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On Asymptotics of Lp Extremal Polynomials
on a Complex Curve Plus an Infinite Number of Points
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Abstract: We study, for all p>0 and under certain conditions the asymptotic behavior of Lp extremal
polynomials with respect to the measure a=B+y. Where, B denotes a positive Szegd measure on the
closed rectifiable Jordan curve E in the complex plane and y has an infinity of masses in the region

exterior to the curve E.
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INTRODUCTION

Let F be a compact set in the complex plane C and
o be a finite measure defined on the borel sets of C
with F = support(c.). We denote by m, ,(o.,F), neN, p>0
the extremal constants m,, ,(o,F) = min{ || Q. " LpoF) : Qn
=2+ a,, 2" + ..+ a2, a,...a.1€C} and by T, (o, F)
the associated extremal polynomials (we suppose that
zveLy(a,F), neN). The case p = 2 is the special case of
T, »(o.,F) monic orthogonal polynomials.

There are many interesting problems about
orthogonal or extremal polynomials. The most
important and difficult ones are their asymptotic
behavior and zero distributions.

The study of the asymptotic behavior of orthogonal
or extremal polynomials contributed in the resolution of
other important problems in Mathematics. We
especially mention:

*  The convergence of Padé approximants (F = [1,+1]
o {zk}’ p= 27[11)

The spectral theory (F=[-1,+1] U {z} , p = 2,>)

*  The zero distribution of extremal polynomials (F =
T={z:|z|=1},p21", F=T U { %} ,p=2")

*  The theory of the representation of analytic
functions by series of polynomials (F=T or F = E,
E being a smooth Jordan curve,l‘"g] .

If we are interested in asymptotics of extremal
constants my ,(o.,F) and 7, p(at,F) polynomials, then the
cases studied are the following :

1. F=[-1+1], da(x) = p(x)dx, p(x) is non negative
and integrable. For p = 2, we have the classical
results of Szegéls’gl. For 0<p<e, p(x) = t(x)N(1-x2)
and log t(x) a Riemann integrable function,
Berstein!'”! found the power asymptotic of the
extremal constants m, (o). Lubinsky and Saff!'"
generalized the result of Bernstein by considering
1/p(x) € L[-1,+1],r> 1.

2. F=E, E is a smooth closed Jordan Curve and is
absolutely continuous and satisfies the Szegd

condition. The case 0<p<co was studied by

Geronimus''?. The special case of the unit circle

and p=2 has a long history of study (see, for

example, 5.

3. F = U\« Ey, Ex being a smooth closed Jordan
curve. This case was investigated by Widom!",

For other studies on Lp extremal polynomials["“sl.
In this work we study the strong asymptotics of
m, (., F) and T, (o, F) in the case where 0<p<w, F = E
U {7z} "1}, E being a closed rectifiable Jordan curve
with some smoothness conditions, z, e Ext(E), o = +
v, with support(B) = E, do. = p(E)|d§| on E and y = Y "k
A,k (8, being the Dirac delta unit measure supported
at the point z).

This work is a generalization, on one hand"” in
which Kaliaguine uses a measure concentrated on E
plus a finite number of points {z}"«-1 and on the other
hand””! where Khaldi studies the same problem, but in
the case of a measure concentrated on E plus a infinite
number of points {z}”-; with p>1. In this study, all
proofs contain more details and we particularly focused
on the case 0<p<1. The passage from a finite number to
an infinite number of points is a difficult problem
and its resolution required, in the case p=2, several
years?' ],

EXTREMAL PROBLEMS IN THE H"(Y,p)
SPACES

Let £ be a closed rectifiable Jordan curve, ¥ =
Ext(E), G={we C:|w|>1},(0e Y, 0e G)and w=
®(z) is the function that maps Y conformally on G in
such a manner that ®(x) = « and lim,_(®(z)/z) > 0.
Really, this limit is equal to 1/C(E) where C(E) is the
logarithmic capacity of E. Let y be the inverse function
of @, y : G—Y. The two functions ®(z) and y(w) have
a continuous extension to £ and on the unit circle,
respectively. Let p(§) be an integrable non negative
function on E. If the weight function p(§) satisfies the
Szegd condition:
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[ (log p(&)) [ @'(®) | | dg| > -o0, (1)

then, one can construct the so-called Szegd function
D,(z) associated with the domain E and the weight
function p(§) with the following properties: Dy(z) is
analytic in ¥, Dy(z) #0 in Y, D,() > 0, Dy(z) has limit
values on £ and
ID,E)* @) = p(E), & € E (ae.onE) (2)
Where, D,(&) = lim,—: Dy(z) (ae. on E.).
Explicitly Dy(z) = D(®(z)), ‘where Dg(w) = exp{ -
1@2pm) [ ™ (w+e®) / (w- ) log((p(E)) / |®'(E)))
') |dE]} (E=w(e ®)I***) Let f(z) be an analytic
function in Y. For p>0, we say that f(z) belongs to
H'(Y,p) space if f((w))/D,(w(w)) is a function from the
space H” (G) . For a function F analytic in G, we say
that Fe H°(G) if and only if F(1/w)e H'(U), where we U
and U={weC,|w|<l}. The space H(U) is well
known*?!, For p>1, H(Y,p) is a Banach space. Each
function f(z) from H”(Y,p) has limit values on E and

I E11P ) = e IRE)P p(E)IdE| =
limg—..+ (1/R) [ (f2)P)(ID(2))) |@'(2) dz], (3)
Where, 1 <R, Ey = {zeY: |(z)| = R}.
For 0 <p< 0, H'(Y,p) is a metric space with the distance
d(£.2)= || -2 " rp)

In what follows we consider F = E U {7} "
(Fi= E U {z}%1), {zi}”x1 is an infinite set of points
which lay at the exterior of E. Let o =+ vy (o, = P
+v¢) be a finite positive measure on the Borel sets of C,
where B and y (y })are defined as foll ows:

B is a measure concentrated on £ and is absolutely
continuous with respect to the Lebesgue measure |d|
on the arc, i.e.:

dB(E)=pE)|dE ]|, p: E— R, and [g p(E) |dG|<+oo, (4)
and y (y¢) is a discrete measure with masses A, at the

points z, € Ext(E), k=1, 2,.., i.e.:
Y =Xk A (V=Y ko1 Aid), Ai>0 and Y%=y Ay <oo, 5

Where, &, denotes the (Dirac delta) unit measure
supported at the point z,. By P,; we denote the set of
monic polynomials of degree n. For p > 0, we define
mn,p(aaF)a mn,p(ath), mn,p(BsE) and Tn,p.u,l"v Tn,p,u[.l-‘h
Top.pi € Pny, as follows:

mn,p(a"r) = “Tn.p.a,l-ﬂl,p(u.l") =

infonepni [ 1Qn (€)P P (B) IdE] + Y71 Ak QuzI”  (6)

My (0, F0) = || Topac, Fellzpatro =

infonepn1 [z [Qu (E)P p (&) [dE| + X't Ak [Qu(z)| P,

My (B, E) = || Top, pie ey ¢.=
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iannsPn_l IE |Qn (Fa)lp p (g) |d€| 4

We suppose that

z" € Lp (a,F), neN, p>0. (7
Also for 0 < p <, we define u(B), u(c) and p(o)

as the extremal values of the following extremal

problems, respectively

HB) = inf{ | @ [/ v, € H(Y,p), @ (0)=1},  (8)
(o) =inf { [ @ ||/ rp) @ € H'(Y,p), @ (0)=1

and ¢ (z )=0, k=1,2,...}, 9
(o) ==inf { || @ [l (v.0), € H'(Y,p), @ (0)=1

and ¢ (z )=0, k=1,2,.., C}, (10)

We denote by ¢* and y* the extremal functions of
the problems (8) and (9), respectively and by B.(z) the
following Blaschke Product:

Bo(z) = [T (P2 ) D( 7)) / ( D(2) D( 7 )-1)) .
(@((zi ) / ( Dz ).

The following lemmas summarize some properties
of the H(Y,p) spaces.

Lemma 2.1"°\: If f(z) € H°(Y,p) and KcY, K compact,
then there exists a constant C(K) ( depending only on
K) such that:

supk | f(2) | < C(K) || £ v,p) (1)
Lemma 2.2!": Let { fu } be a sequence of functions in
H'(Y,p) and
i. f,—f uniformly on the compact sets of Y.
il. || fa [Prprp) < M(const.)
Then
FeH(Y.p)and || P v, < liming_o|| £, P4/ (1,p)- (12)
Lemma 2.3
i.  By(z) is a bounded analytic function in Y,
B,() = 1, B, (z) has a continuous extension to £ and
|1Bor (&) = [Tkt (2 ).
i. Ifg e H(Y,p), ¢ (©)=1 and ¢ (z) = 0, k=1,2,...,
then f(z) = ¢ (z)/ B.(z) € H’(Y,p) and f(w0)=1.

Proof of Lemma 2.3 : This Lemma was proven in the
case p=2""!. The same proof is also valid in the general
case p>0.

Lemma 2.4: The extremal functions ¢* and y* are
connected by

¥'(2) = 0'@). [1"1(P (2)- D(2)) / (D(2) D(z)-1)).
((®(z)P) / (P(z) ) ), (13)
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and

() = ([T | (@] (B)- (14)

Proof of Lemma 2.4: Consider the function
*(z) = (¥*(2)) / (B.(2)) ),
Lemma 2.3 implies
f*e H'(Y,p) and f¥(w0) =1,
Then pB) <[ I’ vy = (IT%=1 1@@IDT (| 1P o (v,
= (TP . p(w).
Conversely, if we define g*(z) = ¢*(z) . B,(z), then
we have

g*e H'(Y,p), g*(0) =1

and g*(z)=0, k=1,2, ..., (15)
(9) and Lemma (2.3) imply p(o) <

llg* ”pHp(r.p)=(nmk=| D@ P lo* [P (r,py =

(IT%1 [@(z)] )P 1(B)- So () = ([T"%=1 [D(z)] )’ p(B),

and

¥'(2) = ¢'@). [["1(® (2)- D(2)) / (D(2) D(z)-1)) .
(D@ / (D7) ) ).

RESULTS

We can now study the asymptotic behavior of the
extremal polynomials { 7,,.,4z) }. First give some
definitions.

For a closed Jordan curve the Faber's polynomials
F\(z) are defined by decomposition

D(z) = F\(2) + Ay(2), with A,(z) = O(1/z) for z—o.

Definition 3.1: A rectifiable Jordan curve E is said to
be from the class 7 (denoted by £ € 7) if A, — 0
uniformly on E.

We find'*?"" examples of families of curves
belonging to the class 7. If z:[a,b] — E, z(a) = z(b),
then a sufficient condition for £ to be in the class 7 is
that z'(t) is in a Lipschitz -class for some exponent.

Definition 3.2: Let o = 3 + y, we say that the measure
belongs to the class L (denoted by a.eL) if the absolute
and discrete parts of , satisfy

(X%=1 [@(z1)-1] ) < o0, (16)
and

(mn‘P(a,Fv)) / (mnp(B’E)) < (nwk=| l(D(Zk)D,

n>N, p>0. (17

in addition to conditions (1), (4) and (5). The condition
(16) guarantees the convergence of the Blaschke
product B,(z) associated to the points {z,}%y-,.
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The condition (17) has been proven in the case
p=2and £ =T = {z: |z]=1}'*). One can find a set of
points {z} "= and {A}”\-; verifying (17).

As an example for p = 2 and E the unit circle, we
can take {z,}”y-) and {A\}"\- as follows:

{ze iz | =1+ 1/(K) } "4y, (18)

[ A= 172 V%, (19)
For such sets, Khaldi and Benzine®®” showed that:

(my 20, F) / (M 2(B,E)) < ([T [24l)., Vi, VL. (20)

and

“m[—-w mn.l(ahF[) = mn‘2(ast)- (21)
(20) and (21) imply

(M 2(0, ) / (M 2(B,E)) < ([1'%=1 |24 (22)

We conclude this section by formulating the main
result of this study.

Theorem 3.1: If p>0, E belongs to the class 7 and

ael, then

i limy g (my (0, F)) / (CEY) = (u(a))'”,

i lim o [(Th .o {Z)/CEY @ (2))-F'(2) || i 1,50,

i, Thpai(z) = CEYDY2) [¥'(2) +e,(2)], en(2)—0
uniformly on the compact sets of Y.

Proof of Theorem 3.1(i)
ael, then

(my (o, F)) / (CE)) <

(Mo, (B.E)) / (CEY)([T"%=1 [@(2)]). (23)

By using (14) and the fact that

lim ., (M, ,(B,E)) / ((C(E)") = (u(B))"™, (24)

One gets!'>!?)

limsup .., (my,(ct,F)) / (C(E)") <

BN (171 [D(2)]) = (). (25)

It remains to prove that (u(o))”” < liminf,_.,

(my, y(, F)) / (C(E)). We will present two proofs of this
inequality.

First proof: The extremal property of Tpo{(z) and
Tn‘p.a[.l"( (z) imply

Mo, (04F) = [T po,Alrpe, ) > 1 paAllipat o) (26)
2 || Tapat, Fellpat,r)= My (o, Fy),

(26) implies

(my p(0,F)) / (C(E)) > (my, (o, Fr)) / (CE))),

p>0, V. 27)
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Using this result and Theorem 2.2'%), we obtain
liminf ., (my, (e, F)) / (CE)") > ()",
p>0, V(. (28)
If we take in consideration that

pote) = p(B). ([T%=1 [ Dz,

then we get when (—o0

liminf, _,,, (m, ,(cot,F)) / (C(E)") >

1(B)"™.([T%%=1 [Pz = (1(e))"™. (29)

Another proof : Putting

Onp = (Tapailz) / (C(E) D, (30)

and using (25) we get:
[ bnp [P rp) <M = const. @31
Let M* = liminf ., || np "), We have

M* = lim n—w, neNle N ” ¢n.p. ”pf‘/’(yyp)' (32)

This result and Lemma 2.1 imply that {cb“_p',
neN;} is a normal family in Y. Then, we can find a
function y(z) that is the uniform limit ( on the compact
subsets of Y ) of some subsequence {¢,,‘p', neN,}of
{d),,_p', neN,}. From Lemma 2.2, we get

yeH"(Y,p) and ||U3||pf/7(r.p)

< liminfn—mo ” ¢n.p “pl/]()’,p)’ (33)
On the other hand y («0)=1 and y (z)=0, k=12,...,

(33) implies .

wa) < ||W|lpff(Y,p) < liminf,_., || ¢n.p ||pf/7()'.p)

= liminf, ... ((m, ,(a,F)) / (C(E)™))P. (34)

(34), (25) and (29) imply (u)'? <

liminf,,_,(m, ,(ct,F) / (C(E)") < limsup .., (my, p(a,F) /

C(E)") < (u(ax))"

and (i) follows.

Proof of Theorem 3.1(ii): For the functions , = %
(up + y*), where [\¥Pi vy = u(a), we have v,
(0) = 1 and lim o, W, () = 0, for k =1,2,... As in (i),
we get

liminfy oo || W [P (1)} = 1 (). (35)
For 1 < p<e, (ii) follows from Clarkson inequality.

For 1<p=<2,

Ue 1 (dap + w*IP p(&) [dE] 1"+ [Jg % @y - w*)P
p(E) |dg| 1" <

% | 0up” " pE) 1dE] + % Je | w*P p(E) |dE| 10",

For 2<p<co,

Ue 12 (Gup” + )P p(E) 1E| 17+ (e % (@ny” - w*)P p(E)
dg| P <

Vale| Gup P p(E) | & + YA J& | w*P p(E) | dE |

For 0<p<1: In this case one can aspply the following
extension of the Keldysh Lemma®. In our case, the
measure is absolutly continuous, so its singular part is
equal to zero, then we obtain the following version of
Theorem 27*1, For other details see also %),

Lemma 3.1"); Let {w,}",_, be a set of points in G,

o = P + y such that ael and {f;}e H(G, p ) and
0<p<co. Put

JW=/(W)/ 9'(w), where, ¢'(w) = ¢"(y(w)) =
9'(2) = Dy(w) / Dy (=),
if

@) lim, ./ () =1,

(b) lim . £, (W) =0,k=12.....
(©) X%=1( zil-1) <+oo,
(d) Timing_o || £, 1P 160y = D(@0) . [ Wil

Then we have lim .|| 3 — ([T k=1(W - Wi/W.w, -1).
(WP W)@ (W) || /(.0 = =0.

We get (ii) by applying Lemma 3.1 to the sequence

FO= Bay (W)= by (YW= 0,2,

and the set of points w,=d( z).

We have: ¢,,‘p' (©)=1 and cp‘ (0)=1, hence (a)

follows. On the other hand (b) is a consequence of the

fact that 0" (z,) #0 and lim, ., Onp (z) =0, k=1,2,...

() is exactly the condition (16) in the case of the circle

2 %=1 zil-1) <too, We obtain (d) by considering that

() = ([T %=1 |z ¥ . w(B).

and

H((X) = “(P*Hp//’((i.p) = || Dp(oo) / Dp ”phln((i.p) =‘| Dp(oo) |p

= [ D (») " and the fact that lim ,_,,, | Onp II° Gy
=lim oy (M (0, F) = (p(e0)) ™.

Proof of Theorem 3.1(iii): If we consider the function
e(2) = ( Tupai2) / CE) @ (2)) - ¥'(2), then (iii)
follows from (ii) and Lemma 2.1. This completes the
proof of Theorem 3.1.
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