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Abstract: In this study, we estimate the resolvent of the  two bodies Shrodinger operator perturbed by 
a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method, 
we first distorted it  and then reduced it to a diagonal matrix. We considered a case where two energy 
levels cross in the classical forbidden region. Under the assumption that the second energy level admits 
a non degenerate point well and  virial conditions on the others levels, a good estimate of the resolvent  
were observed. 
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INTRODUCTION 

 
 The Born-Oppenheimer approximation technical[1] 
has instigated many works one can find in bibliography 
the recent papers like[2-5]. 
 It consists to study the behaviour of a many body 
systems, in the limit of small parameter h as the 
particles masses (masses of nuclei) tends to infinity; 
(see the references therein for more information), we 
can describe it with a Hamiltonian of type 

2
x yP h V(x, y)= − ∆ − ∆ + on 2 3 3p

x yL (IR   IR )× , when h 
→ 0 and V denote the interaction potentials between the 
nuclei of the molecule and the nuclei electrons.  
The idea is to replace the operator  

yQ(x) V(x, y)= −∆ +  (in , 2 3p
yL ( IR ) x  fixed) by the 

so-called electronic levels which be a family of its 
discrete eigenvalues: 1 2 3(x), (x), (x),...λ λ λ  and to 
study the operators P which can be approximativelly 
given by  

2
x jh (x),− ∆ + λ on 2 3

xL (IR  ) . 
 Martinez and Messirdi's works, are about spectral 
proprieties of P near the energy level E0 such that 

nR
inf λj 

≤ E0. Martinez in[6], studies the case where λ1(x) admits 
a nondegenerate strict minimum at some energy level 

0λ , the eigenvalues of P near 0λ admits a complete 
asymptotic expansion in half-powers of h[2]. 
 Messerdi and Martinez[7] considers the case where 
λ2 admits a minimum, such appears resonances for P. 
He gives an estimation of the resolvent of O( 1h− ) at the 
neighbourhood of 0. 

 In this study we try to generalize this work to 
approximate the resolvent of P where V is a potential of 
Coulombian type at the neighbourhood of a point 

0x ≠0. 
 In fact, we estimate the resolvent of the operator 
Fς

µ ,given by a reduction of the distorted operator Pς
µ , of 

P modified by a truncature ς [8]; and we try to have a 
good evaluation of the order of O( 1/ 2h− ). 
 We apply the Feshbach method to study the 
distorted operator Pς

µ  which allows us to goback to the 
initial problem and we put the virial conditions on 

1λ and 3λ .  
 
Hypothesis and results  
Hypothesis: Let the operator  

2
x yP h V(x, y)= − ∆ − ∆ +  (1) 

on 2 3 3p
x yL (IR   IR )× , when h tends to 0. V(x,y) 

= 1 2 3 pV(x, y , y , y ,..., y ) is an interaction potential of 
Coulombian type 

p p
j j jk

j 1 j,k 1j j j k
j k

V(x, y)
x y x y x y y

+ −

= =
≠

 α α αα  = + + +
+ − −  

∑ ∑  (2) 

where j jk, ,±α α α  are real constants, α >0 ( j
±α is the 

charges of the nuclei). 
It is well known that P with domain 2 3 3p

x y(IR   IR )Η ×  
is essentially self-adjoint on 

2 3 3p
x yL (IR   IR )× .  
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For x 0≠ , yQ(x) - V x y= ∆ + ( , ) with domain 
2 3p

y( IR )Η is essentielly self-adjoint on 2 3p
yL (IR )   

 
Remark 1.1: The domain of Q(x) is independent of x . 
To describe our main results we introduce the following 
assumptions: 

(H1) { }3nx IR \ 0 ,∀ ∈  # disc (Q(x)) 3σ ≥   

Let 0λ  an energy level such that: [ [j 0, 3λ ∩ −∞ λ ≤ , 
denoting 1 2 3(x), (x), (x)λ λ λ the first three eigenvalues 
of Q(x). 
 (H2) we assume that the first tree eigenvalues jλ , 

{ }j 1, 2,3∀ ∈  are simple at infinity:  

{ } j kj,k 1,2,3

1x C inf (x) (x)
C∈

≥ ⇒ λ − λ ≥  (3) 

and 

{ }
{ }j k 1 2 3

j,k 1,2,3
lim dist( (x) (x))\ (x), (x), (x) 0
∈

λ − λ λ λ λ 〉  

this means 
1 0, x 0,∃δ 〉 ∀ ≠ and { }1 2 3(Q(x))\ (x), (x), (x) ,λ ∈ σ λ λ λ  

we have 

j 11 j 3
inf (x)
≤ ≤

λ − λ ≥ δ  (4) 

 
Remark1.2: By Reed-Simon’ results[9], the first 
eigenvalue is automatically simple. 
(H3) we suppose that c 0∃ 〉 such that 

{ }3x IR \ 0 ,∀ ∈  j c ,
x
α

λ ≤ +  { }j 1,2,3∈  (5) 

 
Remark 1.3: This hypothesis is still true for 0±α 〈 ; 

1λ also verifies (H3) and we can see with a simple 
computation that there exists c1 such that for all x≠0 

1 1(x) c
x
α

λ ≥ − +  (6) 

(H4) We are in the situation where 2 (x)λ admits a 
nondegenerate strict minimum; creating a potential well  
 

of the shape Γ : { }0 2 0 0x IR 0

1 "
2 0 0 2 2 0

inf (x), (x)

( ) r , (x) 0, (r ) 0
∈ −

−

ν = λ ν 〈λ


λ ν = λ 〉 λ 〉

 

2 0∃δ 〉  such that 

{ }3x R \ 0 ,∀ ∈  { }1 2 2 3(x) min (x), (x)λ + δ 〈 λ λ  
we note by 
 

{ }2 3K x R, (x) (x)= ∈ λ = λ  

and for 0δ〉 , we also note by: 
{ }K x IR,dist(x,K)  δ = ∈ ≤ δ  

Let 0 1 0δ 〉δ 〉 such that 
* 

0 1
K \Kδ δ  is simply connex  

* 
02K Uδ = ∅∩  

* The connex composites of 
1

IR³\ Kδ are simply 
connex 

(H5) Virial Conditions 
 It exists d 0〉  such that for j∈ {2,3}, 
 The resonances of P are obtained by an analytic 
distorsion introduced by Hunziker[8] and so they are 
defined as complex numbers jρ  ( 0j 1,..., N= ) such that 
for all 0ε〉  and µ  sufficiently small, Im 0µ〉  

jρ disc (P )∈ σ µ [3]. We denote de set of the resonances of 
P by: discIm 0,

(P) (P )µµ〉 µ 〈ε
σ = ∪ σ  

Where Pµ  is obtained by the analytic distorsion 

satisfying: 1P U P U−
µ µ µ µ= . So, Pµ  can be extended to 

small enough complex values of µ as an analytic family 
of type[9]. 
 The analytic distorsion Uµ , for µ small enough 

associated to v is defined on 3 3p
0 x yC (IR   IR )∞ ×  by 

1/ 2
1 1 p pU (x, y) (x v(x), y v(y ),..., y v(y )) Jµϕ = ϕ + µ + µ + µ  

where
p

j
j 1

J J(x, y) det(1 Dv(x) det(1 D(y ))
=

= = + µ + µ∏  is the 

Jacobien of the transformation 
1 p: (x, y) (x v(x), y v(x),..., y v(x))µΨ → + µ + µ + µ  and 

v C (R³)∞∈  is a vector field satisfying : 

N 0∃ 〉 , large enough such that:
0

2v(x) 0, si x
N

v(x) x, si x r '

 = ≤

 = ≥ − ε

 

( ' 0ε 〉 , small enough, 0
3r '
N

〉 + ε ). 

 
Remark 1.4: The distorsion is close to the potential 
well. 
 We localise our operator near the well 0v by 
introducing a truncate function 3C (IR )∞ς ∈ satisfying: 

21, si x
N
30, si x

2N

 ς = ≥

ς = ≤


  

fixing 0 0vα 〉 , we set 
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1
y 0Q (x) U U (x)V (x, y) (1 (x))ς −

µ µ µ µ= − ∆ + ς + − ς α  

1 pV (x, y) (x v(x), y v(x),..., y v(x))µ = + µ + µ + µ  
We also denote:  

2 1
xP h U U Q (x)ς − ς

µ µ µ µ= − ∆ +  (7)  

With domain 2 3
x(IR )Η .  

 
Remark1.5: Like in [10], near 0ν , (P )µσ  and (P )ς

µσ  
coincide up to exponentially small error terms. For this 
we will study Pς

µ  instead of Pµ . 
RESULTS 

 
 Here we write the results of our works as 
following: 
 
Theorem 1.6: Under assumptions (H1) to (H5) and for 

C,µ ∈ µ and h small enough, we have 

( ) ( )1 1/ 2F z O h
−ς −

µ − =   

where Fς
µ  is the Feshbach reduced operator of Pς

µ  
verifying 

2

x2

hF I M R
(1 )

ς ς ς
µ µ µ= − ∆ + +

+ µ
�  and the error R ς

µ
�  is 

satisfying: m m m 1 m 1

2

L(H H ,H H
R O(h )

− −

ς
µ ⊕ ⊕

=�  

We need for our proof the main important theorem for 
the operator 2,Pς

µ  which is the distorsion of the operator 

2,P µ :  
2 1

2, x 2P h U U (x v(x))ς −
µ µ µ= − ∆ + λ + µ  (8) 

at the neighbourhood of point 0x  of the well such that 
( ' 0∀ε 〉 ,small enough, | 0 0x r '〉 + ε ), the distorsion 2,P µ  

is in fact a dilatation of angle θ  such that e (1 )θ = + µ . 
We denote it by 2,P θ

[11] and is defined by 
2

2, x 2P h (xe )θ
θ = − ∆ + λ  (9) 

 Let j 0e , j 1,..., N=  be the eigenvalues of the operator 
2

" 2
0 2 0 02

d 1P (r )(r r ) )
2dr

= − + λ − and jγ  complex circles 

centred at je h. 
 
Theorem 1.7: Under assumptions (H1)- (H5), for 
θ ∈C, θ and h small enough and for ( ' 0∀ε 〉 ,small 

enough, | 0 0x r '〉 + ε ), the resolvent of the distorted 
operator defined by (9) satisfies the estimate 

( ) ( )1 1/ 2
2,P z O h

− −
θ − = , uniformly for 

[ ]0 0 0z ' x ,C h x∈ −ε − − outside of the jγ . 
 Before we prove this theorem, we introduce the so-
called Grushin problem associated to the distorted 
operator Pµ . 
 
The reduced Feshbach operator: Now, we try to 
reduce the operator Pς

µ  by the Feshbach method into a 

matricial operator of type: 
2

x2

h I M R
(1 )

ς ς
µ µ− ∆ + +

+ µ
�  

where Mς
µ  is the matrix of eigenvalues of Qς

µ  and R ς
µ
�  

is the remainder of order O( 2h ) 
 
The study of the distorted operator Pς

µ : We begin 

our study by the operator Qς
µ  which is defined by: 

1Q U Q(x v(x))Uς −
µ µ µ= + µ  (10) 

For x ≠ 0, we denote also 

Q (x) Q (x)
x v(x)µ µ

α
= −

+ µ
�   and  { }j j(x) , j 1, 2,3

x
α

λ = λ − ∈�  

 Let C (x)  be a family of continuous closed simple 

loop of C enclosing { }j (x), j 1,2,3λ ∈�  and having the 

rest ofσ ( 0Q (x)� ) in its exterior. The gap condition (4) 
permits us to assume that: 

3 0
x IR
min dist( (x), (Q (x))

2∈

δ
γ σ ≥�  (11) 

 Using the relation (6) and (H3), we can take C (x)  
compact in a set of C. So, we deduce from (11) the 
following result[3]. 
 
Lemma 2.1 
1. j, k∀ ∈  {1,...,p}, 3pj k,  IN  ≠ β∈ , the 

operators ( ) 1

0
j

1 Q (x) z
y x

−
−

±
� , ( ) 1

0
j k

1 Q (x) z
y y

−
−

−
�

and ( ) 1

0Q (x) z
−β∂ −�  are uniformly bounded on 

2 3p
yL (IR ) , x ∈ IR3, z ∈  C (x)   

2. If µ ∈  small enough, then for 3x IR∈ , z ∈  ,the 

operator ( ) 1
Q (x) z

−

µ −� exists and satisfies uniformly 

( ) 1
Q (x) z

−

µ −� - ( ) 1

0Q (x) z O
−

− = µ� . 
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Now we define for µ ∈C small enough, the spectral 

projector associated to Qµ
� and the interior of C (x) . 

1

(x)

1(x) (z Q (x))
2

−
µ µγ

π = −
π ∫ �  and rg 1µπ =  

This projector permits us to construct the Grushin 
problem associated to the operator Pς

µ . 
 
Problem of Grushin associated with the operator 
Pς

µ : We begin this section by the result which is 
(lemma1-1 of[12] and proposition 5-1 of[7]. 
 
Proposition 2.2: Assume (H1), (1.7), (1.9), (1,10) hold, 
then for µ ∈C, z ∈  C small enough, there exist N 
functions 0 3 2 3p

k, (x, y) C (IR ,H (IR ))µω ∈ , (k = 1,2,3), 
depending analytically on µ ∈ , such that 

i. é 3pj, k, j,kL (IR )µ µω ω = δ  

ii. For k, 1 k 3
3x , ( )
N µ ≤ ≤≥ ω  form a basis of Ran µπ (x) 

 iii. 2 3p2C x , H (IR )
N

∞   ∈ 〈  
  

 

iv. For |x| large enough, k, (x)µω (x) is an eigen 
function of Qµ(x) associated with k (x (x))λ + µω  

We first introduce the family { }1, 2, 3,, ,µ µ µω ω ω of 

Ran (x)µπ depending analytically on µ for µ small 

enough and normalized in 2 3p
yL (IR ) by 

2 3p
y

i, j, ijL (IR )
(x), (x)µ µω ω = δ  and then we associate the 

two following operators  

R−
µ  : 

3

1
⊕  2 3 2 3pL (IR ) L (IR )→  

3

1 2 3 k k,
k 1

u (u , u , u ) R u u (x)− − − − − − −
µ µ

=

= → = ω∑  

3
2 3p 2 3

1
R (R ) : L (IR ) L (IR )+ − ∗

µ µ= → ⊕   

t
,1 ,2 ,3Y Y Y

u ( u, , u, , u,µ µ µ= ω ω ω  

where t A denote the transposed of the operator A, 

Y
.,. the inner product on 2 3pL (IR ) and ,1 Y

., µω is the 

adjoin of the operator 2 n 2 n P
, jL (IR ) v vu L (IR )+

µ∋ ∈6 ,  
 

,ku u(x v(x))µ = + µ and we put ˆ 1µ µπ = − π , where  

,1 ,1 ,1 ,2 ,3 ,3Y Y Y
u, u, u,µ µ µ µ µ µ µπ = ω ω + ω ω + ω ω . 

As Pς
µ and ,k , k 1, 2,3µω =  have analytic extensions 

with µ, the Grushin problem is then defined, for z∈C, 
by: 

 
1, 2, 3,

1, Y

2, Y

3, Y

P z

., 0 0 0P z R
P (z)

R 0 ., 0 0 0

., 0 0 0

ς
µ µ µ µ

ς + µ
µ µς

µ −
µ µ

µ

 − ω ω ω
 

ω  −
 = =   ω  
 
 ω 

 (12)  

which sets on 3
2 3p 2 3

1
H (IR ) ( L (IR ))⊕ ⊕ to 3

2 3p 2 3

1
L (IR ) ( H (IR ))⊕ ⊕  

 The following proposition, gives the inverse of the 
operator (12) by using a result of Grushin problem. This 
is proved in[3,6]. 
 
Proposition 2.3: z∀ ∈ C close enough to 0λ , Pς

µ  is 
invertible and we can write its inverse: 

,1

, ,

X X
P

X X

ς ς
µ µ +ς−

µ ς ς
µ − µ −+

 
=   

 
,  

With 1 ˆX (z) (P ' z) (x)ς ς −
µ µ µ= − π where 1(P ' z)ς −

µ − is the 

bounded inverse of the restriction of ˆ (P z)ς
µ µπ − to 

{ }2 3(n p) ˆu H (IR , u u+∈ π = . 

, k , k , 1 k 3X (z) ( X (z)P (. ))ς ς ς
µ + µ µ µ µ ≤ ≤= ω − ω , 

( )t

, k , 1 k 3
X (z) (1 P (z)X )(.),ς ς ς

µ − µ µ µ ≤ ≤
= − ω  and 

( )( )2 3p, jk j, j, L (IR ) 1 j,k 3
X (z) z P P X (x)P (. ),ς ς ς ς ς

µ −+ µ µ µ µ µ µ
≤ ≤

= δ − − ω ω  

 
Remark 2.4  
1. For z ∈C, close enough to 0λ , we have 

z (P )ς
µ∈ σ if and only if ,∃µ µ  small enough and 

Im 0µ〉 , such that disc ,z (X (z))ς
µ −+∈ σ  where 

,X (z) :ς
µ −+

3

1
⊕  2 3 2 3(IR ) L (IR )Η → , is a pseudo-

differential operator of principal symbol defined by 
the matrix: 

2 3j, k, 1 j,k 3L (IR )
B(x, , z) zI ( (x) (t ( ) Q (x)) (x) )ς

µ µ µ µ ≤ ≤ξ = − ω ξ + ω  

and t ( )µ ξ  is the principal symbol of 2 1
xh U U−

µ µ− ∆  

2. z is a resonance of the operator Pς
µ only and only 

if, ∃µ ∈ C, µ  small enough Im 0µ〉 , such that: 

disc ,0 (X )µ −+∈ σ or disc ,0 (F )ς
µ µ −+∈ σ where Fς

µ is the 

Feshbach operator ( Fς
µ z X ς

−+µ= − ) our goal is to 
takeback the initial problem to a problem on 

2 3L (IR ) ⊕ 2 3L (IR ) ⊕ 2 3L (IR ) . 
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Reduced Feshbach operator: To reduce the Feshbach 
operator in a matricial operator, we input: 

P P X (x)Pς ς ς ς ς
µ µ µ µ µΦ = −  (13)  

Fς
µ = j, k, 1 j,k 3Y

( (. (x)) (x) )ς
µ µ µ ≤ ≤Φ ω ω  (14) 

and  

1, (z)ς
µΦ = 1, 1, 1 j,k 3( (. (x)) (x) )ς

µ µ µ ≤ ≤Φ ω ω  (15) 

 The following proposition give us the estimation of 
the resolvent of the operator (15). 
 
Proposition 2.5: For z ∈C, z  small enough, µ ∈C,| µ | 

small enough, the operate or 1( (z) z)ς
µΦ − is bijective for 

2 3(IR )Η to 2 3L (IR ) . Its inverse is extended for 
mH in m jH +   
mH  = m 2 n 2 p

xH (L (IR , L (IR ), m∀ ∈ Z and verify for 

{ }j 1, 2,3=  , h>0 small enough: 

m m j

1
1, jL(H ,H )

C(m)( (z) z)
h (Im )+

ς −
µΦ − ≤

µ
 

 To prove this proposition, we first use a lemma 
in[3], to prove the following lemma: 
 
Lemma 2.6: m∀ ∈C Z, the operator X (z)ς

µ  is 
uniformely is extensible in a bounded operator on 

m 2 n 2 p
xH (L (IR ), L (IR )), m∀ ∈  Z , for h 0, z〉 ∈ Z and µ  

∈Z small enough and 

m m 2L(H ,H )
X +

ς
µ = O ( 2h− ) 

See [3] for the proof. 
Lemma 2.7: We assume that 

2 m m j

1
1, L (H ,H )

(P z) +

ς −
µ − =  O ( j

1
h Imµ

) 

for h 0, z〉 ∈ C and µ  ∈C small enough, where 

2
1, x 12

2
x 1, 1,2 Y

2
x 1, 1, Y

1P h (x v(x))
(1 )

1h (. (x) (x)
(1 )

h R (x, D )(. (x) (x)

ς
µ

µ µ

µ µ µ

= − ∆ + λ + µ −
+ µ

∆ ω ω −
+ µ

− ω ω

 

xR (x, D )µ , is an differiential operator of coefficients 

C∞ . 
 
Proof of lemma 2.7: Using (H5) we have: 

12
1

1 ImIm (x v(x))
C(1 )

µ
λ + µ ≤ −

+ µ
, so  

2 n

2 1 2
x 12

L(L (IR ))

C1( h (x v(x)) z)
Im(1 )

−− ∆ + λ + µ − ≤
µ+ µ

 

 and we easily deduce with a simple computation that 

2 m m j

1
1, L (H ,H )

(P z) +

ς −
µ − =  O( j

1
h Imµ

)   

 
Proof of the proposition 2.5: From (13) and (15), we 
have 1, 1, 1,(P P X (z)P (. (x) (x)ς ς ς ς ς

µ µ µ µ µ µ µΦ = − ω ω , then 

we subtitue Pς
µ  from (7) with 

1
xU U−

µ µ∆ = x x2

1 R (x,D )
(1 ) µ∆ +

+ µ
, where xR (x,D )µ  

is a second order differential operator with 
C∞ coefficients in x  with compact support, analytic 
in µ and whose derivative of any kind compared to x are 
O( µ ): and we put 

x x 1, 1,4 Y

1 X (. (x)), (x)
(1 )

ς ς
µ µ µ µΛ = ∆ ∆ ω ω

+ µ
+ 

+ x x x x
2

1, 1, Y

(R (x,D )X X R (x,D ))1
(1 ) (. (x)), (x)

ς ς
µ µ µ µ

µ µ

∆ + ∆

+ µ ω ω
.  

Using the fact that  

1, 1, 1,ˆ ˆ ˆ0, X X , , 1ς ς
µ µ µ µ µ µ µ µπ ω = = π π ω ω = , we have: 

1, (z)ς
µΦ = 4

1,P hς ς
µ µ− Λ

�
, where 

2
1, x 12

x 1, 1,2 Y

2
x 1, 1, Y

1P h (x v(x))
(1 )

1 (. (x) (x)
(1 )

h R (x, D )(. (x) (x)

ς
µ

µ µ

µ µ µ

= − ∆ + λ + µ
+ µ

− ∆ ω ω
+ µ

− ω ω

�

 

 
We have x xR (x,D ) bounded, so ς

µΛ  is O( 2h ) from mH  

to mH  and we also see from (H5) and lemma2.6 that: 

for h small enough, 2)

1
1, L(L )

(P z)ς −
µ − =  O( 1

Imµ
), then, 

we deduce 
 

2 m m j

1
1, L (H ,H )

(P z)
+

ς −
µ − =

�
O(

j

1
h Imµ

). Finally we have: 

m m j

1
1, L(H ,H )

( (z) z) +

ς −
µΦ − =O(

j

1
h Imµ

)  

 
Proof of theorems 
Proof of theorem 2.1: Proposition3.5 permits us to 
reduce the Feshbach operator Fς

µ in a matricial operator 
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2x2, ς
µΑ  , where 

{ }j
i, 1, 1, Y i, j 2,3

(. ) (. ),ς ς ς
µ µ µ µ µ µ

=
Α = Φ ω + Τ ω ω   

Now, we consider a solution 
1 2 3α = α ⊕ α ⊕ α ∈ 2 n 2 n 2 nL (IR ) L (IR ) L (IR )⊕ ⊕ of the 

equation: F (z) zς
µ α = α   

The operators jς
µΤ are defined by: 

{ }j 1 1
j j j, j, Y j 2,3

(z) ( (z) z) ( ,ς ς − ς
µ µ µ µ µ

=
Τ α = − Φ − Φ α ω ω , 

hence, the spectral study of the Feshbach Fς
µ  becomes 

the study of the operator ς
µΑ  on 2 n 2 nL (IR ) L (IR )⊕  by: 

{ }1 1
1 2 2, 2, 2 3, 3,Y Y

( (z) z) ( , ( ,ς − ς ς
µ µ µ µ µ µ µα = − Φ − = Φ α ω ω + Φ α ω ω  

Then the eigenvalues equation of F (z)ς
µ becomes: 

2 3
1 2 3

2 3 2 3

( (z) (z))( )
(z)( ) z( )

ς ς
µ µ

ς
µ

α = Τ ⊕ Τ α ⊕ α
 Α α ⊕ α = α ⊕ α

  

So we establish easily 
2

x2

1h R
(1 )

ς ς ς
µ µ µΑ = − ∆ + Μ +

+ µ
� , where ς

µΜ  is a 

diagonal matrix outside 
 of 

02K δ and it equal to: 

{ }i, j, Y i, j 2,3

2

3

Q (x)(. )

(x v(x)) 0
0 (x v(x))

ς ς
µ µ µ µ

=
Μ = ω ω

λ + µ 
=  λ + µ 

 

where 2 (x v(x))λ + µ , 3 (x v(x))λ + µ  are the 
eigenvalues of { }Q , x IR 0ς

µ ∀ ∈ −  
The remainder 

m m m 1 m 1L(H H ,H H
R (z,h)

− −

ς
µ ⊕ ⊕

=� O 2(h ) , m∀ ∈Z uniformly 

for h 0〉 and z ∈C closed to 0λ  
At the end we prove the second result. To describe it, 
we apply a technical of Briet Combs Duclos[13]. 
Let i 0 0J C ( x x ), ( 0∞∈ − ≤ δ δ〉 fixed small enough and 

0x a point of maximum) and n
eJ C (IR )∞∈  such 

that: iJ 1=  near 0x and 2 2
i eJ J 1+ =  

J is an identification mapping such that: 
 

2 n 2 2 n
e

i e

J : L (IR ) L (sup pJ ) L (IR )
J(u w) J u J w

⊕ →
⊕ = +

 

It is easily proved that: 2 nL (IR )
JJ 1∗ =  

 Now, if we note PΩ
µ  the Dirichlet realisation of Pς

µ on 

Ω , on Ω , x v(x)= and the distorsion x v(x) xeθ+ µ = , 

is an analytic dilatation (whose Dirichlet realisation is 
the operator Hς

µ obtained for 1ς = )). We set  

 
i 2 2 " 2

2 0 0 0

2 2 2
2

H h e (x )(x x ), (x x ) e

H P h e (xe )

− θ θ
θ

− θ θ
θ θ

= − ∆ + λ − −

= = − ∆ + λ
 

2
e

e
L (sup pJ )

H Hθ θ= , with Dirichlet conditions on 

esup pJ∂  
 
Remark 3.1: Since 

e

2
x sup pJ 2inf Ree (xe ) 0θ θ
∈ λ 〉 , 

e 1(H z)−
θ −  is uniformly bounded for z  and h small 

enough.  
Before we prove the second result, we introduce the 
following lemma 
Lemma 3.2: For all [ ]

2

p i 1

L(L )
p 0,1 , x (H z)−

θ∈ − =  

O
p 1
2 2(h )

−
, uniformly for z outside of (x)γ  

[ ] [ ]0 0 0 0 0 0z x ,C h x i x ,C h x ,∈ −ε − − + −ε − −  
Im 0θ ≥ , and h small enough. 
 

Proof of lemma 3.2: If we put 0x x
y

h
−

= , we can 

write iHθ : 

iHθ = 0
ihH  (16) 

where 0 2 1
i y 0

1H e "(x )y, y h ( )
2

− θ −= − ∆ + λ + ℑ ε ,  

with 2 2
0 0

1( ) (1 (x x )e (x x ) e )
2

θ θℑ ε = ε + − + −  

It is enough to show that, for i , 0θ = α α ≥ , small 
enough. We have from (16) 
 

p 1
p 2i 1 0 1 12 2x (H z) h y (H zh )

−− − −
θ θ− = −  (17) 

and the eigenvalues of the operator 0
iH  in  

 
] ]0 0,C x i−∞ − + IR are 1 Ne ,..., e . 
 
We distinguish three cases for p 0= . 
1/ If [ ] [ ]0 0 0 0 0 0z Ch x ,C h x i Ch x ,C h x∈ − − − + − − − : 

we deduce for all C�0, 0 1 1(H zh )− −
θ −  is bounded on L² 

uniformly for z outside the jγ , so (17) is verified.  

2/ If [ ] [ ]0 0 0 0 0z x ,C h x i x ,Ch x∈ −ε − − + −ε − −  : then 

for n
0u C (IR )∞∈ : 
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2 0 4
0

1 3 2 4
0 0

1e H y "(x )y, y e
2

1h (z (1 (x x )e (x x ) e )
2

θ θ
θ

− θ θ

= −∆ + λ +

+ ε + − + −
  

and 
2 0 1

0

1
21 2

1Im e (H zh )u,u sin 4 "(x )y, y u,u
2

h (zsin 2 Im z cos 2 h (ysin 3 z cos 4 ) u

θ −
θ

−−

− = α λ −

 
− α + α + α + α 

 

 

 We take particularly α small enough and C large 
enough such that: 0Ccos 2 C sin 2α〉 α  
At least we obtained 

1
22 0 1 2

0e (H zh )u, u h (x sin 2 ysin 3 ) u
−θ −

θ − ≥ α + α so 

the result is also verified. It remain the case: 
3/ If [ ] [ ]0 0 0 0 0z x , Ch x i Ch x ,C h x∈ −ε − − − + − − − : 

2 0 1

1
2

Re e (H zh )u, u

h (Re z cos 4 Im zsin 2 ycos3 )

θ −
θ

−

−

≥ α − α + α
, 

we deduce the estimation when 0C C〉 , α small enough 
and C large enough such that cos 4 sin 2α〉 α  
Now we consider the case when p 0≠ , 

2 0 1 4
0

1 2 1 2

1e (H zh ) e "(x )y, y
2

zh e h e ( )

θ − θ
θ

− θ − θ

− = −∆ + λ

− + ℑ ε
 and 

2
2

4 1 2 1 2
0

2
0 L

L

1 e "(x )y, y zh e h e ( )
2

1 1cos 4 "(x )y, y u y u
2 C

θ − θ − θ−∆ + λ − + ℑ ε

≥ α λ ≥
 

if we put 0 1 1u (H zh ) v− −
θ= −  the result is deduced from 

a priori standard estimation. 
 
Proof of theorem 1.2: We put d i eH H Hθ θ θ= ⊕  and 

dH J JHθ θΠ = − , for z outside the spectrum of Hθ , with 
a simple calculation we obtain:  

1 d 1 d 1 1(H z) J(H z) J (1 (H z) J )− − ∗ − ∗ −
θ θ θ− = − + Π −  (18) 

Using the lemma3.2 (with p 2= ) and the lemma3.1of 
Briet Combs Duclos[13], we can easily prove that: 1∃β〈  
such that 

d 1(H z) J− ∗
θΠ − ≤ β  (19) 

Using the lemma3.2 and (19),we obtain from (18) 
1 d 1(H z) C (H z)− −

θ θ− ≤ − , finally the result is 
obtained from lemma3.2 and remark3.1 
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