
Journal of Mathematics and Statistics 1 (4): 291-295, 2005 
ISSN 1549-3644 
© 2005 Science Publications 

Corresponding Author: Lucio Barabesi, Dipartimento di Metodi Quantitativi, Università di Siena, P.zza S.Francesco 17, 
53100 Siena, Italy 

291 

 
Riemann Estimation for Replicated Environmental Sampling Designs 

 
Lucio Barabesi and Marzia Marcheselli 

Dipartimento di Metodi Quantitativi, Università di Siena 
P.zza S.Francesco 17, 53100 Siena, Italy 

 
Abstract: In many environmental surveys the population under study is made up of biological units 
scattered over a planar region. A variable is considered on each unit and the target parameter generally 
turns out to be the population total of the variable. In order to estimate the population total, field 
scientists commonly replicate a suitable design on the study region. Replicated environmental designs 
basically rely on the selection of a set of sample points, in such a way that each sample point 
corresponds to a single design replicate. Frequently, the sample points are located uniformly and 
independently over the planar region, even if more effective strategies are actually available. The 
population total is subsequently estimated by using the mean of the estimates obtained in each design 
replicate. However, this pooled estimator may be improved by considering a suitable weighted mean - 
rather than the simple mean - of the estimates. Thus, we propose a Riemann estimator of the 
population total which is actually borrowed from the Monte Carlo integration setting. The suggested 
estimator displays appealing performance from both theoretical and practical perspectives. 
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INTRODUCTION 

 
 The aim of many quantitative environmental and 
agricultural studies is to estimate the total of a variable 
in the considered population. In order to collect the 
sampling information, some replicates of a suitable 
environmental design are carried out in the field[1]. For 
example, in the forestry setting, replicated line-intercept 
sampling is commonly adopted to estimate the canopy 
coverage in a delineated region[2,3], while replicated 
Bitterlich sampling is considered when the total basal 
area in a forest is the target parameter[4]. In ecological 
studies, replicated plot sampling is used to estimate 
species composition and density[4].  
 It is worth noting that the designs arising in 
environmental studies may be embedded in a unique 
theoretical framework, i.e. the “continuous population” 
paradigm[5,6]. Under this approach, the design is carried 
out by selecting a point on a continuum such as a 
portion of a straight line or a finite planar region. 
Actually, as pointed out by Barabesi and Pisani[7], 
practical environmental designs may be partitioned into 
two large families: the first family encompasses designs 
which are implemented by selecting a point on the 
baseline (the projection of the study region onto a line 
of arbitrary direction), while the second family includes 
designs which are carried out by selecting a point on the 
whole study region. In the present study we exclusively 
focus on the first family of designs, which in any case 
comprises many important practical designs such as 
line-intercept sampling[8], strip sampling[1], line-transect 
sampling under Burnham-Anderson's detection model[8] 

and line-transect sampling under Hayne's detection 
model[9], among others. Hence, once a suitable design is 
chosen, n  replicates of the design are performed in the 
field, i.e. in this case n  sample points are selected on 
the baseline. The usual population total estimate is 
simply obtained by averaging the n  estimates obtained 
in the n  design replicates. Therefore, in order to 
achieve accurate population total estimation, the focus 
boils down to the optimal placement of the n  sample 
points. 
 Barabesi[5,10] has shown the equivalence of the 
strategies adopted for the placement of the sample 
points either in replicated designs or in Monte Carlo 
integration. Indeed, under the continuous population 
paradigm the population total may be represented as the 
integral of a certain function which depends on the 
chosen design. Thus, an optimal Monte Carlo 
integration strategy may be adopted in order to select 
the sample points in replicated designs. The modified 
Monte Carlo integration method introduced by 
Haber[11,12] is a highly suitable strategy. This Monte 
Carlo integration method involves partitioning the 
baseline into n  equal segments and generating n  
independent random points in these segments. From an 
environmental sampling perspective the strategy is 
basically the so-called nonaligned systematic sampling 
of points suggested in the U.S. EPA QA/G-5S 
Guidance[13]. When this strategy is considered, Barabesi 
and Marcheselli[14,15] have shown that very accurate 
estimators - even displaying a 3( )O n−  variance rate - 

may be achieved. 
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 Unfortunately, the data are often collected in the 
field by means of independent sample points uniformly 
placed over the baseline[8]. This sampling strategy is 
equivalent to the crude Monte Carlo integration 
method, which solely produces a population total 
estimator with a 1( )O n−  variance rate. However, it is 

again possible to achieve accurate estimation by 
adopting the Riemann Monte Carlo estimators[16]. The 
suggested Riemann Monte Carlo estimator of the 
population total is based on the weighted mean - rather 
than the simple mean - of the estimates obtained in the 
n  replicates. Even if the Riemann Monte Carlo 

estimator is biased, it displays a 2( )O n−  mean square 

error and hence it improves over the simple mean. 
 

PRELIMINARIES 
 
 Let us consider a well-defined planar study region 
and a population of N units scattered over this region at 
fixed locations. Furthermore, let 1 2( , , , )Ny y y…  be the 

values of the target variable on the N units, in such a 
way that 
 

=1

=
N

y l
l

T y∑  

represents the population total. Moreover, let us assume 
that the estimation of Ty is performed using the 
replication of a design which is implemented by 
selecting a sample point on the baseline. Without loss 
of generality and for the sake of simplicity, let us 
suppose that the baseline is given by the interval (0,1). 

Moreover, let u  be the position of a point selected on 
the baseline. 
  
Once a suitable design is chosen, the inclusion set lP of 

the l-th unit is a suitable interval contained in the 
baseline[10] and the l-th unit is selected - and ly  is 

measured - if lu P∈ . As an example, let us consider a 

population of plants and let ly  be the biomass of the l-

th plant, in such a way that the target parameter is the 
total biomass in the forest. If line intercept sampling is 
adopted, the inclusion sets are the projections of the 
plant crowns onto the baseline. Indeed, a plant is 
selected if the corresponding crown is intercepted by a 
line perpendicular to the baseline at location u. 
  
 In order to obtain a suitable representation for yT , 

it is worth noting that, if solely the l-th unit is 
considered, the intensity of the target variable over the 

l-th inclusion set is /l ly π , where 
1

{ }0
=

ll u PI duπ ∈∫ is the 

length of lP  and AI  is the usual indicator of a set A. 

Hence, the intensity of the variable at location u is 
given by 

.=)( }{
1=

lPu
l

l
N

l

I
y

uy ∈∑ π
 (1) 

Incidentally, it is at once apparent that ( )y u  is simply 

the Horvitz-Thompson estimate of yT  when location u  

is selected. The total intensity of the variable of interest 
over the study region turns out to be 
1 1

{ }
=10 0

( ) = = ,
l

N
l

u P y
l l

y
y u du I du T

π ∈∑∫ ∫  

i.e. an integral representation is achieved and hence the 
estimation of yT  reduces to an integration problem. 

Hence, the strategies adopted for the Monte Carlo 
quadrature of an integral can be used in order to choose 
n  sample points 1 2( , , , )nu u u… on the baseline. When 

the n  sample points are independently and randomly 
chosen, the crude Monte Carlo integration strategy is 
actually adopted. In this case, 1 2( , , , )nu u u…  are the 

realization of n  independent random variables 

1 2( , , , )nU U U…  uniformly distributed over the baseline. 

Hence, the Monte Carlo estimator is given by 
 

1 2
=1

1
= ( , , , ) = ( ) .

n

y y n i
i

T T U U U y U
n
∑…      (2) 

 
It is at once apparent that the pooled estimator (2) is the 
mean of the n  Horvitz-Thompson estimators 
corresponding to the n  design replicates. Actually, this 
is the usual estimation procedure adopted in replicated 
environmental sampling designs. Indeed, once the 
sample points are positioned and the data are collected, 
n  Horvitz-Thompson estimates are obtained for each 
design replicate and they are subsequently averaged in 
order to achieve an overall estimate for .yT  Obviously, 

in this section the same procedure has been described 
from a Monte Carlo integration perspective. 
 It is straightforward to show that yT  is unbiased 

with a 1( )O n−  variance rate. In addition, Var[ ]yT  may 

be unbiasedly estimated by means of 

2

1

1
ˆVar[ ] = [ ( ) ] .

( 1)

n

y i y
i

T y U T
n n =

−
− ∑  

 However, the crude Monte Carlo strategy precludes 
the small variance rates for the pooled estimator which 
can be achieved when more refined Monte Carlo 
strategies are adopted[14,15]. Accordingly, the aim of the 
following section is to introduce an estimator with 
elevated performance, even if the sample points are 
collected using the crude Monte Carlo strategy. 
 
THE RIEMANN MONTE CARLO ESTIMATOR 

 
 In order to improve on estimator (2), it is 
worthwhile to consider a weighted estimator of type 
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where the 1 2( , , , )i nw U U U… s are positive weights such 

that 1 2=1
( , , , ) = 1

n

i ni
w U U U∑ … . If the iw s are non-

random, i.e. 1 2( , , , ) =i n iw U U U w… , it is straightforward 

to prove that estimator (3) is unbiased and the 
corresponding variance is minimum when 1/iw n= . In 

this case, estimator (3) actually reduces to estimator (2). 
Accordingly, the weights must be chosen as random 
functions in order to improve on estimator (2). First, it 
is at once apparent that estimator (3) may expressed as 

(1) (2) ( ) ( )
1

= ( , , , ) ( ) ,
n

y i n i
i

T w U U U y U
=
∑ …  

where (1) (2) ( )( , , , )nU U U…  represents the order statistic 

corresponding to 1 2( , , , )nU U U… . Hence, a reasonable 

choice of the weights is given by 

(1) (2) ( ) ( 1) ( )( , , , ) =i n i iw U U U U U+ −… , assuming that 

(0) = 0U  and ( 1) = 1nU + . In this case, estimator (3) 

reduces to the usual Riemann Monte Carlo estimator[16] 
given by 

( 1) ( ) ( )
0

= ( ) ( ) .
n

y i i i
i

T U U y U+
=

−∑  (4) 

Robert and Casella[16] have proven that (4) is biased 
with a 2( )O n−  mean square error when y  has a 

bounded derivative. However, in the present setting  y 
does not achieve this regularity condition. Indeed, it is 
at once apparent that the function  y defined in (1) is an 
elementary function. In any case, it can be proven that 

yT  is biased with a 2( )O n−  mean square error even if y 

is solely an elementary function (Result 1 in the 
Appendix). Hence, estimator (4) is preferable to 
estimator (2), at least in a large-sample setting. 

Moreover, yT  generally displays a 1( )O n−  bias (see the 

Remark in the Appendix). However, on the basis of the 
same Remark, if the sampling design is slightly 
modified to ensure that y is null in the narrow interval 
(1 ,1]ε−  (where ε  is a small positive constant), then 

yT  achieves a 1( )o n−  bias. This requirement may be 

easily achieved in practice by suitably modifying the 
inclusion probability of the right-border units.  

 As to the variance estimation of yT , it can be 

shown that 

 2
( 1) ( )2

0

1ˆ = [ ( ) ( )]
n

i i
i

V y U y U
n +

=

−∑  (5) 

is a consistent estimator for 2E[( ) ]y yT T−  (see Result 2 

in the Appendix). Obviously, when y  is null in 

(1 ,1]ε− , the estimator V̂  turns out to be consistent 

for Var[ ]yT . 

 
A SIMULATION STUDY 

 
 In order to assess the small-sample properties of 
estimator (4) with respect to estimator (2), a simulated 
experiment dealing with line intercept sampling has 
been considered. In this setting, it is worth noting that 
an interesting use of line-intercept design is described 
by Thompson[8]: if the study region is snowed and the 
total of a certain animal species (such as wolverines or 
arctic wolves) is the target parameter, the selected 
transects are flown under appropriate weather 
conditions with observers in the aircraft looking for 
animal tracks in the snow. Once a track is encountered, 
it is followed in each direction and mapped. Hence, the 
animal total is estimated on the basis of the estimated 
track total[17]. 
 The previous survey setting was mimicked by 
simulating three populations of twenty tracks on the 
unit square. Thus, the target parameter was given by the 
population total, i.e. .20== NTy The three populations 
were settled in such a way that the first population 
consisted of lines randomly located, the second 
population consisted of lines positioned with a slight 
trend, while the third population consisted of lines 
positioned with a marked trend. The three simulated 
populations are displayed in Fig. 1. These populations 
of lines may be considered quite representative of real 
situations[8]. 
 

 
 
Fig. 1: The three simulated populations of lines 
 
 For the sake of simplicity, it was assumed that the 
baseline corresponded to the base of the unit square. 
Since the line-intercept design was assumed, the 
inclusion sets of the lines were obviously given by their 
projections onto the baseline. The three functions  y 
corresponding to the simulated populations are reported 
in Fig. 2. 
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Fig. 2: The three functions y corresponding to the 

simulated populations of lines 
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 The sample sizes n = 20,30,40 were considered in 
the simulation. For each sample size and for each 
population,   B = 2,000    simulations  of  replicated line 
 
intercept designs were carried out. For each simulation, 
the realizations of estimators (2) and (4) were 
computed. On the basis of the B estimates, the 
simulated bias, the simulated mean square error (MSE) 
and the simulated relative efficiency (RE) - i.e. the ratio 
of the simulated mean square errors - were computed 
for the estimators (2) and (4). The corresponding results 
were reported in Table 1. 
 

Table 1: Simulated performance indexes of estimators  yT  and yT  

Population n  Bias(MSE) Bias(MSE) RE 

  of yT  of  yT  

Random 20 0.01 (5.24) -0.50 (4.09) 1.28 
 30 0.02 (3.43) -0.21 (2.25) 1.52 
 40 0.01 (2.57) -0.10 (1.41) 1.81 
Slight trend 20 -0.04 (17.88) -0.26 (19.76) 0.91 
 30 -0.01 (11.80) -0.22 (10.70) 1.10 
 40 -0.01 (8.75) -0.08 (7.73) 1.13 
Marked trend 20 0.02 (20.06) -0.12 (10.40) 1.93 
 30 0.00 (13.23) -0.03 (5.25) 2.52 
 40 0.01 (9.52) -0.05 (3.15) 3.02 

 
 From Table 1, it is at once apparent that estimator 
(4) always outperforms estimator (2), except for the 
second population and .20=N  The performance of the 
Riemann estimator obviously increases as n increases. 
The best performance is achieved for the third 
population of lines, i.e. for the most irregular y 
function. Further simulations (not reported here) seem 
to confirm that this behavior generally occurs, even if 
the superiority of (4) over (2) is not marked for very 
small n values (say n less than 10). Finally, it should be 
emphasized that the bias of (4) is always negative in the 
simulation, a result which is consistent with the 
findings in the Remark of the Appendix. 
 
Appendix: Let y be an elementary function, i.e. 
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where 1 2( , , , )ma a a…  are given constants. In turn, 

1 2 1( , , , )mb b b +…  are constants such that 

1 2 1mb b b +≤ ≤ ≤…  and 1 = 0b  and 1 = 1mb + . It is 

straightforward to prove that (6) may be expressed as 
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where 0 = 0a .  
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By using expression (7) in estimator (4), it follows that 
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and hence the mean square error of yT  may be 

expressed as 
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Therefore, in order to obtain the large-sample properties 

of 2E[( ) ]y yT T−  - and consequently of its estimator (5) 

- it suffices to analyze the asymptotic properties of 
( )n xα  and ( , )n x zβ  as n → ∞ . 

 
Result 1: For each , (0,1)x z ∈  such that <x z , it 

follows that 
2 2( ) 2 , ( , ) .n nx n x z nα β− −∼ ∼                                     (9)  

Moreover, yT  has a 2( )O n−  mean square error such 

that 
2

2 2
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Proof: Since the joint probability density function of 

( ) ( 1)( , )i iU U +  is given by 
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where 
2 2

(1) ( )= E[( ) ] (1 ) ( ) .n nc U x x P U x+− + − ≤  

Hence, on the basis of Newton's formula it turns out 
that 
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Since 2= ( )n nc d o n−+ , the first part of (9) follows. In 

addition, since the joint probability density function of 

(1) (2) ( )( , , , )nU U U…  is given by 

21 2 { }1
( , , , ) = ! ,

nn u u ug u u u n I ≤ ≤ ≤……  

it turns out that 
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the second part of (9) follows. Moreover, on the basis 
of (8) and (9), it turns out that 
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Remark: By similar argumentation, it follows that 
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Hence, yT  displays a negative large-sample bias. In 

addition, if = 0ma , by means of reasoning similar to 

Result 1, it can be easily proven that a 1( )o n−  bias is 

achieved (with in turn a negative leading term). In this 

case, since 2 2Bias[ ] = ( ),yT o n−  it follows that 
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Result 2: The r.v. 2ˆ / E [( ) ]y yV T T− converges almost 

surely to 1 as n → ∞ . 
 

Proof: By using (10), it suffices to prove that 2 ˆn V  
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result follows since 
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where 1= min ( )k k ku u u∗ + − . Indeed, > 0u∗  and 

0,1, , ( 1) ( )max ( )i n i iU U= + −
…

 converges almost surely to 0  

on the basis of the Dvoretzky-Kiefer-Wolfowitz 
inequality[18]. 
 

REFERENCES 
 
1. Barabesi, L. and L. Fattorini, 1998. The use of 

replicated plot, line and point sampling for estimating 
species abundancies and ecological diversity. 
Environ. and Ecolog. Stat., 5: 353-370. 

2. Bonham, C.D., 1989. Measurements for Terrestrial 
Vegetation. Wiley, New York. 

3. Husch, B., C.I. Miller and T.W. Beers, 1982. Forest 
Mensuration. Wiley, New York. 

4. Schreuder, H.T., T.G. Gregoire and G.B. Wood, 
1993. Sampling Methods for Multiresource Forest 
Inventories. Wiley, New York. 

5. Barabesi, L., 2004. Replicated environmental 
sampling designs and Monte Carlo integration 
methods: two sides of the same coin, invited paper in 
the Proceedings of XLII Meeting of the Italian 
Statistical Society, June 9-11, Bari, Italy. 

6. Williams, M.S. and M. Eriksson, 2002. Comparing 
the two paradigms for fixed area sampling in large-
scale inventories. Forest Ecol. and Manage., 168: 
135-148. 

7. Barabesi, L. and C. Pisani, 2002. Ranked set sampling 
for   replicated  sampling designs. Biometrics, 58: 
586-592. 

8. Thompson, S.K., 2002. Sampling. Wiley, New York. 
9. Overton, W.S., 1969. Estimating the Number of 

Animals in Wildlife Populations. In Wildlife 
Management Techniques. R.H. Giles (Ed.), The 
Wildlife Society, Washington DC, pp: 405-455. 

10. Barabesi, L., 2003. A Monte Carlo integration 
approach to Horvitz-Thompson estimation in 
replicated   environmental  designs, Metron,  LXI: 
355-374. 

11. Haber, S., 1966. A modified Monte-Carlo quadrature. 
Mathematics of Computation, 20: 361-368. 

12. Haber, S., 1967. A modified Monte-Carlo quadrature. II, 
Mathematics of Computation, 21: 388-397. 

13. U.S. Environmental Protection Agency, 2002. Guidance 
on choosing a sampling design for environmental data 
collection. EPA QA/G-5S, Washington DC, pp: 1-166. 

14. Barabesi, L. and M. Marcheselli, 2003. A modified 
Monte Carlo integration. Intl. Mathl. J., 3: 555-565. 

15. Barabesi, L. and M. Marcheselli, 2005. Some large-
sample results on a modified Monte Carlo integration 
method.   J.   Stat.   Planning   and Inference, 135: 420-
432. 

16. Robert, C.P. and G. Casella, 2002. Monte Carlo 
Statistical Methods. Springer, New York. 

17. Fattorini, L. and M. Marcheselli, 2002. Empirical 
investigation about statistical properties of abundance 
estimates based on line-intercept and network sampling 
of tracks. Stat. Methods and Applications 11: 217-226. 

18. Massart, P., 1990. The tight constant in Dvoretzky-
Kiefer-Wolfowitz inequality. Annals of Probability, 18: 
1269-1283.  


