaries other than those utilized in the EKF method.  

Controller Tuning  

Controller tuning is done by logging various vehicle 

kinematic data sets during testing, such as acceleration 
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torque inputs and yaw rate (Kong et al., 2015). After 

careful analysis of collected data and documentation, 

changes are then applied to the control parameters and 

tested again. If drastic changes are made to the control 

parameters or structure, they are pushed through 

simulation first. All control inputs are carefully 

observed before implementation, which helps limit any 

surprise responses that may occur. After tuning, 

following control input before the performance tuning 

by sending minimum and maximum command values 

are further suggested abnormalities. Software 

protections such as saturation blocks are added to 

enforce the control output limits. Repeating this 

procedure several times is an ongoing approach to 

generate a smooth trajectory for Husky.  

Process Modelling 

LiDAR Measurements  

One VLP-16 from Velodyne is mounted on top of the 

Husky parallel to the ground surface with a 360 view. 

This coverage will allow the Husky to cover close objects 

approaching from all directions and for more precise 

localization; with the localization information, the 

Husky's current position can also be detected along with 

the landmarks around.  

Figure 4, the architecture of LiDAR ground surface 

estimation, from LiDAR and IMU, the azimuth and 

relative position changes are integrated at a rate of 5 hz. 

The measurement model is given. This model is used 

when the LiDAR and IMU are loosely coupled: 

 

3 3lidar ins lidar ins lidar ins x y zx x y y A A I   
    −   −    =        (43) 

 

where, ∆𝑥𝑖𝑛𝑠, ∆𝑦𝑖𝑛𝑠, and ∆𝐴𝑖𝑛𝑠 are: 

 

cos sininsx v p A T =    (44) 

 

cos cosinsy v p A T =    (45) 

 
l

ins zA T =  (46)  

 

where:  
l

z
 = The angular velocity along the vertical axis 

T = The sampling time 

 

The angular velocity along the vertical axis is 

projected in the horizontal plane. LiDAR is mounted on 

the Husky and is connected to the computing platform 

using the ethernet cable.  

LiDAR-Based System Components  

Entities are detected in the surrounding space and are 

segmented using range information provided by LiDAR. On 

2D laser range images, several possible segmentation 

methods to perform the segmentation stage a linear Kalman 

Filter (KF) based method have been used. From the extracted 

segments, tracking and data association techniques are 

performed in the referential laser system.  

Figure 5, the block diagram illustration of LiDAR-based 

detection, and the detected elements are segmented and 

classified using filtering and feature detection. Tracker 

prediction under tracking is considered to evolve 

according to a stochastic dynamic model driven by 

process noise. The state and measurement uncertainties 

are considered white Gaussian noise with zero mean and 

known covariance matrices. Object tracking using a 

multi-independent KF strategy is performed in cartesian 

space (Abbas et al., 2017).  

Figure 6 shows, a LiDAR map builder has created and 

loops through the point cloud array and updates the map 

with a new LiDAR frame and updates the view display.  

Detecting and Tracking Objects  

Feature extraction from the segments under tracking, 

probable objects' interest, and a feature vector is extracted 

to perform the classification stage. This feature vector has 

the following components: 

 

f1) Segment centroid: x 

 

f2) Normalized cartesian dimension: This feature 

corresponds to the root mean square of the segment 

width ( X) and length (∆Y) dimensions: 

 

2 22f X Y=  +   (47)  

 

f3) Internal standard deviation: Denotes the standard 

deviation of the range points (m) for the segmented 

centroid: 

 

11
3

1
nj

f r x
n

= −
−
  (48)  

 

f4) Radius: Denotes the radius of the circle extracted 

from the segment points. The used circle fitting is 

based on Guivant's method 

f5) Deviation: The mean average deviation from the 

median feature is expressed by: 

 

11
5

1
nj

f r x
n

= −
−
  (49) 
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LiDAR-Based Classifier 

In the classifier, which was implemented based on 

the data from the LiDAR. Each object category is 

modeled by a finite distribution whose parameters were 

estimated during supervised training. The decision rule 

is based on the posterior probability that each object 

belongs to the class interest. The objects are modeled 

by a weighted combination of Gaussian probability, 

referred to as Gaussian of the mixture model describing 

the class (object category).  

Figure 7 shows, the detection, and tracking of multiple 

objects in the frame. The probability capacities are 

converted into more extensive planning, which keeps 

communicating the object's undoubted location. 

 

 
 

Fig. 4: LiDAR ground surface estimation 
 

 
 

Fig. 5: Block diagram illustration of LiDAR-based detection 
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Fig. 6: LiDAR VLP-16 point cloud 
 

 
 

Fig. 7: Detecting multiple objects 
 

Segment Clusters 

The segment clusters which define an object are a cloud 

of range points. The centroid of each cluster calculates all the 

characteristic points i.e., with respect to the centroid of the 

cluster, the object's behavior is described in the kinematic 

model. Intrinsically connected with tracking, data 

association is performed considering two situations. 

Segment to segment is the process of associating detected 

segments with the other segments (non-classified objects) 

in the current scan (Garfo et al., 2020).  

Figure 8, the LiDAR 3D map is the association of 

observed segments with existing objects. The first 

situation occurs when one or more current segments are 

probably related to a past segment under tracking. To 

deal with this situation, a combination of rectangle gate 

and feature matching techniques are used. The second 

data association problem is the observation of tracker 

association, which is solved in a specific manner that 

accounts for object classification. 
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Fig. 8: LiDAR 3D map 
 

 
 

Fig. 9: LiDAR static and moving objects detection 

 

Figure 9, using GPS coordinates to localize the Husky, 

based on the high-level decisions and a path is generated 

(whether to go straight or turn), following immediate 

waypoints will be generated. In a segment-to-object 

tracker, the maintenance process is the association of 

observed segments with existing objects. The first 

situation occurs when one or more current segments are 

probably related to a past segment under tracking. To deal 

with this situation, a combination of rectangle gate and 

feature matching techniques are used. The second data 

association problem is the observation of tracker 

association, which is solved in a specific manner that 

accounts for object classification (Asvadi et al., 2016).  

Results and Discussion  

Simulation Results  

Figure 10, the efficiency of the proposed model 

predictive control paradigm is tested through 

simulation. The automated driving toolbox from math 

works is used for performing the simulation. The 

Husky under control is assumed to be 1 m long. The 

actual state and input state of Husky at each time step t 

is defined in equations below, refer to Eqs. 50-51 

(Dekkata et al., 2022): 
 

( ) ( ) ( )c e ry t y t y t= +  (50)  

 

( ) ( ) ( )c e rv t v t v t= +  (51)  

 
Controlled by the Husky's nominal input, the nominal 

disturbance of free state and nominal input of the Husky is 

evaluated using the below equations, refer to Eqs. 52-53: 
 

( ) ( ) ( )c e ry t y t y t= +  (52)  

 

( ) ( ) ( )c e rv t v t v t= +  (53)  
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Based on the plant's feedback, Husky's reference 

trajectory is calculated using the actual and free state: 

 

( )
2

6.9 0.55sin
3.8

r

t
x t

 
= +  

 
 (54) 

 

( )
4

4.6 0.55sin
3.8

r

t
y t

 
= +  

 
 (55) 

 

( ) ( ) ( )( )2 ,r r rt arctan x t y t =  (56) 

  

Comparing Simulation and Implementation Results  

Figure 11, the real-time longitudinal movement 

follows the simulation results closely. The time-based 

tracking performance of the Husky in simulation is 

compared with the real-time implementation's ideal 

control strategy. The MPC could stabilize the Husky 

longitudinal motion with a more modest value of the 

corrective yaw moment.  

Figure 12 shows that the real-time lateral movement 

follows the simulation closely. The MPC could stabilize 

the Husky lateral motion with a more modest value of the 

corrective yaw movement.  

The Ark bridge map generates a set of waypoints as 

the desired trajectory. All the waypoints in the reference 

trajectory are fitted in a polynomial order. For a curvy 

path, in this study, a 3rd degree polynomial worked 

well. According to the Husky position and orientation, 

applying a transformation to convert the map 

coordinate system to the Husky coordinate system. 

Transforming the map coordinate system would help 

compute the errors because the initial state vector 

considers position and orientation zero. 

 

 

 

Fig. 10: Husky simulation results 

 

 

Fig. 11: Longitudinal error to the reference trajectory 

 

 
 
Fig. 12: Lateral error to the reference trajectory 

 

Conclusion  

In this study, an advanced MPC method was 

developed for autonomous navigation systems 

combined with control theories. The goal is to design 

an advanced MPC for Husky A200 to navigate 

autonomously based on the Husky dynamics. The 

Husky A200 ground robot can navigate autonomously 

with waypoints, and it is tested indoors in unstructured 

conditions without deduced data about the 

obstructions. This research also presents a new obstacle 

avoidance algorithm calculation MPC based, which 

improves longitudinal speed and guiding point while 

exploring the region, Husky securely yet as quickly as 

possible to the target area. By reducing the cross-track 

error and orientation error in the active set method, the MPC 

is optimized. The best possible route is extracted, and the 

trajectory is generated based on Husky's current events and 

position. Husky can avoid obstacles for optimal path 

planning and target following. The proposed algorithm for 

Husky A200 is tested indoors and compared the results with 

the simulation results which are plotted using MATLAB and 

Gazebo. A novel simulator package is designed by 

modeling the Husky using RVIZ and Gazebo. Software 

protections such as saturation blocks are added to 

enforce the control output limits, repeating this 

procedure several times during the approach generated 
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a smooth trajectory for Husky. For MPC's short-term 

optimization, an optimized control signal from a linear 

framework is utilized for a linear quadratic controller. The 

real-time longitudinal movement follows the simulation 

closely. Based on the plant's feedback Husky's reference 

trajectory is calculated using the actual state and free state. 
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