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Abstract: Problem Statement: In this research, the author discussed the prabsssociated with the
approximation of the mixed derivative terms app@in strongly coupled linear elliptic systems by
the finite difference method over irregular domaifi® avoid the appearance of mixed derivative
terms the author introduced a reformulation for fiystem through introducing a new dependent
variable which adds one supplementary (simple)ediffitial equation to the system but does not
change its elliptic characte.pproach: The basic idea in the reformulation is the digemeration of
the Laplacian operator which has an efficient &ndifference treatmentResults. Two finite
difference formulae with symmetric appearance axiprating the first order derivatives on curved
boundaries up to O(h2) are established, that carohsidered as a generalization to the well known
central formula. Applications to the otolith memieamodel have proved the reliability and efficiency
of the present treatment in comparison with othesthmds. ConclusionsRecommendations:
Although, this treatment has increased the numbelgebraic equations approximating the system
linearly 3n instead of 2n, the overall accuracinigeased quadratically. The band width of matfix o
coefficients of the algebraic system is decreaseltlaere is no need to interpolate along the diafgon
due to the absence of mixed derivatives. The treatnis promising and other extensions are
mentioned.

Key words: strongly coupled elliptic systems, curved boundarigegular domains, finite differences,
otolith membrane

INTRODUCTION biharmonic equation on a unit square by the finite
difference is very ill-poséd. Also, there is situations
lead to over-determined systerfis.

PDEs with cross-derivative terms arise naturally
via the chain rule when an equation withoutoss-
S . . _~ derivative terms on a nonrectangular region is
f|_n|te dlfference model corr(.aspondl_ng.to a 9VeNyansformed into a rectangular solution domain. The
differential system, some times, it is better Oy ansformation can also introduce cross-derivative
reformulate the system, one way is to writt aierms and convert normal derivative boundary
corresponding first order system and other wayois t conditions to mixed oblique derivative boundary
decompose the differential operator to parts thatlee  conditiond”. Strongly coupled systems of elliptic
treated efficiently. equations have received considerable attentions in

The problem of reducing a given system ofrecent years, and various system forms have been
differential equation to a lower order one or to anproposed in the literatufe®”! and the references
equivalent equation with higher order is an oldtherein. We consider in this study a class of linea
problem. It is completely solved in ordinary difatial second order elliptic systems with only two
equations, but in partial differential equationse th independent variables x- and y-, strongly coupled

situation is different, the reduction method is not . S 9%*
: , : . through the mixed derivative terms—— and we
unique. Laplace's equation and the corresponding oxdy

Cauchy Riemann equations, the biharmonic equatiofhtroduce a new reformulation, to avoid approximgti
and the corresponding second order system are goaHe mixed derivative terms. This will reduce thentha
exampled:?. It is well known that the matrix of the width of the matrix of the algebraic system resgti
algebraic system resulting from approximating thefrom the approximation by the finite difference imzd.
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In spite of the advances in computer facilitiesl an
the extension of their capabilities there is noslad
interest in the efficient algorithms generally amd
high-order difference methods. To write an accdptab
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The irregularity of the domains associated with WhereQ is a bounded domain irRvith boundary
PDE's usually excludes the analytical solutiongidles  9Q, l; denotes the homogeneous second order
approaches for the numerical solution of elliptic yito antial operator defined by:
systems have been considered in the liter&tteDue I & op ! y:

to the ease of grid generation and the dissipative

properties of the Finite Difference Method (FDM)js I, u, =i(an %}i(q %]
the first method one tries to use. However, the FDM ox\ " ox ) dy( "~ ox
usually involves a rectangular grid system, which 9 ou ) o ( ou
makes it very difficult to model the detailed a_x( ”a_y}La_y(Qj a_yJ

topographic features of an irregular domain esgigcia
in the existence of mixed derivatives. The Finite . .
Element Method (FEM) can accommodate a more In .th's study, the aut_h(_)r considers thE_" case of
flexible grid work and has been used as an altmenat de.term|_nant constant coefn(.:lent systems which ban
solution scheme for many problems, in some problemg\lrltten in the matrix form as:

the finite element solution is not as stable asfithige

difference solution and usually requires the use oi{an 312}5_2{”}2{ by kﬁz} 9 {u}

nonphysical dissipation(as an example, the elliptic|@; &,|dx*[V b, byjoxdy|v

system corresponding to the biharmonic equdfin) c. c,]a2fu @
Furthermore, the generation of a finite elemend gri J{Cn Clz}ayz {v}:

with several thousand nodes and with elements of =%

various sizes, shapes and orientations is notvaltri )

task and you have to use one of the standard seftea O in cOMpact form as:

generate the grid as well as the associated bases. , , ,

avoid the difficulties that usually arise from titwhal o 9" \;,op_9 U+Ca_2 U=0 @)

strategies, and also to make use of the efficient 9x oxay ay
treatment in the Laplacian operator, the auth@dtin

this study to generate a Laplacian part plus a leimp Where u and v are real functions ®fy and A, B and
first order differential operator part. Accordinglye C are2x2 constant matrices. It is well known that by
avoid_ed the use of grid points_ outside_ the C_urveqneans of linear transformation of independent
domain and situated along the dlagqn.als |nc_rea$|eg variables, linear combination of equations anddme
accuracy of the over all finite difference transformation of unknown functions, the system (1)

aﬂ)r:oxmatmns |3.adc|i.|t|on tolthebstr_uctur::- of “T,SE can be reduced to the canonical form which contatns
of the corresponding linear algebraic system w most two independent parameters.

appear through the treatment. : .
The objective of this study is three fold: in first The determinant:

we generate a Laplace operator from elliptic défeial

operators strongly coupled through the mixed déxiea

term without any transformations, in the second we ] ) o
introduce  finite  difference  formulas and a IS known as the biquadratic characteristic polyrarof

corresponding difference scheme with high accuracye system (1). This system is classified according
for problems with curved domains, in the third we the nature of the roots of the biquadratic charetie

FE n)=|AE*+2B&n+Cn’| 3

applied the treatment to a realistic problem. equation
Review of elliptic systems: Let us consider the system ¢ 1)=, =8 (4)
of partial differential equations: n
n : . The system (1) is elliptic, whel(z,1)= 0, has a
DLy =F in Q, i=1--,n _ _ e _
= pair of complex roots. It is of the first kind whérhas
a repeated complex roots, and of the second kirehwh
Subject to the Dirichlet boundary conditions it has two distinct pairs of complex roots. We will
concentrate in this study on systems of the finst ke.
u=0 on 4Q, i=1;-,n the biquadratic characteristic equation admits ia qa

double complex roots. In this case the systemd)be
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writen by the use of the above mentionedbe optimal for Laplace operatdf§ will be my
transformations in a form whose biquadratic objective in this study. Accordingly, the bandwidih

characteristic polynomial will take the standarchid'. the coefficient matrix of the associated linearntsysis
reduced and the accuracy is increased when treating
FE,n)= E2+n2) (5) problems with curved boundaries. Despite of the

irregular shape of the otolith membrane, the boonda

— . . . ... conditions can be realized in a way preserving the
Deflnmon 1: The system (1) is said to be reducible if it consistency of the finite difference egugtions V\ll’llg

is equivalent to a system of the form, system of differential equations and giving a globa

approximation error up to the fourth order.
a%u 0%u a%u

aﬂﬁﬂﬁlzaxay”na_yz:o Formulation of the problem: One of the difficulties in
pe e ey handling problems with finite differences is thead
azz_‘2+2322_"+y22_2: (6) domains especially with the existence of mixed
0% oxdy 7oy derivatives. In the approximation of the mixed
0°u 0%u 0%u derivative terms we use data along the diagonatheof
'“‘ﬂﬁﬂﬁﬂaxay”ﬂa_yz) grid system. So the author introduced a reformutati

for the system (7) to eliminate the mixed derivativ

i.e., the study of reducible systems is equivaterthe term. The author distinguishes between two cases:

study of two simple equations successively, othesiti . L .
is irreducible, and thus irreducible systems of fibren Case. Loaz “’, we must haveb, B b, =0 :flccordlngly
(1) are strongly coupled through the term with rdixe the first canonical form can be written as:
derivatives, which will be our interest in this dyu

Thus, irreducible systems can be written in thenfor [1 0}0—2{“}2[0 ﬂ
0 1|ax*|v b 0
, ol a2 )
1 0] 9" [u], by b o ST o
0 1|ax*|v| |b, b,|axay @) oxay[Vv] [0 pjoy*|v
Ho vl
v| [0 pjay?*|v Apu=1 and A+p- 4b= (10)
With Whereb=b,h,
Bz 0 and pz O Uy AU, +2V, =0
b+b,=0 11
1+ 4 (8) VXX+EV +2bL!( :c ( )
A+u+4bh, - 4b b= 2 A y
pb,+1b,=0
A =1 We define
In the finite difference approximation for the W = A -1y +2y (12)

system (7) each equation will contain at least @ gr ) _

unknowns and for domains with curved boundaries the ~ Then with the help of (10), this system, can be
corner grid points due to the mixed derivatived \wé  written in the form

outside the domain when using the finite difference

near the boundary. Accordingly, reducing the aamyra Ut Uy, + W, =0

of the over all system. v+, +x7.1 w.=0 (13)

MATRIALSAND METHODS (A-Du, + 2y, -w= C

The use of a local five-point approximation scheme ) .
making use of only neighboring nodes of a squaig gr €8¢ 2:A=pz1 (f A=p=1 the system will be
and avoiding mesh points situated in the diagohtie® reducible) and we must havel=p=-1and
associated linear difference operator which is kméw  accordinglyb, = -b, , and the system becomes
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1 0]92u b, b,] 42 The otolith membrane is a thin layer of a gelaiso
{0 JW{V} L)?) -bj axdy substance which covers a plaque of hair cells ¢dlie
(14) macula utricle. Adherent to the elastic membrameaar
{U}{k 0}5_2{”}:0 large number of calcite cristals known as the otigo
v] [0 AJay*|v They have a much higher specific mass than théthtol

membrane and the macula. When the head is in an
Which can be further transformed to give theupright position, the macula is nearly horizontahy

second canonical form movement of the head causes accelerations and
therefore exerts forces of different strength orcute

1 0]a2u 0 1 2 and otoconia. This induces shearing forces and

{0 JW{V} {_1 o}m produces a distortion of the otolith membrane. By

(15) evaluating this distortion, some indication of
{U}{'l 0}5_2{ U}:O compensating movements of the head for restoriag th
v |0 -1lay?|v balance and staiblizing the eyes can be obtained.

The investigations might be interesting in
With connetion with space exploration research, when the
Ap=1, and A+p- 4b= 2. (16) behavior of the sensory apparatus has to be studied
under different gravitational conditions.
Following Hudet?* and Youssett al.*®, the otolith

u.-u.,+2vy, =0 . . . .
xxoTyy ¥y membrane is considered as a flat, thin, ovoid &irec

Vix ~Vyy 2by, = C (A7) which is fixed at the boundary. Movements are
restricted to the plane of the membrane which is

We define likewise the plane of the macula. No displacements
perpendicular to this plane are possible. It ispsggd

w=2y, -2y, (18) to be situated in the x-y plane of a 3-dimensional

Cartesian coordinate system if the head is in aifghp
position (parallel to the z-axis).

The irregular boundary of the membran& can
be approximated by the curves, C C, which are
connected at the pointsA =(-0.064,0.096 and
B =(-0.064,— 0.096, Twizelll'®, Twizell and Currafy’},

1 . . .
U, =V, -5 W= 0 (19) Castilloet al.*®¥ Youssefet al. ™! as shown in Fig. 1.

Then the above system can be written in the form

U + U, -0, =0

X

Vi TVt W, =0

2 2

In systems (13) and (19) we don't have mixedC, : X =+ y =1 (20)
derivative terms, but we have an extra first order (0.096+2) (0.128f
differential equation as we will see in the appima Where
below. The number of the algebraic equations
approximating the system of PDE is increased ligear ~ €=0.000758905  for- 0.084 < 0.
"3n instead of 2n" the accuracy for curved domagns €=0.0 for x= 0.07
increased quadratically and the band width of feese
matrix of coefficients is decreased "at most 7eadtof and
at least 9". We will consider the relation betweba
band width and the dimension of the coefficientnirat C,: x= -0.084-05y 2.170%fy
for like systems in a subsequent work. + 54.2535 ¥ | Iy 0.0¢

(21)

The mathematical model of the otolith membrane:

The otolith membrane in man is apart of the vetibu This definition shifts some annoying boundary

organ which controls the subjective sensation ofdiscontinuity observed in the above literature from
equilibrium, spatial orientation and motion. It @ls N°des A (= no. 4) and B (= no. 43) to points whach

influences different vegetative functions such mo¢ N0t mesh points.

pressure and coagulation time and it stabilizesetfes It is generally accept€d™® that the displacements
in space during a movement of the Hgéd u and v in the x- and y- directions of all pOIﬂifStbe
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membrane are governed within the domain of theand (23) introduces mesh points situated in thgatial

membrane by the linear elliptic system of partialof the associated linear difference operator arel th

differential equations. matrix of the corresponding finite difference syste
which in general is sparse, will get four suppletagn

0u  1-v 0  1+v 0% 1-v? non-zero entries in every row. This in general oedu
+ + =- F® (22) e .

ax2 2 Y2 2 axdy E the average rate of convergence if iterative mestare
chosen for the solution of the linear finite diffece

o' 1-v o 1+v 0 1-v? system. Define an auxiliary function

st ot =- F (23) 1+v[ou ov : _—
oy 2 90X 2 0x3y E W= — —-— | the mixed second order derivatives
2 |dy O0x
together with the Dirichlet boundary conditions in (22), (23) can be eliminated and one gets the

following system of partial differential equations:

ux,y)=v(x,y)=0 forall (x,y)dr; r=GguU G (24)
O°u  0u_ow__1-v°

2 2 a3, F (27)
F¥and F¥are the x and y components of the ax* dy* dy E
gravitational force which is considered as being th
only acting force (static conditions) and is gi
y g ( ) g \kﬁn azv aZV a_W _ 1—V2 F(y) (28)
0 _ L . ax*> oay* o0x E
F* =p g[cosy (sina siny + coso. Sinp cosy) (25)
+ siny (sina cosy — cosa sinf siny)]
ou  dv 2
-——+—+ w=0 (29)
. ) ) . dy ox 1+v
F¥ =p g[- siny (sina siny + cosa sinp cosy) (26)
+ cosy (Sina cosy — coso. Sinf sin
sy ( Y psiny)] With
where g is the azimuth angle ard 3, y are the angles
of rotation of the membrane about they-, z- axes. u(.y)=v(x,y)=0 forall  (x,y)ar (30)
The model constants are the Poisson natwhich
is chosen as 0.5 (For gelatinous substances iinlig®e 0.128 — 0.128
range 0.3sv<0.8), the Young's modulus T
E =200000 dynescifithe  densityp =0.903 gmeni® the 0.096 4 5 5 ] 0.09%6
earth gravity constang=981cmseé The maximum
length of the membrane is 0.256 cm and the maximum 0 064 3 2 —A3—A—15—10.064
width 0.192 cm. It is easily proved that the systiem \
elliptic in the sense of Petrowski for all sugff>7. 0.02 1617181920222 {0.0
Since the irregularity of the boundary excludeg an M\
analytical solution of the system it must be solhmd ol g3 2 D 7 o 20
numerical methods. This will be done by finite
differnce techniques after superimposing a squstg g 0,022 SN VI S S % OJ 0.0
with grid constanth =0.032cm on a rectangular region hd
including the membrane domain(Fig. 1). x
A -0. 064 7 04 40— /4210, 064
Exactly the same grid is used by TwiZland
castillo et al.*®, Youssefet al.*®. The mesh points lie L )
at  the intersections of  the lines ~%0% %4 -0.0%
x=0.032m, y= 0.032n (m,rx @&, +, -2, There are
PR - ; ; 0.128 i -0.128
thirty interior grid points inQ and twenty boundary : ‘ ‘ ‘ e
-0.1 -0.05 0 0.05 0.1

points onl" as shown in Fig. 1.

Finite difference scheme for the Otolith membrane  Fig. 1: The grid imposed to the otolith membrane
model: The appearance of the mixed derivatives in (22) domain
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This system is much simpler than the original
partial differential system (22, 23). It is stilinéar
elliptic of the second order, but the principaltpafrthe
equations (27), (28) is now defined only by thessiaal
Laplacian which is easily handled in discretizatidhe
supplementary differential equation (29) is of first
order and does not represent any difficulty in dbgty
its finite difference approximation of accuracy topthe
second order. It is interesting to note that, fhist

system and in accordance with equation (10), we

havev =0.5, b, = 0.375,
b=0.562&

Now, denoting the values of a functismt node
(0.032m,0.032n by s,, and assuming sufficient

differentiability of s, finite difference approximations
for the derivatives can be obtained by the wellvino
Taylor development:

b,=1.5 A=0.25 p=4 and

g_;m,n :sm,n+12-hsm,n.1+ o) (32)
g_;fm’nzsmﬂvn_zhsg*” S0y o(h?) (33)
%23 ) S~ 2h§nn+ Snty o(h?) (34)

If the y-derivative is needed at a point

(mh, (n+8)h), 0<B8< 1 which is not necessarily a
mesh point (see Fig. 2), it can be approximated by

_(2+g)um +ﬁ u +ﬁ u,
% B 0 ,n e+ez m, n+0 1+0 ,n-1
Y- 2h (35)
+0O(IY) 0<e<1
If the x-derivative is needed at a point

(mh, (n+6)h), 0<B< 1it can be approximated by

(1+86)u
_—0Bu

m+1,n_ (1+e) u
+0u
2h

m-1,n

m+1,n-1 m-1,n-1

+0(h?) (36)

0<o6<1

241

(tm, nt1)
w
4{_‘ h
(1) gl Gt La)
im-1,n-1) imt1n-1)
(m-1n+1)  {m, nt1)
gh
(m-1,n) {tr, 1) N (m+1,m)
Ih
(m+g, n)
im-1n-1}  (m.o-1

Fig. 2: boundary points and not grid points

The same formulae can be used analogously to

and@ . Note

m+6,n

that formulas (36) generalize formula (31) % O.
The finite difference representation of the systein
equations (27), (28) and (29) is

L.

4h
w

m-1,n 1+v

approximate the derivatives‘?E

X m+6,n

4u

um—J.,n +u + um,n-:L+ u ma 1 m,n

h
_E(Wm,ml_w m,n—]) = h2 (

m+1,n
v, (37)
E

\ +Vm+1,n+vm,n-1+v m# 1_4V

m-1,n m,n

1= V2 ) (38)

h
+E(Wm+1,n - Wm-l,r) = h2 [ E

Unnit ™ Umna™ Ve nt V m, i (39)

It is easily seen that these equations are cemsist
with the system of partial differential equationmsiahe
accuracy of the scheme is G(hThe above equations
are applied to the thirty nodes éhand a system of 90
equations is obtained. This system is banded (gpars
with band width smaller by at least 2 than the dtad
one used by Twiz&f.

When the above system is applied to nodes
adjacent to the boundary sometimes function vahies
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mesh points outside @ must be expressed by values calculated value of v is positive. Otherwise it is
at internal and boundary nodes. This is easilyeneid  negative.

by using interpolating polynomials of the secondrée Three sets of numerical experiments were
along grid lines in both directions x and y andperformed.
conserving second order accuracy of the approximati In the first one the membrane was rotated in steps
Equation (29) is used with formulae (35) and (36)of a = 1712 through 2xabout thex-axis starting from its
to approximate the boundary values of w. normal equilibrium position3 andy were maintained at
The linear finite difference system is quickly 0. Physically the head was turned through 360tdépss
solved by successive overrelaxation. of 15° by first raising the right ear (Fig. 3).
In the second set the membrane was rotated in
RESULTSAND DISCUSSION steps offf = W12 through 2 about the y-axis starting

from its normal equilibrium positionp and y were

The objective of this study is three fold: in first,  maintained at 0. Physically the head was turnech fite
the author generates a Laplace operator from iellipt normal upright position through 360° in steps of b§
differential operators strongly coupled through thefirst raising the nose (Fig. 4).
mixed derivative term without any transformatioirs, In the third set the acceleration due to gravigsw
the second the author introduces finite differenceallowed to vary according to Table 1, thus modeling
formulas and a corresponding difference scheme witigravity conditions on the surfaces of Earth, Moon,
high accuracy for problems with curved domainghs  Mars, Venus and Jupiter (Fig. 53-

third the author applied the treatment to a reabfam. In contrast to Twizell's result§, no perturbation
The objective has been successively treated. of the sinusoidal behavior of the displacement esrv

In this study the author introduced a simple trickhas been observed in the neighborhood sf45° (see
based on the simple form of the biquadrateFig. 3)-
characteristic form to generate the well known bapl
differential operator from strongly coupled linear Table 1: Acceleration due to gravity on the surfaetEarth, Moon,
elliptic system in which the coupling is due to the Mars, Venus and Jupiter

mixed derivative terms. The mixed derivatives cah n Ezzace GSS;T sec)
be eliminated by the three well known transformadio moon 162
for like systems, Huaet al.!. Also, the author Mars 373
introduced two simple finite difference formulags)3 Venus 873

Jupiter 2551

and (36) with symmetric appearance approximatireg th
first order derivatives on curved boundaries u@(t?)
that can be considered as a generalization to #ke w 0 2 2 2
known central formulae. Accordingly, we used thefi 18
point difference operator approximating the Lapdaci
on a square grid which is known to be optimal, ahd
the second order, Birkhd&ff. We applied our treatment
to a realistic problem, which appear when modelirey
distortion of the otolith membrane under gravitycks.
After elimination of the mixed derivatives no diagd
nodes of the central difference operator occurcé&the
values at mesh points neighboring the boundaryr(fro
inside and outside) are also approximated with?O(h
The total finite difference equation system hasater 0.1
of consistency up to the second order.

The absolute value of the displacemenpt, at the o 3 2

0.1

0.05

Displacement m
Displacement m |

-0.05

point (0.032m,0.032r is d,, =/ (U )+ (Vp), its

slope with regard to the positive x-axis(is, ,/ u, ,)- A Fig. 3: Displacements g, for nodes 5, 18, 35 as a
displacementd, , is considered as positive if the function ofa on the surface of the Earth
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and Youssefet al.' in applying standard finite

element, isoperimetric finite element method and

0,075 variational techniques.
0.05 CONCLUSION
Jz 0.028 ] ; The objective of the study has completely
i g achieved. The finite difference formulas introduceaah
S ° 8 be used in other problems with curved boundariée. T
B 0.0z g efficient methods used in treating the Laplace afoes
A A can be wused directly to problems with mixed
-0.05 derivatives.
In comparison with the results of TwiZEl which
-0.075 is problem specific and only obtains a first order
3 accuracy due to linear Lagrange interpolation fesim
¢ 2 2 : points adjacent to the boundary this treatment asem
accurate. Moreover the traditional computationatkvo
Fig. 4: Displacements,d, for nodes 7, 11, 17, 46 as a is straight forward; the banded matrix of the fnit

difference system is sparse and well adapted for
iterative solution methods and has band width &attriio
3 instead of at least 9. Although, the number of &qna

0 2 2 2 in the algebraic system is increased linearly {Bslead
J of (2n) the accuracy is increased quadratically.

In comparison with the results of Yousse#l .,
Twizel and Currafl”), Castilloet al.*®*! with the finite
0.2 ] element, isoperimetric finite element, boundaryredat
and boundary fitted coordinates, the computational
work as well as the theoretical treatment introdiuire
this study is more straightforward easy, convengrt
at the same time gives the same results. The ncaheri
results illustrate the high efficiency and relidlgibf the
treatment. This approach can be applied with slight
modifications to problems which are not elliptic or
strongly coupled because the mathematical workis t
studyis more simple than any other transformations.

function of3 on the surface of the Earth

Displacemsnt m
Displacemsnt m

0 3 2 ACKNOWLEDGEMENT

The author is most grateful to prof. F. Ebersoldt

Fig. 5: Displacements g, for the node 18 as a Srlat;alrd dMerkatpr Unlve(rjsny Tt (;llusburg for ?everald
function of a on the surfaces of Jupiter (J), elpful discussions and  valuable ~comments an

Earth (E), Venus (V), Mars (M), and Moon s_uggestions als_o grea_t thanks to prof. _S. l. Zaki_thie
(MN) time he spent in reading the manuscript and hisyman
helpful comments.
This expected result might be explained by the tlaat
the discontinuity in the definition of the boundary REFERENCES
curves has been transferred in the present study fr
nodes A and B to places which are no more mesih. Bube, K.P. and J.C. Strikwerda, 1983. Interior

points. . _ _ regularity estimates for elliptic systems of
The results presented in (Figs. 3, 4 and 5) are in  difference equations. SIAM J. Numr. Anal., 20:
full agreement with those obtained by Castétcal % 653-670. DOI: 10.1137/0720044.

243



10.

11.

J. Math. & Stat., 4 (4): 236-244, 2008

Krupchyk, K., W.M. Seiler and J. Tuomela, 2006.12.
Overdetermined elliptic systems, found. Comput.
Math. 6: 309-351. DOI: 10.1007/s10208-004-
0161-y.

Strain, J., 2007.ocally-corrected spectral methods 13.
and overdetermined elliptic systems. J. Comput.
Phys.,224:1243-1254. DOI:
10.1016/).jcp.2006.11.017.

Adams, J.C. and P. Smolarkiewicz, 2001. Modified14.
multigrid for 3D elliptic equations with cross-
derivatives. Applied Math. Comput., 121: 301-312.
DOI: 10.1016/s0096-3003(00)00004-7.

Hua Loo Keng, Lin Wie and Wu Ci-Quian, 1985. 15.
Second-order Systems of Partial Differential
Equations in the Plane. Pitman Publishing
Program, London, ISBN: 9780273086451.

Pao, C.V., 2005. Strongly coupled elliptic sysse
and applications to Lotka-Volterra models with
cross-diffusion. Nonlinear Anal.,, 60: 1197-1217.
DOI: 10.1016/j.na.2004.10.008.

Michlin, S.G,, 1978. Partielle
Differentialgleichungen in der mathematischen
physik, verlag harri deutsch, thun-frankfurt/main. 17.
http://openlibrary.org/b/OL4512928M.

Ehrlich, L. W., 1971. Solving the biharmonic
equation as coupled finite difference equations.
SIAM J. Numr. Anal., 8: 278-287. DOl:
10.1137/0708029.

Van Blerk J.J. and J.F. Botha, 1993. Numerical
solution of partial differential equations on culve
domains by collocation. Numerical Methods for
Partial Differential Equations, 9: 357-371.
http://www3interscience.wiley.com/journal/110543 19.
738/abstract.

Barbeiro, S. and J.A. Ferreira, 2005. A
superconvergent linear FE approximation for the
solution of an elliptic system of PDEs. J. Comput.
Applied Math., 177: 287-300. DOI:
10.1016/j.cam.2004.09.20.

Adibi, H. and J. Es'haghi, 2007. Numerical
solution for biharmonic equation using multilevel
radial basis functions and domain decomposition
methods. Applied Math. Comput., 186: 246-255.
DOI: 10.1016/j.cam.2006.06.123.

16.

18.

244

Birkhoff, G. and S. Gulati, 1974. Optimal few-
point discretizations of linear source problems.
SIAM J. Numer. Anal, 11: 700-728. DOI:
0rg/10.1137/0711057.

Jaeger, R., A. Takagi and T. Haslwanter, 2002.
Modeling the relation between head orientations
and otolith responses in humans. Hearing Res.,
173: 29-42. DOI.10.1016/s0378-5955(02)00485-9.
Hudetz, W.J., 1973. A Computer simulation @ th
otolith membrane. J. Comput. Biol. Med., 3: 355-
369. http://
www.ncbi.nlm.nih.gov/pubmed/4777732.

Youssef, I.LK., A.E. Abu-Sabh and B.l. Bayoumi,
2002. Isoparametric rectangular finite element
treatment for the otolith membrane distortion.
Proceedings of International Conference on
Mathematics: Trends and Developments, Dec. 28-
31, The Egyptian Mathematical Society, Cairo, pp:
103-118.

16. Twizel, E.H., 1980. A variable gravity model
of the otolith membrane. J. Appl. Math. Model., 4:
82-86. DOI: 10.1016/0307-904x(80)90110-9.
Twizel, E.H. and D.A.S. Curran, 1977. A finite
element model of the otolith membrane, J. Comput.
Bio. Med., 7: 131-141.
http://www.ncbi.nlm.nih.gov/pubmed/852276.
Castillo, J.E. G. McDermott, M. McEachern and
J.A. Richardson, 1992. Comparative analysis of
numerical techniques applied to a model of the
otolith membrane. J. Comput. Math. Applic., 24:
133-141. http://
cat.inist.fr/?aModele=affichen&cpsidt=4871972.
Castillo, J.E.M. McEachern and J. Richardson,
1994. Modelling the otolith membrane using
boundary-fitted coordinates. J. Appl. Math.
Modell., 18: 391-399. DOLl:
10.1016/0307.904x(94)90225-9.



