
Journal of Mathematics and Statistics 2 (1): 354-359, 2006
ISSN 1549-3644
© 2006 Science Publications

Corresponding Author: Ramzi A. Haraty, Lebanese American University P.O. Box 13-5053 Chouran, Beirut, Lebanon
1102 2801

354

A Comparative Study of RSA Based Digital Signature Algorithms

1Ramzi A. Haraty, 2A. N. El-Kassar and 1Bilal Shibaro

1Lebanese American University P.O. Box 13-5053 Chouran, Beirut, Lebanon 1102 2801
2Beirut Arab University, Mathematics Department, Beirut, Lebanon

Abstract: A digital signature is a mechanism designed to allow secure communication through an
insecure medium and can be traced in many applications where privacy is required. A digital
signature is an electronic signature that can be used to authenticate the identity of the sender of a
message or the signer of a document and possibly to ensure that the original content of the
message or document that has been sent is unchanged. The main purpose of this study was to
extend important and useful digital signature schemes from the domain of natural integers Z to
two principal ideal domains; namely, the domain of Gaussian integers Z[i] and the domain of the
ring of polynomials over finite fields F[x] by extending arithmetic needed for our extensions to
these domains. We implement the classical and modified RSA cryptosystem to compare and to
test their functionality, reliability and security. To test the security of the algorithms we implement
attack algorithms to solve the factorization problem in Z, Z[i] and F[x]. After factorization is
found, the RSA problem could be solved by finding the private key using the extended Euclidean
algorithm.

Key words: Digital signatures, cryptosystem algorithms, testing and evaluation

INTRODUCTION

 Digital signatures are strong tools applied in order
to achieve the security services of authentication (proof
of identity of the sender), data integrity (detection of
changes to the message) and non-repudiation
(prevention of denial of sending the information). They
are digital counterpart of handwritten signatures that
can be transmitted over a computer network. Only the
sender can make the signature, but other people can
easily recognize as belonging to the sender. The sender
produces a signature consisting of a number associating
a message (in digital form) with a secret key. This
signature is intended to be unique and it does not
necessarily require that a message be encrypted but
must be verifiable. Diffie and Hellman introduced the
concept of a digital signature in 1976. They published
their landmark study "New Directions in
Cryptography"[1]. Digital signatures schemes are based
on one-way functions that are relatively easy to
compute in one direction, but very difficult to compute
going the other direction[2]. The RSA signature is the
first method scheme discovered and is widely used[3].
The signature works in Zn where n is the product of two
large primes p and q and its security is based on the
intractability of the integer factorization problem, on
the RSA problem and on the selection of the
redundancy function. The RSA problem[4], is finding an
integer m such that me � d (mod n), where n is a
product of two distinct large odd primes p and q, e is a

positive random integer such that gcd(e,(p−1)(q−1)) =1
and an integer d. That is, the RSA problem is that of
finding eth roots of an integer d modulo a composite
integer n.
 The classical signature schemes, such as RSA,
ElGamal and Rabin signature schemes, are described in
the settings of the domain of integers Z. Many aspects
of arithmetic over the domain of integers can be carried
out to the domain of Gaussian integers Z[i], the set of
all complex numbers of the form a+bi, where a and b
are integers and to the domain of polynomials over
finite fields F[x][5]. Recently, the classical signature
schemes were modified in many directions in these
domains. El-Kassar et al.[6] modified the ElGamal
signature scheme from its classical settings of the
domain of natural integers to the domain of Gaussian
integers by extending the arithmetic needed for the
modifications to the domains. Similar extensions to the
domain F[x] was given by El-Kassar and Haraty in[7].
Haraty et al.[8] gave a comparative study of the
extended ElGamal signature scheme algorithms. In[9],
two extensions of the RSA signature scheme in the
domain of Gaussian and the domain of polynomials
over finite fields were presented. It was pointed out that
the extended algorithms require a little additional
computational effort than the classical one and
accomplish much greater security.
 In this study, we compare and evaluate the classical
and modified RSA algorithms. We investigate the
issues of complexity, efficiency and reliability by

J. Math. & Stat. 2 (1): 354-359, 2006

 355

running the programs with different sets of data.
Moreover, these different algorithms will be compared.
In addition, implementation of an attack algorithm will
be presented. Applying specific mathematical concepts
to find the private key does this. After finding the key,
it will be easy to sign the message. A study will be done
using the results of running the attack algorithm to
compare the security of the classical and modified
signature scheme algorithms.

Classical and modified RSA signature schemes: The
classical and modified RSA signature schemes are
described in this section. Algorithms and examples are
given. These algorithms are implemented to evaluate
and compare the various methods.

Classical RSA signature scheme: In RSA signature
scheme, entity A generates the public-key by first
generating two large random odd primes p and q, each
roughly of the same size and computing the modulus n
= pq and Euler phi-function �(n) = (p−1)(q−1)[4]. Entity
A then selects the exponent e to be any random integer
in the interval (1, �(n)) such that gcd(e,�(n))=1. Using
the extended Euclidean algorithm for integers, entity A
finds the exponent d which is the unique integer
(1,�(n)) relatively prime to �(n) such that ed � 1 (mod
�(n)). Hence, the public-key is the pair (n, e) and A�s
private-key is the triplet (p, q, d). A generates the
signature as follows. First, entity A computes the
redundancy function of the message m which is m =
R(m) such that R(m) Zn and also computes s � md (mod
n). Finally, A sends the signature s to entity B.
B validates the signature as follows. B obtains A's
authentic public key (n, e), computes. m � se (mod n)
and rejects the signature if m (M{R} (image of R).
Finally, B recovers m by computing R(1(m).

Algorithm (RSA signature scheme):
* Find two large primes p and q and compute their

product n = pq.
* Find an integer d that is relatively prime to �(n) =

(p(1)(q(1).
* Compute e from ed � 1 (mod �(n)).
* Broadcast the public key (n, e).
* Compute the redundancy function of the message

m which is m = R(m) such that R(m) Zn.
* Sign the message m using the private-key by

applying the rule s � md (mod n).
* The receiver validates the signature using the rule

m � se (mod n).

Example: In order to generate the public-key, entity A
selects the primes p = 852225047 and q = 603309029
and then computes the modulus n = pq =
514155065595049363 and the Euler phi-function �(n)
= (p−1)(q−1) = 514155064139515288. Next, A selects
the exponent e = 231814262079216429 and uses the

extended Euclidean algorithm for integers to find the
exponent d = 387883402970610381 so that ed � 1(mod
�(n)). Now, the public-key is the pair (n =
514155065595049363, e = 231814262079216429) and
A�s private-key is the triplet
(p = 852225047, q = 603309029, d =
387883402970610381).
 To sign the message m = 1101100100111, for
simplicity, take R(m) = m so that R is the identity
function. Then, m = R(1101100100111) =
1101100100111. A computes s = md (mod n) =
1101100100111387883402970610381 (mod
514155065595049363) = 502534570854711493 and
sends the signature 502534570854711493 to B. B
obtains A's authentic public key (n =
514155065595049363, e = 231814262079216429),
computes m = se (mod n) = 502534570854711493
231814262079216429 (mod 514155065595049363) =
1101100100111 and computes m = R−1(m) = m =
1101100100111.

RSA signature scheme in the domain of Gaussian
integers: In RSA signature scheme, entity A generates
the public-key by first generating two large random
Gaussian primes �, � and computes � = ��. The
Gaussian primes of Z[i] up to multiples of ±1 and ±I[10],
are of the form: i) � = 1+i; ii) � = a+bi and π = a−bi,

where q = �� π = a²+ b² is an odd prime integer of the
form 4k+1; iii) p, where p is an odd prime integer of the
form 4k+3. If � and � are selected to be of the form �
and �, then the modified scheme is equivalent to the
classical one[9]. If � and � are selected to be of the form
� and p, then � can be easily factored. Hence, � and �
are selected to be odd integers of the form 4k+3. Next,
entity A computes �(�) = �(�)�(�) = (�²−1)(�²−1),
where �(�) is Euler phi-function in Z[i][11]. It selects a
random integer e such that 1<e<�(�) and e is relatively
prime to �(�). Then, entity A finds the unique integer d
such that ed � 1(mod �(�)). A's public-key is (�, e) and
A's private-key is (�, �, d).
 Represent the message as a number 	 chosen from
the complete residue system modulo �, G� = {a+bi |
0
a
��−1, 0
b
��−1}. After computing the
redundancy function of the message 	 which is 	 =
R(), A computes the signature s = 	d (mod �) and
sends it to B. To verify the signature sent by A, B gets
A's public key (�, e), computes the message
representative 	 as 	 = se (mod �) and finally applies
verification process to 	 to recover 	. We note that the
message space is enlarged so that its order is the square
of that of the classical case. Also, more than the square
of that of the classical case enlarges the range for the
public exponent e. next; we provide three algorithms
describing the RSA signature scheme over the domain
of Gaussian integers. First, entity A generates the public
and private keys by doing the following.

J. Math. & Stat. 2 (1): 354-359, 2006

 356

Algorithm (key generation for the RSA Gaussian
signature):
* Generate two distinct large random Gaussian

primes � and �, each roughly the same size.
* Compute � = �� and �(�) = (�²−1)(�²−1).
* Selecte a random integer e, 1<e<�(�) such that

gcd(e, �(�)) = 1.
* Compute the multiplicative inverse d of e such that

ed � 1(mod �(�)) using the extended Euclidean
algorithm for Gaussian integers.

* Publish the pair (�, e) as the public key and
keeping d as the private key.

Algorithm (Signature generation of RSA Gaussian
signature):
* Represent the message as 	 from the complete

residue system modulo �, G�.
* Compute 	 = R() where 	.G�.
* Compute s = 	d (mod �).
* Output s as the signature to B.

Algorithm (Signature verification of RSA Gaussian
signature):
* Obtain A's authentic public key (�, e) .
* Recover 	 � se(mod �).
* Verify that 	.MR, otherwise reject the signature.
* Recover 	 = R−1().

Example: (RSA Gaussian signature scheme with
small parameters): Public-Key Generation: Let � =
91939 and � = 69383 be two Gaussian primes of the
form 4k+3. Compute the product � = �� = 6379003637
and �(�) = (91939²−1)(69383²−1) =
40691687387592447360. Entity A chooses e =
25600002082007742863 such that gcd(e, �(�)) = 1 and
1<e<�(�). Using the extended Euclidean algorithm for
integers, A finds d = 33899823343652452847 such that
ed � 1(mod �(�)). Hence, A�s public-key is the pair
(� = 6379003637, e = 25600002082007742863) and A�s
private-key is the triplet (� = 91939, � = 69383, d =
33899823343652452847).

Signature Generation: To sign the message 	 =
320177 + 147i, for simplicity, take R() = 	 so that R
is the identity function and 	 = R(320177 + 147i) =
320177 + 147i. Afterwards, A computes s = 	d =
(320177 + 147i) 33899823343652452847 � 3059266386 +
5412724259i (mod 6379003637) Finally, A sends the
signature to B.

Signature verification: To validate the signature, B
obtains first A's authentic public key (� = 6379003637,
e = 25600002082007742863). Then, B computes 	 �
se (mod �) =
(3059266386+5412724259i)25600002082007742863 (mod
6379003637) = 320177 + 147i Finally, B computes 	
= R−1() = 320177 + 147i.

The advantages of the RSA scheme in Z[i] are: first,
generating two primes p and q in the form 4k+3 in both
the classical and the modified methods requires the
same amount of effort. Second, the modified method
provides more security than the classical method since
the number of elements that can be chosen from to
represent the message m is about the square of those
used in the classical case. Therefore, we deduce that the
extended RSA over the domain Z[i] provides an
extension to the range of chosen messages, which make
trials more complicated. The computations involved in
the modified method do not require computational
procedures that are different from those of the classical
method.

RSA signature scheme over quotient rings of
polynomials over finite fields: Let p be a prime
number and let h(x) and g(x) be two distinct irreducible
polynomials in Zp[x], the domain of polynomials over
the finite field Zp, where h(x) is of degree s and g(x) is
of degree r. Let f(x) = h(x)g(x). The polynomials h(x)
and g(x) should be selected so that factoring f(x) =
h(x)g(x) is computationally infeasible. The quotient ring
Zp[x]/<f(x)> is finite of order p�, where n = r+s is the
degree of f(x). It is well known that the quotient ring
Zp[x]/<f(x)> is the direct sum of Zp[x]/<g(x)> and
Zp[x]/<h(x)>, that is Zp[x]/<f(x)> ≅ (Zp[x]/<g(x)>) ⊕
(Zp[x]/<h(x)>). Its group of units U(Zp[x]/<f(x)>) is the
direct product of groups of units U(Zp[x]/<g(x)>) and
U(Zp[x]/<h(x)>), that is U(Zp[x]/<f(x)>) ≅
U(Zp[x]/<g(x)>)×U(Zp[x]/<h(x)>).
 Since h(x) and g(x) are irreducible, the quotient
rings Zp[x]/<g(x)> and Zp[x]/<h(x)> are finite fields of
order ps and pr, respectively. Hence, the groups
U(Zp[x]/<g(x)>) and U(Zp[x]/<h(x)>) are cyclic with
orders �(h(x)) = ps−1 and �(g(x)) = pr−1, respectively,
so that �(f(x)) = (ps−1)(pr−1). We provide the
algorithms of the extended RSA signature over
polynomials. First, entity A generates the public and
private keys by doing the following.

Algorithm (key generation for RSA signature over
polynomials):
* Generate an odd prime p, two distinct monic

irreducible polynomials f(x) and g(x) over Zp.
* Compute h(x) = f(x).g(x) in Zp[x].
* Compute the order of U(Zp[x]/<h(x)>) which is

�(h(x)) = (ps−1)(pr−1).
* Select a random integer e where 1<e<�(h(x)) such

that gcd(e, �(h(x))) = 1.
* Use the Euclidean algorithm for integers to find the

unique multiplicative inverse d of e with respect to
�(h(x)) such that 1<d<�(h(x)) and ed � 1 (mod
�(h(x)))

* Publish the key (p, h(x), e) and keep d as private
key.

J. Math. & Stat. 2 (1): 354-359, 2006

 357

 To generate a signature on a message, entity A
should do the following.

Algorithm (Signature generation of RSA signature
over polynomials):
* Represent the message as a polynomial m(x) in the

complete residue system modulo f(x) in Zp[x].
* Compute m(x) =R(m(x)), as a polynomial in the

complete residue system modulo h(x) in Zp[x].
* Use the private key d to compute s(x) = (m(x))d

(mod h(x)).
* Output s(x) as signature of m(x).

 To verify the signature s(x) and recover the real
message m(x), entity B should do the following.

Algorithm (Signature verification of RSA over
polynomials)
* Obtain A's public key (p, h(x), e).
* Compute m(x) = se (mod h(x)).
* Verify that m(x) . MR, otherwise reject the

signature.
* Recover m(x) = R−1(m(x)) where R−1 is the inverse

of the Redundancy function.

Example: (RSA Signature Scheme over Polynomials
with small parameters)
Public-Key Generation: Let p = 389. Entity A chooses
the two irreducible polynomials h(x) = x²+376x+43 and
g(x) = x³+384x²+3x+10 in Z389[x]. Reducing the
polynomial f(x) = h(x).g(x) in Z389[x] and computing
�(f(x)), A gets f(x) = x,+371x.+111x³+145x²+388x+41
and �(f(x)) = (389³−1)(389²−1) = 8907280505760.
Entity A then chooses the integer e = 95561135039
such that gcd(e, �(f(x)) = 1 and 1<e<�(f(x)). Using the
extended Euclidean algorithm for integers, A finds d =
5878808345759 satisfying ed � 1 (mod�(f(x))). Hence,
A's public-key is (p=389, f(x) =
x,+371x.+111x³+145x²+388x+41, e = 95561135039).
and A's private-key is (d = 5878808345759, g(x) =
x³+384x²+3x+10, h(x) = x²+376x+43).

Signature generation: Choose m(x) = 1+3x+x² and
assume that the redundancy function is the identity
function (for simplicity). Thus, m(x) =1+3x+x².
Afterwards, A computes
s(x) = m(x)d = (1+3x+x²)5878808345759 �
172x.+86x³+265x²+59x+177 (mod f(x)) and sends s(x)
to B.

Signature verification: To validate the signature, B
computes m(x) = s(x)e =
(172x.+86x³+265x²+59x+177)95561135039

� 1+3x+x² (mod
f(x)). So, m(x) = 1+3x+x².MR. Hence, m(x) =
R−1(1+3x+x²) = 1+3x+x².

RSA signature scheme attack: The security of the
RSA signature scheme is based on the intractability of

both the integer factorization problem and the RSA
problem. Various attack schemes have been studied in
the literature as well as appropriate measures to
counteract these threats. Given the public-key, to forge
the signature, a passive adversary must solve the RSA
problem. There is no known efficient algorithm for this
problem. One possible approach, which an adversary
could employ, is to find the private key. In order to
attack any protocol that uses the RSA signature scheme
by finding its private key, the factorization problem
must be solved first. After factorization, computing the
value of Euler phi-function and then finding the private
exponent d using the extended Euclidean algorithm for
integers could solve the RSA problem. Once d is found,
the signature can be forged. On the other hand, if the
classical method is used and an adversary could
somehow compute d, then n can efficiently be factored
as follows[4]. This shows that in the classical case, the
RSA problem and the integer factorization problem are
computationally equivalent. It is not known if this
remains true for the modified schemes. In the next
section we evaluate the various RSA signature schemes
by recovering the private key using the software
package Mathematica. We illustrate the attack schemes
in the following example.

Example: (Attacking the RSA signature scheme).
Assume that the public key is: (n =
221806263006661919, e = 39786855994835377). To
find the private key, we use the built-in Mathematica
functions FactorInteger and PowerMod. The prime
factors p and q are obtained from the output of
FactorInteger[221806263006661919] which is
{{315841909,1}, {702269891,1}}. Hence, p =
315841909 and q = 702269891. Next, we calculate �(n)
= (p−1)(q−1) = (315841909−1)(702269891−1)=
404098131692231616. The exponent d =
279550294187496277 is the output of
PowerMod[39786855994835377, −1,
404098131692231616]. The private key is (p =
315841909, q = 702269891, d =
279550294187496277).

Table 1: Running time in seconds: Classical RSA digital signature
Size of primes Classical RSA Digital Signature
 --
 Public Key Signature Verification Public
50-digit 0.1341 0.002 0.006
100-digit 1.3801 0.011 0.0151
200-digit 4.2913 0.0471 0.0851
250-digit 5.7312 0.0923 0.1374
300-digit 7.3706 0.144 0.2074

Table 2: Running time in seconds: RSA Digital Signature with

Gaussian integers
Size of primes RSA Digital Signature with Gaussian integers
 --
 Public Key Signature Verification Public
50-digit 0.1341 0.0912 0.097
100-digit 1.3801 0.025 0.032
200-digit 4.2913 0.1101 0.1513
250-digit 5.7312 0.1883 0.2595
300-digit 7.3706 0.3035 0.4238

J. Math. & Stat. 2 (1): 354-359, 2006

 358

Table 3: Running time in seconds: RSA Digital Signature using polynomials
Prime p Degree d RSA Digital Signature using polynomials
 --
 Public Key Signature Verification Public
p = 2 2
 d
 10 0.0331 0.0161 0.0331
 21
 d
 30 1.7188 0.9222 1.6863
 50
 d
 60 15.6215 8.8147 17.211
p = 101 2
 d
 10 1.429 0.3365 0.4305
 11
 d
 20 8.992 3.1823 5.53
 21
 d
 30 45.1559 13.792 14.21275

Testing and evaluation: In this section, we compare
and evaluate the different classical and modified
signature schemes by showing the implementation of
the signature schemes' algorithms with their running
results. Also, we test the security of the algorithms by
implementing different attack algorithms to crack the
encrypted messages. All this is done using Mathematica
5.0 as a programming language and an Acer computer
with Intel Pentium M715 processor, 1.5 GHZ CPU and
256 MB DDRAM.

RSA based digital signature algorithms: Using
Mathematica 5.0 functions and an additional abstract
algebra library, we have written programs for the
following algorithms:
* Classical RSA digital signature.
* RSA digital signature with Gaussian integers.
* RSA digital signature with polynomials over a

finite field.

 After running the programs, it was clear that these
programs have applied the RSA signature scheme in the
correct way. All the programs have generated a public
and private key with different mathematical concepts.
Then a message is signed using the signature scheme
and is sent to a verification procedure which returned
the original message. The classical and Gaussian
schemes were tested using the same public-key. The
average running time of several runs using 50, 100,
200, 250 and 300-digit primes are given in Tables 1 and
2. The public-key was generated by randomly selecting
odd integers having a given number of digits and of the
form 4k+3. The odd integers were tested for primality
using the built-in Mathematica function PrimeQ until a
prime is found.
 To evaluate RSA algorithms using polynomials,
we ran programs for various values of the prime p and
degree of the irreducible polynomials. The average
running time of several runs are listed in Table 3. The
public-key was generated using the built-in
Mathematica function IrreduciblePolynomial[x, p, d].

Comparing these algorithms, we conclude the
following:
* All programs are reliable; they can sign, verify and

return any message.

* The running time for the signature/verification
algorithms is negligible in the classical and
Gaussian cases. In the polynomial case the time for
the signature/verification algorithms becomes
significant for large primes and irreducible
polynomials with large degree.

* The complexity for the three programs depends on
the complexity of generating the public-key. Thus,
the classical and Gaussian algorithms are
equivalent since their public-key generation
algorithms are identical when restricting the choice
of primes to those of the form 4k+3. The Gaussian
method is therefore recommended since the
modified method provides an extension to the
message space and the public exponent range.

* The public-key generation algorithm using
polynomials requires the search for irreducible
polynomials. The Mathematica built-in algorithm
for generating irreducible polynomials appears to
be inefficient as p becomes very large and the
degree of the polynomial increases.

Attack algorithm: In order to attack any protocol that
uses the RSA public key signature scheme by finding
its private key, the factorization problem must be
solved first. To test the security of the algorithms, we
implemented attack schemes applied to the classical
and modified signature scheme algorithms. For the
classical and Gaussian algorithms, we generated public
keys using primes of various sizes. The attack was
conducted using the Mathematica built-in function
FactorInteger to recover the prime factors. The Euler
phi-function was then computed. Finally, the private
exponent was obtained. The average running time of
several runs are listed in Table 4.

Table 4: Attack time in seconds: Classical RSA digital signature
 Classical RSA Digital Signature
 --
Digits of p & q 20 22 24 26 30
Time 1.406 4.3983 26.3238 65.0656 94.245

 For the RSA algorithms using polynomials, we
generated a public-key using a prime p of various sizes
and irreducible polynomials f(x) and g(x) of different
degrees d. The attack was conducted by factoring f(x)
using the built-in function Factor[f, modulus->p] to
recover the irreducible factors. The Euler phi-function

J. Math. & Stat. 2 (1): 354-359, 2006

 359

was then computed. Finally, the private exponent was
obtained. The average running time of several runs are
listed in Table 5.

Table 5: Attack time in seconds: RSA Digital signature using

polynomials
 Classical RSA Digital Signature
Digits of p 5 5 10 22
Degree d 10
 d
 11 12
 d
 13 5
 d
 6 2
 d
 3
Time 2.373 2.954 0.651 0.231

After running these attack algorithms, we observed the
following:
* All the attack programs are reliable so that they can

sign any message by finding the private key.
* Attacking the classical and Gaussian RSA

algorithms is easy if we are dealing with small
prime numbers. However, when it comes to 100-
digit prime numbers or higher, it needs about many
computers working in parallel processing to
compute the prime factorization of the
multiplication of two 100-digit prime numbers.

* Attacking the RSA polynomial algorithm becomes
more difficult as the size of p or the degree of the
irreducible polynomials become larger.

CONCLUSION

 In this work, we presented the classic RSA
signature scheme and two of its modifications, namely,
the RSA signature scheme in the domain of Gaussian
integers, Z[i] and over quotient rings of polynomials
over finite fields. We implemented these algorithms and
tested their efficiency, reliability and security. The
results obtained showed that all the algorithms applied
the RSA signature scheme correctly and generated
public and private key using different mathematical
concepts. Messages were then signed using the
signature scheme and were sent in encrypted form to a
verification procedure which validated the signature
and returned the original messages.
 We also built attack scenarios directly aimed at
solving the factorization problem. We modified the
RSA attack algorithm to handle the modified
algorithms. We observed that the Gaussian method is
preferred since it is as secure as the classical one but
provides an extension to the message space and to the
signature exponent range.
 As for future work, we plan to compare and
evaluate the efficiency of the modified algorithms using
very large numbers by using parallel computing

techniques. We plan to run the programs in parallel on
many computers and split the complex mathematical
calculations between these computers. We plan to write
a function that is capable of finding any random
irreducible equation with respect to a specific prime
number p. We also plan to apply the modified
algorithms in many fields such as database,
communications and network security.

REFERENCES

1. Diffie, W. and M.E. Hellman, 1978. New

directions in cryptography. IEEE Trans.
Information Theory, IT-22: 472-492.

2. Preneel, B., 1994. Cryptographic hash functions.
Eur. Trans. Telecommunications, 5: 431-448.

3. Rivest, R., A. Shamir and L. Aldeman, 1978. A
method for obtaining digital signatures and
publickey cryptosystems. Communications of the
ACM, 21: 120-126.

4. Menezes, A., J. Van Oorshot and P.C.S.A.
Vanstone, 1997. Handbook of Applied
Cryptography. CRC Press.

5. Smith, J.L. and J.A. Gallian, 1985. Factoring finite
factor rings. Math. Mag., 55: 93-95.

6. El-Kassar, A.N., M. Rizk, N. Mirza and Y. Awad,
2001. ElGamal public-key cryptosystem in the
domain of Gaussian integers. Intl. J. Appl. Math.,
7: 405-412.

7. El-Kassar, A.N. and R. Haraty, 2005. ElGamal
public-key cryptosystem in multiplicative groups
of quotient rings of polynomials over finite fields.
J. Computer Science and Information Systems, 2:
63-77.

8. Haraty, R., O. Otrok and A.N. El-Kassar, 2004. A
comparative study of ElGamal based cryptographic
algorithms. Proc. Sixth Intl. Conf. Enterprise
Information Systems (ICEIS 2004), 3: 79-84.

9. El-Kassar, A.N., R. Haraty and Y. Awad, 2004.
Modified RSA in the domains of gaussian integers
and polynomials over finite fields. Proc. Intl. Conf.
Computer Science, Software Engineering,
Information Technology, e-Business and
Applications (CSITeA'04). Cairo, Egypt.

10. Kenneth, A.R., 1988. Elementary Number Theory
and its Applications. AT&T Bell Laboratories in
Murray Hill, New Jersey.

11. Cross, J.T., 1983. The Euler�s ϕ-function in the
Gaussian Integers. American Mathematics
Monthly, 90: 518-528.

