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Residues of Complex Functionswith Definite and Infinite Poles on X-axis
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Abstract: Problem statement: One of the most popular areas in the mathematitteeisomputational
complex analysis. In this study several computaiiocomplex techniques were investigated and
implemented numericallyObjective: This study produced new procedures to computeesidues of
complex functions by changing their numerator framonstant number to either even or odd function.
Approach: In this project we studied the functions that haitd and infinite poles Zi greater than
one of order greater or equal one, also we fourvd medation between residues at the polead
residues at the poles;;4 greater than one and we had used these redatosolve improper integrals
of this type. The project needed the knowledge ahputing the complex improper integrations.
Results: Our numerical results in computing the residuesrfproper integrals of definite and infinite
poles on the x-axis were well definéZbnclusion: In this study, we had concluded that the residifies
the complex functions had definite and infinite gmlof higher order with constant numerator. A
general form of residues of these functions of liglers were also investigated.
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INTRODUCTION where, (Z = a+h) is called Taylor's sefies

The residue theorem is one of the main results of MATERIALSAND METHODS
complex analysis. It includes Cauchy's theorem and
Cauchy's integrals formula as special cases artk lea
quickly to important applications. In particular it
becomes one of the most powerful tools of analfgsis
evaluation of definite and infinite integr&ls

If O is the real field and C is the Complex field

Lemma 1: Let () be a pole of order (m) of a function
f(z) then the residues of the functions were gibgrihe
formula:

then consider the following Definitions: Reslf 1 i ant ¢

A function f (z) is said to be analytic in a doma if eslf.% ]:(m—l)! M, ., gt (27 2 ) 1(2)]
it [Has a derivative at every point in the same doma

D™, )

A point at which f(z) fails to be analytic is calle This was called the (Short-Cut-Meth8l)

singular point of the function f(z) or singulargief the

function f(z).There are three type of singular poin 1heorem 1: Let f(2)=p(2)/q(2) be an analytic function

Isolated, Removable and Esserftial in and on a simple closed curve C except at
If we can find a positive integer number (m) such (Z =+Z,) then f has a pole of order m (integer

that (lim,_, (z-2z,)"f(2)%0) then (z = § is called a number) where p(Z) is constant and the residue at

pole of order (m), as special case if (m = 1) ileda (£ =-Z;) is harmonic conjugate of the residue at

simple pol&. (2=2,) ie,:
Let f (z) be analytic inside and on a simple ctbse

curve C. Let (a) and (a+h) be two points insideh@n [

the expansion: Reslf~2 1= Res[f.2 ]

Proof: Let Z, is a pole of order m = 1 (simple pole)

f(z) =f(a)+(z- a)f (aﬁ%  (a)--- o
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Resff,z 1= P%) - PE) 1
sl iz 7@ 1)

(because p(Z) is constant) also:

Reslf-z]=PC%) - P@ __ P2 _
q¢-%) -9(%) d(%) 2)
-Res[f,Z ]

Because Z =Z, is harmonic conjugate of Z 5z
and there are roots of the function q(2) therefore:

q'(-Z,)=-9'(Z,)

Then we get:

Res[f-Z = Res[f,Z ] 3)

Also If Zy is a pole of order m = 2 then the residue

is given by the form:

Reslf,Z I 2{ P(Z) _1,p%)d (% )} @)

a'(z,) 3 (@)

P (2) is constant function them'(z)=0 and
p(Z,) = p(2) therefore:

_ 1 p@d* (Zo):|
Res[f,Z = 2¢| - =x—————2~ 5
es[f,z] { 3 @ 2)F 5)

Then we evaluate the residue at a pole ZZg by
(Short-Cut-Method):

Res[f,—z)]: “mZa—ZOddZ|:(Z+ 20)2252} (6)

We expanded the analytic function q(Z) in the

bounded regionz +z,|<r by Taylor series expansion:

o dl A
—“mza—zoa N

A=(Z+Z,)°p(2)
B=0(-Z)+(Z+Z,)d (-Z,)+

(Z+2,)° 4
Tq (=Z)+ ...
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%.F%q\\\(_zo)_h“
Let:
U(Z)=q\\(—Zo)+%q(3) z,)+
' (©)
(242"
axq d €2y -
Then substituting (9) into (8) we get:
—olim. . | P @U@ -p@)V(2) (10)
U(2)
—olim. | P@_p@VU (@) an
z--2, U@ UZ(Z)

Then by deriving the function (9) for (Z) we get:

U(z)=9-C5), +62°) q¥(2Z)+

(z +3Z )? (12)
A= 20l 4B (—

AxE g7 (=Zy)+ ...

lim,__, p'(2)=p'(-Z,)=0

lim,__, U(Z) =U(-Z,) =q"(-Z,). (13)

lim, , U\(2)=U\(-Z,) =q®(-Z,)/3

Because p(2Z) is constant .Substituting (13) into
(12) yields:

_2 [ pCZ)d” (—zo)}
Res[f - Z == x| — 2 1—_0° 14
es[ Z)] 3X|: (q\\ (_Zo))2 ( )
Then from Eq. 4 and 14 we have:
Res[f,-Z 1= Res[f,Z ] (15)

Also If Z = -Z, is a pole of order (m = 3) then the
residue at a pole (Z =qxis given by the following
formula:

Res[f, 7, 1= {_lxp(Z)q(s)(Zo)_'—
(7)

10 (a¥(z,))’

1 (¥ () p@)
8 (q(z,))

(16)
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Now because p (2) is

constant

and Where:

p™(Z,)=0 0On=1andp(Z,)=p(2) then by (short-cut-

method) we find the residue at a pole 2%, of order

(m=23):

Reg[f —ZO]-f lim, _ zo% )

{( Afma}

We expand the analytic function q(Z) by Taylor's Ilmzﬂ_zou (2= q“‘)( Z,)

series valid in the disgZ + Z |<r :

1. d?TA
Res[f-Z ==Ilim, , —|—
fezrbim, E4]

Where:
A= (Z+20)%(2)

B=qe4wa+4weawg%§ﬁ

+(~=Z,) is a pole of order (m = 3) then we get:

4(-Z)=0(-2%)=4d"%)=0

But:
q™(-2,)20 On=3
Then:

(z+ Zo)

[U(Z) q9(-Z))+=——"2q(-Z)+

(Z+Z)
4x5

Substituting (19) in Eq. 18 we get the following

formula:

Res[f - Z 1= 3lim,_ @}

‘ZOE{ U

d | P@U@)-p@)V (2)
U*(2)

=3lim,__, {U(Z)P“’(Z) - (QU'(2)_
o U'2)
P(AU?(2)+ U (@) (2)
U*(2)

(U (2)°p2)
U3(2)

A C2,)+ ...

lim,__,, p(2)=p(-%,)
z.-2, p'(2)=0
lim, ., U(2) =9(-Z,)

u'(2) =1q<4>(—zo) +i (z+ Z)q? (= Zy) + ...

lim

17)

(23)
u'(2)= q<5>( Zy)+

(18) (Z ) €Zx .

456

lim, . zOU\\(Z) ©(-2,)

Then substituting the value of (23) into (22) vet g
the following formula:

1p@)4% @),
10 (¥(z)y
] (24)

Res[f,—z)]=—{—

1(a9@) p@)
8 (¢°@,))

Because q (2) is even with order (m = 3) then:
q99(-Z)=-d"(Z,)and ¢” ¢ Z F- ¢’ (Z .

Therefore:

(29) Res[f~ 7 ]= Res[f,Z ]

In the above manner the procedure can be easily
extended for any pole of order (fh (P

Then by the same way, we can generalize the
procedure for any high order poles (m>3).

(20) Theorem 2: Let f(2) =% is analytic function in and
on a simple closed curve C except at
21) (z=%z ,i=12,3,...)if f has poles of order (mD)
where p (2) is constant then:
S Reslf,-Z]=Y Res[f, Zi]
i=1 i=1
(22)

Proof: From above theorem (1) {z =
pole (m = 1) then we have:
154
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Res[f,-Z]= Resl[f,Z ]
Res[f-Z]= Res[f,Z |
Res[f,-Z ]= Res[f,Z ]

Res[f~ Z ]= Res[f,Z ]

By addition (25) we get:

Res[f-Z ]+ Res[f- Z } ...+ Res[i; 2% .

=Res[f,Z [+ Res[f,Z } ...+ Res[f,.Z 1 ...

Then:

S Reslf ~Z =3 Resif 7]

Then the relation is true for all ¢h).

Theorem 3: Let f(2) :% is analytic function in and

on a simple closed curve C
(z=2z ,i1=123,..)f f has poles of order (mO0)

where p (2) is constant then:

JEE;;dZ— zero

Proof: For all order m>0, we know that:

jpg;dz 2rnz Res[f£ Z]

But:

iRes[f x7Z ]=i Res[f- Z ]+ i Resif,Z

By theorem 2 we have:

SReslf~Z Y Resif 7]
Then:

i Res[f £+ Z J-zero #
i=1

except at¥r

RESULTS

For computing the residues for improper functions
of definite poles on x-axis let us consider théof@ing
example.

25
(25) Example 1: Evaluate the following integral:

L
e (XZ _4)5(X2 _1)6
where, k is constant.

Solution: We know that:
(26) R
[ K x=lim P 4
(X2 -4)P°(x2-1)° R 3 (Z2%-4)° (zz 1)°
By CPV and on (x-axis).
(27) , _ k
The functionf(2) —m

Z =%1is a pole of order (m = 6) and Z2 is a pole of
order (m =5).
We calculate the integral by Jordan lemma Fig. 1:

has 4th poles

= |Is the boundary of a semicircle of radius R ia th
interval (-R, R)

Sy = Is the boundary of a semicircle of radiy$nrthe
interval (-2-§,-2+ry)

S, = Is the boundary of a semicircle of radig$nrthe
interval (-1-p,-1+n,)

Sz = Is the boundary of a semicircle of radigsnrthe
interval (-1-g,-1+n)

S4 = Is the boundary of a semicircle of radiysnrthe

(28) interval (-2-4,-2+1,)

A

(29)

A J

(30)

Fig. 1: Different poles with different semicirclesd
different radius for the set Z£1 and Z =t2
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where, R-oandr - 0,1=1,2,3,4 k is a constant. Then we get:

Then by Jordan lemma we have: Res[f - 2F Resf, 25— 65.81

R
lim, ., If(Z)dZ:|im : AO(J+J + J +j +j)f(z)dz; Also by the same procedure we get:
R S 5% 8% 5
i=1,2,3,4 Reg|[f,- 1 Reg[f,1]=- Reg[f,1
Where: Therefore:
jf(Z)dz:o as R- o w
Ve [ f(2)dz=(65.8k- 65.8k+ Res[f ¥ Res[f, 1 0

j f(2)dZ = miRes[f,~ 2]
5
j f(2)dZ = miRes[f,~1]
5

For computing the residues for improper functions
of infinite pole on x-axis let us consider the ¢wling

example.
j f(2)dZ = miRes|[f,1]
S5 Example 2: Evaluate the following integral:
[f(2)dz = miResf,2]
S, K k
dx
Tt

By new relation we get: - (CO% Xy

Res[f,- 1 Reg[f,1], Res[fs 2} Reg|f,- .
where, k is a constant.

We evaluate the residue at Z = 2 (of order m = 5 tion: By C.P.V:

by the new procedure where:
Tk , Tk
P(2)=k ; A(2)=(Z - 4F (Z- 1¥ dx=limg_, [ ————dx
m(cosE Xy R (cos5 )
Then:
L d°@p@), 1, & @F @p@) LSV SR S
Reslf, 2 5 ——x—— +——x =
ool 2 [126 @@ 2 @ O eoslxf o (eod! 2
Lo 21 4” (2)f p(2)_ 36x L& § (2)) & (p(
(5) 3 (5) 4
@ 5>(2)) @2y On the real axis (x-axis).
+24xw) )
@© ) We know that the functiorf(z) = = has
(co&2 zZy

Substituting the following values in above
equation:

p(2) =k
q®(2)= 89579520

q®(2)= 4.9717
q(2)=1.4782

q®(2)= 4.8689

infinite pole (z =+1,+ 3,+5,...)of order (m = 3) (Fig. 2).

F 3

v

We get: . . - .
Fig. 2: Different poles with different semicirclesd
Res[f,2} 5kx [4.8+ 5.04 4.08 2.64 1.85] 65.¢ different radius for the sqz =+1,+ 3 ,+5,...)
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Y= = The boundary of a semicircle of radius R in thek is a constant. Then by new relation we get:
interval (-R, R)

s, = The boundary of a semicircle of radiysin the
interval (1-g,1+r,)

S-1 = The boundary of a semicircle of radiug in the

Reg|[f,- 1 Reg[f ,1}:2—k
51

interval (-1-ry,-1+r4) Also by the same procedure we get:
Res[f,3]=2—k; Res[f,-3]= Res|[f,3F 2k
5m 5m

s, = The boundary of a semicircle of radiysrr the

T

interval &n-ry, n+r;) where n is odd number

where, R-oand r - 0, | =+1,+2,+3, .... Then we get the general solution:
i Res[f 1y x 2k
[t@0dz=[1(2)dz+ [ {(2)dzZ+....+ [ f(2)dzZ+ . eslf.nF € 1) 2
-R S S, s,
Where: \1vh2er§, n=1,3,5,.(nis pole of orderm=3)andi=
jf(Z)dZ:ni Res|f,1] 2,3
F By new relation we get:
[ #()dz =riRes]f,-1]
i R v, 2K
1 es[f—nE Res[f,nE € ' x=—
[ f(2)dz =riRes[f,3] e
] Then:
I f(Z)dZ =miRes[f,~3]
S ..

, < dz= i (Res[f.n}+ Res[f~ n]) & 1.2,3,.
_ R cos% zy =2t

Jf(Z)dZ:mRes[f,tn]; n=>5,7 w oK

Sun = Z((—l)‘ + (D" )a: Zero

We find residue at (Z = 1) by using equation then: . 2 k

= dx=Zero
Resi - 3{_ 1,00d @, 1 ¢ o) p(lj " (cosy X
10 @@ 8 (4dOf
DISCUSSION
When:
Since there are a finite number of poles of tiat |
p(2)=k,q(2)= (cosg 2)§ in the uppehalf plane, a real numbers can be found
such that the poles all lie inside the contGurwhich
) consists of the segment -R < x < R of the x axis
Then we get: together with the uppesemicircle of radius R. In this
37 128 study we have investigated and evaluated definitt a
pM=k ; o == d’ @=0 ;& Ty indefinite integrals of higher order poles with som
computationally complex techniques with an effitien
Therefore: numerical results.
12 CONCLUSION
x (25
Resif o= 3 ~Lx 8™ 374 | |
10 (gnﬁ) 10 3t 51 In this study, we have concluded that the residues
16 of complex functions which had definite and infanit
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poles of higher order with constant numerator amd w 3.

have find a general form of these residues fortiane

when we have used these facts to evaluate improper

integrals. Also we can able to change numerator of

these complex functions from a constant number tet.

either even or odd function.
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