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Abstract: In many environmental surveys the population urgtedy is made up of biological units
scattered over a planar region. A variable is aarsid on each unit and the target parameter géneral
turns out to be the population total of the vagalh order to estimate the population total, field
scientists commonly replicate a suitable designhenstudy region. Replicated environmental designs
basically rely on the selection of a set of sampdints, in such a way that each sample point
corresponds to a single design replicate. Freguetite sample points are located uniformly and
independently over the planar region, even if meffective strategies are actually available. The
population total is subsequently estimated by usiiirggmean of the estimates obtained in each design
replicate. However, this pooled estimator may bproved by considering a suitable weighted mean -
rather than the simple mean - of the estimates.sThue propose a Riemann estimator of the
population total which is actually borrowed fronetMonte Carlo integration setting. The suggested
estimator displays appealing performance from blatloretical and practical perspectives.
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INTRODUCTION and line-transect sampling under Hayne's detection
model®, among others. Hence, once a suitable design is
The aim of many quantitative environmental andchosen,n replicates of the design are performed in the
agricultural studies is to estimate the total ofagiable field, i.e. in this casen sample points are selected on
in the considered population. In order to colléoé t the baseline. The usual population total estimate i
sampling information, some replicates of a suitablesimply obtained by averaging the estimates obtained
environmental design are carried out in the ftélfor i the n design replicates. Therefore, in order to
example, in the forestry setting, replicated lingeicept  5chieve accurate population total estimation, theis
sampling is commonly adopted to estimate the canopyqiis down to the optimal placement of time sample
coverage in a delineated redfohy while replicated points.
Bitterlich sampling is considered when the totasdla Barabed'® has shown the equivalence of the
area in a forest is the target paramiétein ecological strategies adopted for the placement of the sample
studies, replicated plot sampling is used to es8ma y,inis” either in replicated designs or in Monte I€ar
species composition and density integration. Indeed, under the continuous poputatio

It is worth noting that the designs arising in naradigm the population total may be representetieas
environmental studies may be embedded in a uniquieqral of a certain function which depends on the
theoretical frameworki.e. the “continuous population” 1 jcen design. Thus, an optimal Monte Carlo

paradign™®. Under this approach, the design is Ca”iedintegration strategy may be adopted in order tecsel

out by selecting a point on eontinuum such as a e gample points in replicated designs. The mexdif
portion of a straight line or a finite planar r?g%l

; . _ -0_ Monte Carlo integration method introduced by
Actually, as pointed out by Barabesi and Pisani p pef112 s g highly suitable strategy. This Monte
practical environmental designs may be partitioimal

o ' ; X Carlo integration method involves partitioning the
two large fa_m|I|es. the first family en_compass_es@es baseline inton equal segments and generatimg
which are implemented by selecting a point on th

baseline (the projection of the study region onfine %dependent random points in these segments. From a

. S X . environmental sampling perspective the strategy is
of a.rb|trary .dll’eCtIOI’]), V.Vh'le the second_ famﬂ;cipdes basically the so-called nonaligned systematic semmpl
designs which are carried out by selecting a pminthe

) - of points suggested in the U.S. EPA QA/G-5S
whole study region. In the present study we exellgi 5, iq20c83 \When this strategy is considered, Barabesi

focus on the first family of designs, which in acgse 4 \archeselii*® have shown that very accurate
comprises many important practical designs such as

. . . s :
line-intercept samplind, strip sampling’, line-transect ~ ©StMators - even displaying @(n™) variance rate -
sampling under Burnham-Anderson's detection nfdel may be achieved.
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Unfortunately, the data are often collected in the Ny,
field by means of independent sample points unifprm y(u) = Z; |umy - (1)
placed over the baselifle This sampling strategy is . "1 o
equivalent to the crude Monte Carlo integration!ncidentally, it is at once apparent thgfu) is simply

method, which solely produces a population totalthe Horvitz-Thompson estimate @ when locationu

estimator with aO(n™) variance rate. However, it is is selected. The total intensity of the variabléndérest
again possible to achieve accurate estimation bpver the study region turns out to be
adopting the Riemann Monte Carlo estimatfisThe & Ly
suggested Riemann Monte Carlo estimator of theIY(U) du:J.ZFlI{uDR} du=T,,
|

population total is based on the weighted mearthera ° ) o 1=t L )
than the simple mean - of the estimates obtainatién 1-€ an integral representation is achieved and hénee

n replicates. Even if the Riemann Monte Carloestimation of T, reduces to an integration problem.

estimator is biased, it displays@(n?) mean square Hence, the strat.egies adopted for t'he Monte Carlo
error and hence it improves over the simple mean, ~ duadrature of an integral can be used in ordehtmse
n sample points(u,,u,,...,u,)on the baseline. When
PRELIMINARIES the n sample points are independently and randomly
chosen, the crude Monte Carlo integration strategy
Let us consider a \_/vell-defined planar §tudy _regioractually adopted. In this caséy,,u,,...,u,) are the
and a population dfl units scattered over this region at yoqjization of n independent random variables

fixed locations. Furthermore, Iqy,, y,.....yy) be the Uy uniformly distributed over the baseline.
values of the target variable on theunits, in such & Hance the Monte Carlo estimator is given by

way that
_ 1
: T =TU,U,,..U,)== . 2
=3y , =T,U,,U, ) n;yw) 2
1=1

represents the population total. Moreover, letasime
that the estimation ofT, is performed using the
replication of a design which is implemented by
selecting a sample point on the baseline. Withoss |
of generality and for the sake of simplicity, les u . . ;
suppose that the baseline is given by the intef@dl). enwronmental samplmg designs. Indeed, once the
sample points are positioned and the data arectedle

Moreover, letu be the position of a point selected on , Horyitz-Thompson estimates are obtained for each
the baseline. design replicate and they are subsequently averaged
order to achieve an overall estimate ot Obviously,
in this section the same procedure has been dedcrib
from a Monte Carlo integration perspective.

It is straightforward to show thaT_y is unbiased

It is at once apparent that the pooled estimatpis(the
mean of the n Horvitz-Thompson estimators
corresponding to theé design replicates. Actually, this
is the usual estimation procedure adopted in redi

Once a suitable design is chosen, the inclusiorRseft
the I-th unit is a suitable interval contained in the
baselin€” and thel-th unit is selected - andy, is

measured - ifulJR . As an example, let us consider a
population of plants and ley, be the biomass of tHe

th plant, in such a way that the target parametehe 1 N

total biomass in the forest. If line intercept séin@is  Var[T,]= ———— > [W(U)) - T ]%.

adopted, the inclusion sets are the projectionshef n(n-1) =

plant crowns onto the baseline. Indeed, a plant is However, the crude Monte Carlo strategy precludes

selected if the corresponding crown is intercefitgch  the small variance rates for the pooled estimatoicky

line perpendicular to the baseline at location can be achieved when more refined Monte Carlo
strategies are adopf&t!®. Accordingly, the aim of the

In order to obtain a suitable representation Tor following section is to introduce an estimator with
it is worth noting that, if solely the-th unit is elevated performance, even if the sample points are

considered, the intensity of the target variablerane ~ collected using the crude Monte Carlo strategy.

. . . 1 .
I-th inclusion set isy, /7, where 77 = IO liop du isthe  THE RIEMANN MONTE CARLO ESTIMATOR

length of B and I, is the usual indicator of a sAt

with a O(n™) variance rate. In additior?\/ar[fy] may
be unbiasedly estimated by means of

In order to improve on estimator (2), it is

Hencet; the intensity of the variable at locatieris o thwhile to consider a weighted estimator of type
given by
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T,=TU,U,,....U) (1-¢,1], the estimatorV  turns out to be consistent
< @) forVar['IE] .
=Y w(U,U,,....U)yU,), y
i=1
where thew (U,,U,,...,U, )s are positive weights such A SIMULATION STUDY
that Zinzlvvi U,U,,....,u,)=1 If the ws are non- In order to assess the small-sample properties of

random,i.e.w (U,,U,,...,U.) =w,, it is straightforward ~ SStmator (4) with respect to estimator (2), a sated

' ] n i ) experiment dealing with line intercept sampling has
to prove that estimator (3) is unbiased and th&een considered. In this setting, it is worth nptthat
corresponding variance is minimum when=1/n.1In  an interestin%] use of line-intercept design is dbed

this case, estimator (3) actually reduces to estin(@). by Thompsoft: if the study region is snowed and the
Accordingly, the weights must be chosen as randonfotal of a certain animal species (such as wolesrior
functions in order to improve on estimator (2).sEiit ~ arctic wolves) is the target parameter, the sedecte

is at once apparent that estimator (3) may expdesse ~ fransects are flown under appropriate weather
conditions with observers in the aircraft lookingr f

'Fy = Z WU U U yUy,) animal tracks in the snow. Once a track is encoadte

i=1 it is followed in each direction and mapped. Herbe,
where (U,),U,,...,U,) represents the order statistic animal tOt?| is estimated on the basis of the edth
corresponding toU,,U U,). Hence, a reasonable track totaf' "

. e The previous survey setting was mimicked by
choice of the weights is given by simulating three populations of twenty tracks oe th
WU qyUqg,Up)=Ug,—Ug,  assuming that unit square. Thus, the target parameter was giyethed
U =0 and U, =1. In this case, estimator (3) population totali.e. T, = N =20. The three populations

© . . were settled in such a way that the first poputatio

given by population consisted of lines positioned with agtsi
= < B trend, while the third population consisted of &ne
Ty 'IZ(; Uy =Up)yUg) - ) positioned with a marked trend. The three simulated

Robert and Caselt have proven that (4) is biased populations are displayed in Fig. 1. These popari
of lines may be considered quite representativecaf

with a O(n"®) mean square error whely has a situation&!.

bounded derivative. However, in the present settyng
does not achieve this regularity condition. Indeeds %
at once apparent that the functigrdefined in (1) is an \ /

elementary function. In any case, it can be prave %\\\ /<

'?y is biased with @D(n"?) mean square error everyif

is solely an elementary function (Result 1 in the
Appendix). Hence, estimator (4) is preferable to
estimator (2), at least in a large-sample settingFig. 1: The three simulated populations of lines

Moreover, T, generally displays ©(n™) bias (see the o
Y For the sake of simplicity, it was assumed that th

Remark in the Appendix). However, on the basishef t paseline corresponded to the base of the unit equar
same Remark, if the sampling design is slightlysince the line-intercept design was assumed, the
modified to ensure that is null in the narrow interval jnclusion sets of the lines were obviously giventisir
(1-£,1] (where £ is a small positive constant), then projections onto the baseline. The three functions

_?y achieves ao(n™) bias. This requirement may be ;:nolr:r%s%ondlng to the simulated populations arertedo

easily achieved in practice by suitably modifyirge t

inclusion probability of the right-border units. - ® o

As to the variance estimation dlf_y, it can be ® @ ®
shown that w “ “
~ 1 n 20| 20 20
V= Pl Zo: [Y(U 1)) = YU (i))]2 )

is a consistent estimator f&[(T, - T.)?] (see Result2 . . .
(1, -T,)"1 ( Fig. 2: The three functiony corresponding to the
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The sample sizes = 20,30,40 were considered in n i1
the simulation. For each sample size and for eachPn(% Z)zzz E[(Ug =2
population, B= 2,000 simulations of replicated line ==

*Uga _X)I{U(i)%u(iﬂ)*U(J)%U(jﬂ)}] '

intercept designs were carried out. For each siioula
the realizations of estimators (2) and (4) werepy ysing expression (7) in estimator (4), it follothat
computed. On the basis of thB estimates, the _ m
simulated bias, the simulated mean square errojMS Ty =Ty = _; ZO @~V =Bl vz,
and the simulated relative efficiency (RE)e: the ratio o -
of the simulated mean square errors - were computedd hence the mean square error Bf may be

for the estimators (2) and (4). The correspondasyits  expressed as
were reported in Table 1. = m
E[(T, _Ty)z] = Z (& —a,)’a,(b,)
k=1

Table 1:  Simulated performance indexes of estimafE; and'?y m (8)
Population  n Bias(MSE) Bias(MSE) RE + Zﬁék (@ —an1)(@ —a) B, (b, b)) .
of T, of T, Therefore, in order to obtain the large-sample prigs
Random 20 0.01 (5.24) -0.50 (4.09) 1.28 = _T\27 . : .
20 0.02 (3.43) 021225 152 of E[(T, -T,)°] - and consequently of its estimator (5)
40 0.01 (2.57) -0.10(1.41) 181 - it suffices to analyze the asymptotic propertas

Slight trend 20 -0.04 (17.88) -0.26 (19.76) 0.91 a (X) and ﬁ (X, Z) asn - o .
30 -0.01 (11.80) -0.22 (10.70) 1.10 n n
40 -0.01(8.75) -0.08(7.73) 1.13

Marked trend 20 0.02 (20.06)  -0.12(10.40) 1.93 Result 1: For each x,z[((0,1) such that x<z, it
30 0.00 (13.23) -0.03(5.25) 2.52 follows that

40 001(952)  -0.05(3.15) 3.2
a,(x) 02n?, B, (x,z) On™>. 9)

From Table 1, it is at once apparent that estimatoy;oreover T has a O(n) mean square error such
(4) always outperforms estimator (2), except foe th that tY

second population antll = 20. The performance of the ,
Riemann estimator obviously increasesnasicreases. = 2 1 & 2, &

The best performance is achieved for the third=(Ty ~Ty)] DF kz_; (& ~a) M (10)
population of lines,i.e. for the most irregulary )

function. Further simulations (not reported hereg¢m

to confirm that this behavior generally occurs, revle
the superiority of (4) over (2) is not marked fary
smalln values (say less than 10). Finally, it should be n-2\ . .
emphasized that the bias of (4) is always negativee  9(t,u) =n(n —1)(. _J AU gy
simulation, a result which is consistent with the !

Proof: Since the joint probability density function of

(U):U ) is given by

findings in the Remark of the Appendix. for i=1,2,...,n-1, it turns out that
2 -l n+2 . L
Appendix: Lety be an elementary functione. a,(x)=c, +m |Z=1: [ i ] X' (1-x)""*?

YW =2 &l (6) where
k=1
¢, =E[Uy - X):]+(1- X)ZP(U(n) <X).

where (a,a,,...,a,) are given constants. In turn, ) )
Hence, on the basis of Newton's formula it turng ou

(b,b,,....0..,) are constants such that

that
b<b,<..<b, and b=0 and b, =1. It is ~ 2
straightforward to prove that (6) may be expressed a,(9=c,+ (n+2)(n+1) (1-d,),
y(u) =Y @ =3l (7)  where
k=1 w2, 2 (N+2) n-i+2
wherea, = 0. dy=(1-X)""+ i X (=%

For eachx[(0,1), let us assume that Since ¢, +d, =o(n?), the first part of (9) follows. In

a, (x) = zn: E[(U,.,, — X)?I 1, addition, since the joint probability density fuioet of
" i=0 (i+1) {Uy<xsU g U,.U U, ,) is given by
: @@ m
while for each x,z[0(0,1) such thatx<z, let us
assume that

a(y,.u,,...,u,) =n!l

{usups..sug} 0

it turns out that
294
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<z=U ] =

E[(U(.+1) Z)(U(J+1) X)! g i+ V(i
_nix!(z-x)M@a-2""
TN - D) (n—i +1)!
foreachj <i-1 andi=2,3... ,n—-1 Thus, since

!l 1 )"t xi(z=-x)
= —i+1)! jiGi—j+1)!
n-1 1 i+1 _ n-i+1
DZ n!z _ (1 z) 0 1 '
= (n-i+DI(i+1)! (n+1)(n+2)
the second part of (9) follows. Moreover, on thaiba
of (8) and (9), it turns out that

E[(ﬁ -T,)?10

) V()

i=2

(& -a.)’ +— Z(ah a,,)(a —a.)

1 I<h<k

since )" (8 —a) = &,

Remark: By similar argumentation, it follows that
B|as[l' 1= E[T -T,]

=Y (8 ~8s) ElU gy ~b,

i=0

0-Sm,
n

ME

) I{U(i)<kﬁ<fu(i+1)) ]

=~
i
i

on the basis of the Dvoretzky-Kiefer-Wolfowitz
inequality™®.

Hence, T, displays a negative large-sample bias. In

addition, if a,, =0, by means of reasoning similar to

Result 1, it can be easily proven thabfn™) bias is
achieved (with in turn a negative leading term)tHis
case, sinceBias[F F =o(n™), it follows that

VarrF]D Z(ak a,.,)°.

Result 2: The r.v. \7/E[('IEy —Ty)z]converges almost
surelytolasn - o,

Proof: By using (10), it suffices to prove that’V/
converges almost surely toy ' (a -a.,)"+a’.
Moreover, it should be noticed that

NV = Z(ak ak1)2+am+22(ah a,1)(@ ~ 8y) Xy s

I<sh<k
n

where X, = Zi=o|w(i)<bhsu(i+1),
result follows since
{X,, 20} X moalx n(U(i+1)

TPTSPTAE Hence, the

Up 2uj,
where u, =min, (U, —u,). Indeed, u,>0 and
max_,, ,Uq,~U,) converges almost surely 10

10.

11.

12.

13.

14.

15.

16.

17.

18.
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