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A Priori Estimation of the Resolvent on Approximation of Born-Oppenheimer
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Abstract: In this study, we estimate the resolvent of the two bodies Shrodinger operator perturbed by
a potential of Coulombian type on Hilbert space when h tends to zero. Using the Feschbach method,
we first distorted it and then reduced it to a diagonal matrix. We considered a case where two energy
levels cross in the classical forbidden region. Under the assumption that the second energy level admits
a non degenerate point well and virial conditions on the others levels, a good estimate of the resolvent

were observed.
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INTRODUCTION
The Born-Oppenheimer approximation technical'
has instigated many works one can find in bibliography
the recent papers like!*?!.

It consists to study the behaviour of a many body
systems, in the limit of small parameter h as the
particles masses (masses of nuclei) tends to infinity;
(see the references therein for more information), we
can describe it with a Hamiltonian of type
P =-h’A —A +V(x,y)on’(IR] x IR}?), when h

— 0 and V denote the interaction potentials between the
nuclei of the molecule and the nuclei electrons.
The idea is to replace the operator
Q(x) =-A, +V(x,y) (in, I*(IR}") X fixed) by the
so-called electronic levels which be a family of its
discrete eigenvalues: A,(X),A,(X),A;(X),... and to
study the operators P which can be approximativelly
given by
—h’A +24,(x), on (IR} ).

Martinez and Messirdi's works, are about spectral
proprieties of P near the energy level E, such that inf Ai

< Eo. Martinez in'®,, studies the case where A,(x) admlts
a nondegenerate strlct minimum at some energy level
Ay, the eigenvalues of P nearA,admits a complete
asymptotic expansion in half-powers of /.

Messerdi and Martinez!”! considers the case where
A\, admits a minimum, such appears resonances for P.
He gives an estimation of the resolvent of O(h™") at the
neighbourhood of 0.

In this study we try to generalize this work to
approximate the resolvent of P where V is a potential of
Coulombian type at the neighbourhood of a point

X, #0.
In fact, we estimate the resolvent of the operator

F; ,given by a reduction of the distorted operator P, of
P modified by a truncature ¢!®; and we try to have a

good evaluation of the order of O(h™"?).
We apply the Feshbach method to study the

distorted operator P; which allows us to goback to the

initial problem and we put the virial conditions on
A and A;.

Hypothesis and results
Hypothesis: Let the operator

P =-h’A_ -A, +V(x,y) 1)
on L’(IR} x IR”), when & tends to 0. V(xy)
=V(X,¥,,Y,, Y35y, ) i8S an interaction potential of

Coulombian type

V(x,y) = Z[

R

pEETe =l

where o,a;,a, are real constants, a >0 (afis the
charges of the nuclei).

It is well known that P with domain H*(IR} x IR}")
is essentially self-adjoint on

L(IR] x IR?).
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For x#0, Q(x)=-A,+V(x,y) with domain

2 3 . . . . 2 3
H”(IR}") is essentielly self-adjoint on L"(IR")

Remark 1.1: The domain of Q(x) is independent of x .

To describe our main results we introduce the following
assumptions:

(H1) vx e IR3"\{0}, # 04 (Q(x)) 23
Let A, an energy level such that: A, m[—oo,ko[gl

denoting A,(x),A,(x),A;(x) the first three eigenvalues
of Q(x).

(H2) we assume that the first tree eigenvaluesi,

Vje{1,2,3} are simple at infinity:
. 1
x|>C= Lt ()=, ()] 2 < 3)

and
lim dist(h;(x) = &, N {2, (), (), 45 ()]0
}

jke{l,2,3

this means

35,)0,vx#0,and Ae cs(Q(x))\{kl(x),k2 (x),%(x)} ,
we have

inf [ =2, (x)] = 5, 4)

1<j<3

[9]

Remarkl.2: By Reed-Simon’ results'”, the first

eigenvalue is automatically simple.
(H3) we suppose that Jc¢)0 such that

Vx eIR)\{0}, &, <c+=, je{l,2,3) )
i X

Remark 1.3: This hypothesis is still true for a,(0;
A, also verifies (H3) and we can see with a simple
computation that there exists ¢, such that for all x#0
A (X) 2 —¢, + (6)

x|
(H4) We are in the situation where A,(x)admits a
nondegenerate strict minimum; creating a potential well

vy = inf 2,(x), v,(h(x)

xeIR-{0}

of the shape I,
}“;l (vo) =1, A, (x))0, l;(ro»o

35,)0 such that

vx e R*\ {0} , A (X)+6,(min {kz (x), A5 (x)}

we note by

K:{x eR,kz(X):k3(X)}

and for 5)0, we also note by:
K; = {x e IR, dist(x,K) < 8}

Let &,)9,)0 such that

* K, K, is simply connex

* K, NU=Y

* The connex composites of IR\Kj are simply

connex
(HS) Virial Conditions
It exists d)0 such that for je {2,3},

The resonances of P are obtained by an analytic
distorsion introduced by Hunziker™ and so they are
defined as complex numbers p; (j=1,...,N;) such that

for all ¢€)0 Imp)0
P; € Oy (PL) 1), We denote de set of the resonances of
Pby: o(P)= O e (P,)

Where P, is obtained by the analytic distorsion

and p sufficiently small,

N\
lmu)O,M(s

satisfying: P, :UMP“U:. So, P, can be extended to

small enough complex values of p as an analytic family

of type!”).

The analytic distorsion U, forpsmall enough

associated to v is defined on Cj (IR} x IR}") by

1/2

U, 0(x,y) = (x +1v(X), ¥, +uv(y,)s-..r ¥, +uv(y, ||

» .
where j = j(x, y) = det(1 + uDv(x)] [ det(1+uD(y,)) 1s the
j=1
Jacobien of the transformation
Y, (X,y) > (X +pv(x),y, +uv(x),...,y, +uv(x)) and

v e C*(R?) is a vector field satisfying :
. 2

3N)0, large enough such that: V() =0, sifx| < N

v(X) =X, si |x| >1,—¢'

(&"0, small enough, |r0 |> % +¢g').

Remark 1.4: The distorsion is close to the potential

well.
We localise our operator near the well v, by

introducing a truncate function ¢ € C”(IR”) satisfying:
. 2
=1,si x| >—
c=Lsifx| T
. 3
=0, si x| <—
c=0,si [ <5

fixing o, )v, , we set
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Qi (x)=-UA U, +c(x)V, (x,y) +(1-c(x))a,
V, (X, y) = (X +pv(X),y, +pv(X),...,y, + uv(x))
We also denote:

2 -1
Pﬁ =-h UHAXU“ + QE (x)
With domain H*(IR?) .

(7

Remark1.5: Like in 1'%

coincide up to exponentially small error terms. For this
we will study P? instead of P,.

RESULTS

, nearv,, o(P ) and o(P})

Here we write the results of our works as
following:

Theorem 1.6: Under assumptions (H1) to (H5) and for
neC,| p.| and & enough, we  have

where Fj is the Feshbach reduced operator of P;

verifying

2

small

h—l/2

is

Uy
satisfying: "Rﬁ”

AJ+M; +R: and the error R

_ 2
L(H" ®H" , H™ ®H™! =0(h")
We need for our proof the main important theorem for
the operator Pz‘;!u which is the distorsion of the operator
leH :
P; =—-h*U,A U +&,(x+pv(x)) (8)

at the neighbourhood of point x, of the well such that
(Ve"0 ,small enough, ||x0|>r0 +¢'), the distorsion P,

is in fact a dilatation of angle 0 such that e’ = (1+p).
We denote itby P, 1 and is defined by

=—h’A_+1,(xe") 9)

Let e;,j=1,...,N, be the eigenvalues of the operator
_d 1 o cirel
Py = e —Ay(ro)(r—1,)*)andy;, complex circles

centred at e S h.

Theorem 1.7: Under assumptions (H1)- (HS), for
96C,|6| and /2 small enough and for (Ve")0,small

enough, ||x0|)r0+£'), the resolvent of the distorted

operator defined by (9) satisfies the estimate

3(2): 70-76, 2007
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uniformly for

(Poa=2) |=0(n).

ze[-e'-x,,C,h—x ] outside of the y, .

Before we prove this theorem, we introduce the so-
called Grushin problem associated to the distorted
operator P, .

The reduced Feshbach operator: Now, we try to
reduce the operator P; by the Feshbach method into a

2

matricial operator of type: — AT+ M, + f{ﬁ

where M is the matrix of eigenvalues of Q; and liﬁ

is the remainder of order O(h?)

The study of the distorted operator P;: We begin

our study by the operator Q; which is defined by:

Q; = U, Q(x+uv(x)U,’ (10)
For x # 0, we denote also

Q.(x)=Q,(x)- d % x=n,-2 jef1,23)

‘X + pv(x)‘ ‘ ‘

Let C (x) be a family of continuous closed simple
loop of C enclosing (x), j€{1,2,3} and having the
rest of O (Q,(x)) in its exterior. The gap condition (4)
permits us to assume that:

min dist(7(0,0(Q, (x) 2 2 ()

Using the relation (6) and (H3), we can take C (x)

compact in a set of C. So, we deduce from (11) the
following result!].

Lemma 2.1

1.Vik e (1,..p},  jzk PeIN® . the
t (Q00-7)", ——(Qu0-2)"

operators — X)—Z , T X)—2z

B yi=n

and 0° (Qo(x)—z)i1 are uniformly bounded on
2 3 3

L'(IRY),xelR’, ze C(x)

2. If pe small enough, then for xeIR’, ze the

operator (Q“(x)—z)i1 exists and satisfies uniformly

(Q.(0-2) -(Qy()~2) =Olu].
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Now we define for peC small enough, the spectral

projector associated to Qu and the interior of C (x).

1 ~ O B
T, (x)= Ev[v(x)(z -Q,(x))" and rgm, =1

This projector permits us to construct the Grushin
problem associated to the operator P; .

Problem of Grushin associated with the operator
P:: We begin this section by the result which is

(lemmal-1 of!' and proposition 5-1 ofi”.
Proposition 2.2: Assume (H1), (1.7), (1.9), (1,10) hold,
then for peC, ze C small enough, there exist N
functions ®, ,(x,y) € C°(IR’,H*(IR™™)), (k = 1,2,3),
depending analytically on p €, such that

L <0)JF“ |(Dk’“>Lé(IR3") = Sj’k

ii. For |x > %,(mk,“)1Sk£3 form a basis of Ranm, (x)

ii. Ecm[{‘x‘%}’ﬂz(mzwj

iv. For |x| large enough, o, (Xx)(x) is an eigen
function of Q,(x) associated with A, (x + po(x))

We first introduce the family {wl’u,wz,u,ww}of
Rann (x) depending analytically on u for u small
normalized  in L*(IR}") by

enough and

<('0i,p (x), O (x)>

two following operators

, .. =0, and then we associate the
L’ (IR}) by

3
R, : @ L(RY)—L*(IR™)
1

3
u =(u,,u,,u;)—> R;u' = Z:u;cokqu (x)
k=1
3
R =(R)) :*(IR*)— (-PLZ (IR%)
ot
u="(w o), (wop), (wo),

where ‘A denote the transposed of the operator A,
(-..), the inner product on L*(IR**)and <"(°HJ>Y is the

adjoin of the operator L’(IR") > v vu, ; e *(IR"*")

u,, =u(x+pv(x)) and we put &, =1-m, , where

m, = <u’(’)ﬁ>1>y o, +<u,o)ﬁ‘1 >Y o,, +<u,wﬁ‘3>Y ©,;-
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As Piand o,,,k=1,2,3 have analytic extensions
with u, the Grushin problem is then defined, for Z€C,

Pi-z
(ho,), 0 0 0
(hey), 000

(boy), 0 0 0

(12)

Whlch sets on HZ(IR3P)® (éLZ (IRB)) to LZ(IRBp) @ <éH2(le))
1 1

The following proposition, gives the inverse of the
operator (12) by using a result of Grushin problem. This
is proved in**.

PQ

Proposition 2.3: vVzeC close enough tod,, P; is

invertible and we write  its  inverse:

pe [ X; XJ
'8 )
Xio X

With X5 (z) =(P"— z)" T, (x) where (P%— z)'is the
bounded inverse of the restriction of =, (P;~-z) to
{u e H*(IR*™P  ftu = u} )

X (@) = (0, = X0 (2P (0 ))icyss s

X, (@)= ((0-Pi@X)0o),, ) and

X =[5, (BB 00B o000 )

can

Remark 2.4
1. For zeC,

zeo(P;)if and only if Elu,|p| small enough and
Imp)0, that zeo, (X _,(2)
X (@ g H?*(IR*) - L’(IR%), is a pseudo-

close enough to X,, we have

such where

differential operator of principal symbol defined by
the matrix:

B(x,&,2) = 21— (@, ()| (t,() + Qs (o, , () . o
and t, (&) is the principal symbol of —h*U A U
2.

)lsj,kSS

z is a resonance of the operator P;only and only
if, Jn e C, |u| small enough Imp)0, such that:

0oy (X, ,) or 0oy (F;, ) where F;is the

M=+
Feshbach operator (F; =z—X ;) our goal is to
takeback the initial problem to a problem on
L’(IR") ® (IR*) ® L*(IRY).
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Reduced Feshbach operator: To reduce the Feshbach
operator in a matricial operator, we input:

®F = PS — PEXE (x)PE (13)
Fs = (05 (0, ()| 0 () e (14)
and

D5, (2) = (D5 (0, ()] 05 (%)) s (15)

The following proposition give us the estimation of
the resolvent of the operator (15).

Proposition 2.5: For z e C, 7| small enough, peC,|p|
small enough, the operate or (<I) (z)—z) is bijective for
H*(IR*)to *(IR*) . Its
H"inH™"
H™ = H"(U’(IR!,L’(IR®), Vme Z and verify for
j={1,2,3} , h>0 small enough:

C(m)
~ hi(imp)

To prove this proposition, we first use a lemma
n®), to prove the following lemma:

inverse 1s extended for

@@ -2

L(H™ 1)

Lemma 2.6:9VmeZ, the Xi(z) s
uniformely is extensible in a bounded operator on
H™(L’(IR!),L’(IR?)), Vme Z , forh)0,zeZ andp
€ Z small enough and

=0 (h?)

operator

S
"X“ "L(H'",H"‘*Z)
See ! for the proof.
Lemma 2.7: We assume that

Jees, -2 = 0()
u

L (H™, H™) hiIm
for h)0, ze C and p e C small enough, where

Plg,u =-h’ a +1H)2 A+ A (X +pv(x) -

, 1
h m(AX (0, ()]0 (), -
—h? (R, (x,D,)(0,, (x)|@,:(x)),
R, (x,D,),
c”.

is an differiential operator of coefficients

Proof of lemma 2.7: Using (HS5) we have:

1 Imp
Im—A, (X +pv(x)) <———, so
REE | (X + pv(x)) C.

‘ (-h? ! A+ A (X +pv(x)) - z)" < ACH
(1) ey MR
and we easily deduce with a simple computation that
1
s _
"(P1 H z) ||L (H™ H™) = O( h Imp )

Proof of the proposition 2.5: From (13) and (15), we
have @} = <(Pug -PIXC ()P (o, , (x)| O (x)> , then
we subtitue P; from (7) with

UMAXU;] -
(1+w)

is a second order differential operator with

C” coefficients in* with compact support, analytic

in pand whose derivative of any kind compared to x are

A +R, (X,D,), where R (x,D,)

o( |p| ): and we put

. 1

n (1+ )4

L1 J(R(DIXEA +AX:R,(x,D,))
1+ \ (@, (%)), 0,5 (%) N

Using the fact that

o, =0, X =1 X7,

4
—-h"A7,
1

Pl =—h’——— A+ (x +pv(x))
’ (+p)?

(A (o, ()] (),

<AXXSAX ('(’Ol.u (X))’ O (X)>Y *

=<C°1,H=C°1g>:1a we have:

@7 (2)= 1311 where

1
(+w?
—h* (R, (x, D, )(0,, ()] 05 (X)),

We have R, (x,D, ) bounded, so A% is O(h*) from H"

to H™ and we also see from (HS) and 1emma2 6 that:

for h small enough, ||(P7, —2) "L(L ; (—) then,
we deduce
s
|, -2 e o, = (_m) Finally we have:
1
@%@ =27, e =07
Proof of theorems

Proof of theorem 2.1: Proposition3.5 permits us to
reduce the Feshbach operator F; in a matricial operator
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2x2, A} , where
Az ={(@p (0, )+ T o) 00), )
Now, we consider a solution

a=o,®a,®a, e P(IR")OL(IR")®L’(IR") of the
equation: F;(z)a = za
The by:

operators Tff are defined

~(@"(2)-2)" {(@ﬁ(a jmj,“,mj,ﬁ%}
hence, the spectral study of the Feshbach F; becomes
the study of the operator A5 on L*(IR")®L*(IR") by:
o, =~(@F (2)-2)" = {5 (0,0, 0,), + <®;(a2w3‘u,m3j>y}
Then the eigenvalues equation of F;(z)becomes:

o, = (T (2) DTy (2))(ar, D ary)
A,ﬁ (2)(o, ®o,) =2(a, Da,)

So we establish easily

Ty (2)a; =

b
j=2,3

=_ is a

1 _
¢ =—h? A +M; +R:, where M
u (1+M) H K un

diagonal matrix outside
of K,; and it equal to:

M; ={(Q o, )|055),
A, (x4 pv(x)) 0

- ( 0 A (x+ uv(x))j

where A, (X +pv(x)), A;(x+pv(x)) are the
eigenvalues of Q5, Vx € IR —{0}

The remainder

"Rfl ( h)"L(H’"@H‘",H"‘" ®H™"
forh)0and z e C closed to A,

At the end we prove the second result. To describe it,
we apply a technical of Briet Combs Duclos!"*).

Let J. €Cy (|x—x0| <0),(0)0 fixed small enough and

i,j=2.3

=0 (h*), Vm e Z uniformly

X,a point of maximum) and J, €C”(IR") such
that:J, =1 nearx,and J +J2 =1

J is an identification mapping such that:

J:I(IR")®L*(suppJ,) > L*(IR")
Judw)=Ju+J w
It is easily proved that: JJ* = L o)

Now, if we note P:Z the Dirichlet realisation of P; on

Q,on Q, x =v(x)and the distorsion x + puv(x) = xe’,

75

is an analytic dilatation (whose Dirichlet realisation is
the operator H;, obtained forg =1)). We set

H) =-h*¢’A+ <k2 (X)X —X,), (X=X, )>32e
H, =P, =-h’e A+, (xe")

Hy =H, L, > With  Dirichlet — conditions — on
Osuppl,
Remark 3.1:  Since inf_, , Ree™2,(xe"))0,

(H; —2z)"" is uniformly bounded for |z| and 4 small

enough.
Before we prove the second result, we introduce the
following lemma

Lemma 3.2: For allpe[O,l],H|x|p (H —z)"

L(1%)
p 1
O(h? ?2), uniformly for z outside of y(x)
ze [—s—xo,Coh—x0]+i[—8—XO,COh—XO],
Im6 >0, and ~ small enough.
-X
Proof of lemma 3.2: If we put y=—=2%, we can
put 'y N
write HY :
H’ =hH! (16)
where Hf =—e A, +%(x "(x,)y,y)+h'3(e),

with 3(e) =e(1+(x —x,)e’ +%(x -x,)’e”")

It is enough to show that, for 6 =ia, o >0, small
enough. We have from (16)

1
x| (H)-2)" = he ly|” (Hf —zh™) (17)

and the eigenvalues of the operator H{ in
]-.Cy —x,]+iIR are ¢,,...,ey.

We distinguish three cases forp=0.

1/ Ifze[-Ch-x,,Csh—x,]+i[-Ch-x,,Cih—x,] :
we deduce for all C[10, (H) —zh™")™" is bounded on L
uniformly for z outside the v, , so (17) is verified.

2/ If ze[-e-x,,Coh—x,]+i[-e—x,,Ch—x,] : then
for ue C;(IR"):
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1
e’H) = —Ay+5<k"(x0)y, y) e' +

h'(z+e(l+(x —xo)e39 +%(x -x,) )
and

Im<ezo (Hy - zh’l)u,u> = %Sin 40c<<7»"(x0)y, y>u,u> -

1
—{hl (zsin2a +Imzcos2a+h 2(ysin3o +zcos 40‘)}"‘1"2

We take particularly o small enough and C large
enough such that: Ccos2a)C ,sin2a

At least we obtained

Keze (Hy —zh™")u, u>‘ > h% (X, sin 20+ ysin 3a) ||u||2 S0
the result is also verified. It remain the case:

3/1fze [—s—xo,—Ch—xo]+i[—Ch—xO,C0h—xO] :
Re<eze(Hg -~ zh’l)u,u>

1 B
>h 2(Rezcos4a —Imzsin 2o + ycos3a)

we deduce the estimation when C)C, a small enough
and C large enough such that cos4a)sin2a
Now we consider the case when p#0,

1
eZS HO_ h—l :_A+_e49 7\‘11 S
(Hy—zh™) ) < (XO)YY> and
—zh'e® +h™'e*3(e)

H—A +%e“° (A"(xy)y,y)—zh7'e* +h7'e®T(e)

1
=gl

if we put u=(Hy —zh™")"'v the result is deduced from

>

%cos 4a <X "(X,)Y- y) u

a priori standard estimation.

Proof of theorem 1.2: We put Hj=H, ®H; and

I1=H,J -JH;, for z outside the spectrum of H, , with
a simple calculation we obtain:

(Hy-2)"' =JHy-2)" " (1+I(H; -2)'T)"  (18)
Using the lemma3.2 (with p=2) and the lemma3.1of

Briet Combs Duclos!"), we can easily prove that: 3p(1

such that

[ -2y 5| < (19)
Using the lemma3.2 and (19),we obtain from (18)

"(He —z)’1|| < C"(Hg —z)’1||, finally the result is

obtained from lemma3.2 and remark3.1
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