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Comparison of Estimators of Dispersion Matrix
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Abstract: Based on a sample, we considered the problem of estimating the dispersion matrix of a
multivariate normal distribution with variance covariance matrix >.. Empirical Bayes estimators and
Haff estimators with their conditions, two proposed estimators of Y., were the best affine equivariant
estimators of dispersion matrix, which we compared them by three different loss functions.
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INTRODUCTION and £?, Haff”! obtained the following conditions on the
estimators of the form:
Let Xi, ... Xy be i.i.d. Ny(y, 2), where p and

2pxp are both unknown (n €RP and ¥ p.d.). We reduce
the data set by sufficiency and concentrate only on

()7(78)9 i:ﬁzilxiNNp(p’#z)’
N-1. The

where
S= ZL(Xi -X)(X;-X)' ~W,(Z,n) and n =

unbiased estimator of Y. is ¥, =1S. We evaluate the

estimators by their functions or average loss functions.
The loss functions for estimating . are:

LED)=tr(E" -1 ),
L,E.2)=tr(EX ")~ In(| EX7" ) - p,
Ly(Z,2) =exp(atrCZ ' 1)) —atr(EX ' -1 ) -1, a#0

By the group of affine transformation
(X,S) > (AX +b,ASA") for nonsingular A, be beR”,
the best affine equivariant estimators of 2, under L, L,
and L; are respectively:

Y=gS=cs,
2 =18=c},
Y=L(l-¢")S=c8S

Empirical Bayes alternatives are derived which
dominate all scalar multiples of the unbiased estimator.
Empirical Bayes estimators have the form
S pp =b(S+ut(u)C) with 0<b<iu= “S‘,lc,t(,)

nonincreasing and C an arbitrary positive definite
matrix. Note that the problem (2,3,L),i= 1,2, 3 is

invariant, so we can assume that C = I. To improved 3
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£ =8 1g©s)C, i=1,2

With g(S) = cut(u) 1 =
respectively as:

1,2, under L,, L,

e 0O<t< 2(p—1) , tis a constant
N-—p+2
e t(u) is an absolutely continuous and nonincreasing
function, 0<t< @

Abbasil'! derived some conditions for which £* is
dominated by i; under loss Ls. Pal and Elfessi’!

proposed that in the expression of S, used the James-
Stein structure instead of X . They start with:

3= L XX
’ (X's1X)

As a new estimator of Y. Motivated by, when
p>2, one can also use X to get improvements but such
typical improved estimators have one undesirable
property, they are nonanalytic and hence inadmissible.
This estimator is scale equivariant and uses both X and

S. For p>2, if 0<c< 2p=D) ii,l is

S Np)(N-pr2) > then

and if

is uniformly better than 52

uniformly better than ' under loss L,

p-1 &2

O<e= NN’ =
under loss L,.

Tsukuma and Konno'™ considered the problem of

estimating the precision matrix of a multivariate normal

distribution model with respect to a quadratic loss
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function. Furthermore, a numerical study was
undertaken to compare the properties of a collection of
alternatives to the '"unbiased" estimator of the
discriminate coefficients.

In this research, under some assumptions, the

comparison of 2} and 2!, fori=1,2,3 is considered.

MATERIALS AND METHODS

It is obvious that the role of c; in changing of the
amount of risk function is essential. With determining
the boundaries for ¢;, two groups of estimators are
compared under three loss functions.

RESULTS AND DISCUSSION

Comparison under L;: It is well known that, given X,
X'z X 2 . . _ .
Tsix ~ Xn-p which is free from X So, the risk

A

1
function for ZCJ under L, is:

R,(Z,5)=R,E"Z)+*(N-p)(N-p+2)
(N-p)(p-1)
— 2t

and the risk function for f;‘g under L, is:
R,(Z,,%)=R,E",%)+0,(Z)
Where:

2

o,(2) = E(75 2(S)tr(SZ7) - 2g(S)tr(Z ™)
+g (S)r(Z7)).

Haff®) obtained an unbiased estimator for o,(%)
and showed that:

o, (%) < (=) (2N =p)(p - )t

+(N-p+2)(N-p)t*)

for condition (I), o,(X)<0.
Now, we consider the risk difference:

RD, =R,(Z!

c,1?

2)-R,(EL.%)

2¢(N-p)(p-1)
N+p
2¢(p-1)
N+p *

(Nrp) (=Dt =(N=p+2)1"))

=’ (N-p)(N-p+2)- -y (%)

2(N-p)(c’(N-p+2)-
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So RD>0 and it implies the following theorem.

Theorem 1: Under loss function L;, the estimator i‘g

dominates 3!, if:

p-1

o t ore s 2= DIN=p+2)t

O<t< N+p (N+p)(N=p+2)

(0<c<

)

or

2(p-1)
N—p+2’

2(p—-1)—(N—p+2)t
(N+p)(N-p+2)

(0<ce<

Comparison under L,: The risk function for

under L, is:

2
c,l?

%) =R,(£%,%) +c(N—p)—In(l+cn)
>R,(2%,%)-(p-1),

R,

(since In(1+x)<x for x >0) and:

R,(21%)=R,(E%5) + a,(2)
<R,(2%,2)+E(t(u)(Etu) - (p-1))

where, o,(Z)=E(g(S)ttX ™' —In|I+1g(S)S™|). Therefore:
RD, <E(;t(w)(3t(w)—(p-D) - (p-1)c
For RD, >0, we have the following theorem.

Theorem 2: Under loss function L,, with condition (II),
-2
the Z g

0<c<+t(u)l 5oy tw) .

A

2
c,l

estimator dominates if

Comparison under L;: The risk function for %}

under loss L; with a > 0 is:

R,(2],,2) = EfexpatrE] 27 D) —atr(Z 2" - D -1}

=e "(1- 2ac3)_% a- 2ac)_¥ —ac,np

—ac(N—-p)+ap—1,

and the risk function for £ is:
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R,(2},2) = E{exp(atr(Z}2" 1) —atr(E}2 " - ) - 1}
>E{expatr(X’s” D) —atr(EZ - -1}
>e ™ (1-2ac,) * —ac;np—aB(g(S)tr ") +ap—1
=e"(l- 2ac3)7% —ac,np
trS™

—a)

—ac,E((n —p—Dt(u) + 2(ut'(u) + t(u) STy

+ap —1

Therefore:

RD, <e™((1-2ac) * —1)—ac(N—p)
+ac,E((n — p—Dt(u) + 2(ut'(u) + t(u)

S~
(rS™)?

),

. trS2 1
Since g2 =,

RD, <e™((1-2ac) * —1)—ac(N—p)
+ac,E((n — p —Dt(u) + 2(ut'(u) + t(u)))
RD; <0, if we have the following theorem.

Theorem 3: Under loss function L, if t(u) is an
absolutely continuous and nonincreasing function and:

ac(N—p)+(1-2ac,)(1-(1-2ac) ﬁ)
a(N-p)c,

0<t(u)<

A

. & . 3
then for a>0 the estimator Zz,l dominates Zg and for

. &3 . 23
a<0 the estimator Zg dominates Zc,l .
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CONCLUSION

The finding of this article suggests that with the
changing of t(u) and determining it for special cases,
there will be new characteristics for the estimator, i‘g .
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