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Abstract: Problem statement: One of the most popular areas in the mathematics is the computational 
complex analysis. In this study several computational complex techniques were investigated and 
implemented numerically. Objective: This study produced new procedures to compute the residues of 
complex functions by changing their numerator from a constant number to either even or odd function. 
Approach: In this project we studied the functions that had finite and infinite poles Zi, i greater than 
one of order greater or equal one, also we found new relation between residues at the poles Zi and 
residues at the poles -Zi, i greater than one and we had used these relations to solve improper integrals 
of this type. The project needed the knowledge of computing the complex improper integrations. 
Results: Our numerical results in computing the residues for improper integrals of definite and infinite 
poles on the x-axis were well defined. Conclusion: In this study, we had concluded that the residues of 
the complex functions had definite and infinite poles of higher order with constant numerator. A 
general form of residues of these functions of high orders were also investigated. 
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INTRODUCTION 

 
 The residue theorem is one of the main results of 
complex analysis. It includes Cauchy's theorem and 
Cauchy's integrals formula as special cases and leads 
quickly to important applications. In particular it 
becomes one of the most powerful tools of analysis for 
evaluation of definite and infinite integrals[3].  
 If ℜ is the real field and C is the Complex field 
then consider the following Definitions: 
 A function f (z) is said to be analytic in a domain D if 
it has a derivative at every point in the same domain 
D[4].  
A point at which f(z) fails to be analytic is called a 
singular point of the function f(z) or singularities of the 
function f(z).There are three type of singular point, 
Isolated, Removable and Essential[2]. 
 If we can find a positive integer number (m) such 
that ( )

0

m
z z 0lim (z z ) f (z) 0→ − ≠  then (z = z0) is called a 

pole of order (m), as special case if (m = 1) is called 
simple pole[2]. 
 Let f (z) be analytic inside and on a simple closed 
curve C. Let (a) and (a+h) be two points inside C ,then 
the expansion:  
 

2
\ \ \(z a)

f (z) f (a) (z a)f (a) f (a)
2!

−= + − + +L  

where, (Z = a+h) is called Taylor's series[5]. 
 

MATERIALS AND METHODS 
 
Lemma 1: Let (z0) be a pole of order (m) of a function 
f(z) then the residues of the functions were given by the 
formula: 
 

0

m 1
m

0 z z 0m 1

1 d
Res[f ,z ] lim [(z z ) f (z)]

(m 1)! dz

−

→ −= −
−

 

 
 This was called the (Short-Cut-Method)[3]. 
 
Theorem 1: Let f(Z) p(Z) q(Z)= be an analytic function 

in and on a simple closed curve C except at 
)( 0ZZ ±= then f has a pole of order m (integer 

number) where p(Z) is constant and the residue at 
)( 0ZZ −=  is harmonic conjugate of the residue at 

)( 0ZZ =  i.e,: 

 

0 0Res[f , Z ] Res[f , Z ]− =  

 
Proof: Let 0Z is a pole of order m = 1 (simple pole) 

then: 
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0
0 \ \

0 0

p(Z ) p(Z)
Res[f ,Z ]

q (Z ) q (Z )
= =  (1)  

 
 (because p(Z) is constant) also: 

 

0
0 \ \ \

0 0 0

0

p( Z ) p(Z) p(Z)
Res[f , Z ]

q ( Z ) q (Z ) q (Z )

Res[f ,Z ]

−− = = = − =
− −

−
  (2)  

 
 Because Z = −Z0 is harmonic conjugate of Z = z0 
and there are roots of the function q(Z) therefore:  

 
\ \

0 0q ( Z ) q (Z )− =−  

 
  Then we get: 
 

0 0Res[f , Z ] Res[f ,Z ]− =  (3) 

 
 Also If Z0 is a pole of order m = 2 then the residue 
is given by the form: 
 

\ (3)
0 0 0

0 \ \ \ \ 2
0 0

p (Z ) 1 p(Z )q (Z )
Res[f ,Z ] 2

q (Z ) 3 (q (Z ))

 
= × − × 

 
 (4)  

 
 P (Z) is constant function then \p (Z) 0=  and 

0p(Z ) p(Z)=  therefore: 

 
(3)

0
0 \ \ 2

0

1 p(Z)q (Z )
Res[f ,Z ] 2

3 (q (Z ))

 
= × − × 

 
 (5) 

 
 Then we evaluate the residue at a pole Z = −Z0 by 
(Short-Cut-Method): 
 

0

2
0 Z Z 0

d p(Z)
Res[f , Z ] lim (Z Z )

dZ q(Z)→−
 

− = + 
 

 (6) 

 
 We expanded the analytic function q(Z) in the 
bounded region 0Z Z r+ <  by Taylor series expansion: 

 

 

0Z Z

2
0

/
0 0 0

2
/ /0

0

d A
lim

dZ B

A (Z Z ) p(Z)

B q( Z ) (Z Z )q ( Z )

(Z Z )
q ( Z ) ....

2!

→−
 =  
 

= +

= − + + − +

+ − +

 (7)  

0Z Z \ \
\ \ \0 0

0

d p(Z)
lim

q ( Z ) (Z Z )dZ
q ( Z ) ...

2! 3!

→−

 
 

=  
− + + − +

  

 (8) 

 
 Let:  
 

 

\ \ (3)0
0 0

2
(4)0

0

(Z Z )
U(Z) q ( Z ) q ( Z )

3!

(Z Z )
            q ( Z ) ...

3 4

+= − + − +

+ − +
×

 (9) 

 
 Then substituting (9) into (8) we get: 
 

0

\ \

Z Z 2

p (Z)U(Z) p(Z)U (Z)
2lim

U (Z)→−

 −=  
 

 (10) 

 

0

\ \

Z Z 2

p (Z) p(Z)U (Z)
2lim

U(Z) U (Z)→−

 
= − 

 
  (11) 

 
 Then by deriving the function (9) for (Z) we get: 
 

\ \ \
\ (4)0 0

0

2
(5)0

0

q ( Z ) (Z Z )
U (Z) q ( Z )

3 6

(Z Z )
q ( Z ) .......

4 5

− += + − +

+ − +
×

 (12) 

 

 
0

0

0

\ \
Z Z 0

\ \
Z Z 0 0

\ \ (3)
Z Z 0 0

lim p (Z) p ( Z ) 0

lim U(Z) U( Z ) q ( Z ).

lim U (Z) U ( Z ) q ( Z ) 3

→−

→−

→−

= − =


= − = − 


= − = − 

 (13)  

 
 Because p(Z) is constant .Substituting (13) into 
(12) yields:  
 

(3)
0 0

0 \ \ 2
0

2 p( Z )q ( Z )
Res[f , Z ]

3 (q ( Z ))

 − −− = ×  − 
 (14) 

 
 Then from Eq. 4 and 14 we have: 
 

0 0Res[f , Z ] Res[f ,Z ]− =  (15) 
 
 Also If Z = -Z0 is a pole of order (m = 3) then the 
residue at a pole (Z = Z0) is given by the following 
formula:  
 

( )

( )

(5)
0

0 2(3)
0

(4) 2
0

3(3)
0

1 p(Z)q (Z )
Res[f , Z ] 3

10 q (Z )

1 (q (Z )) p(Z)

8 q (Z )


= − × +




×



 (16)  
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 Now because p (Z) is constant and 
(n)

0p (Z ) 0 n 1= ∀ ≥  and 0p(Z ) p(Z)=  then by (short-cut-

method) we find the residue at a pole Z = −Z0 of order 
(m = 3): 
 

0

2
3

0 Z Z 02

1 d p(Z)
Res[f , Z ] lim (Z Z )

2 dZ q(Z)→−
 

− = + 
 

 (17) 

 
 We expand the analytic function q(Z) by Taylor's 
series valid in the disc 0Z Z r+ < :  

 

0

2

0 Z Z 2

1 d A
Res[f , Z ] lim

2 dZ B→−
 − =  
 

 (18) 

 
Where: 
 
A = (Z+Z0)

3p(Z) 

B = 
2

\ \ \0
0 0 0 0

(Z Z )
q( Z ) (Z Z )q ( Z ) q ( Z ) ...

2

+− + + − + − +  

 

0( Z )−Q is a pole of order (m = 3) then we get: 

 
\ \ \

0 0 0q( Z ) q ( Z ) q ( Z ) 0− = − = − =  

 
 But: 
 

(n )
0q ( Z ) 0 n 3− ≠ ∀ ≥  

 
 Then: 
 

(3) (4)0
0 0

2
(5)0

0

(Z Z )
U(Z) q ( Z ) q ( Z )

4

(Z Z )
q ( Z ) .....

4 5

+ = − + − +


+ − + × 

 (19)  

 
 Substituting (19) in Eq. 18 we get the following 
formula:  
 

0

2

0 Z Z 2

d p(Z)
Res[f , Z ] 3lim

dZ U→−
 − =  
 

 (20) 

 

0

\ \

Z Z 2

d p (Z)U(Z) p(Z)U (Z)
3lim

dZ U (Z)→−

 −=  
 

 (21) 

 

 
0

(2) (1) \

Z Z 2

(2) (1) (1) \ 2

2 3

U(Z)p (Z) p (Z)U (Z)
3lim

U (Z)

p(Z)U (Z) U (Z)p (Z) (U (Z)) p(Z)
2

U (Z) U (Z)

→−

 −= −


+ − 


 (22)  

Where: 
 

0

0

0

0

0

Z Z 0

\
Z Z

(3)
Z Z 0

\ (4) (5)
0 0 0

\ (4)
Z Z 0

\ \ (5)
0

(6)
0 0

\ \
Z Z

lim p(Z) p( Z )

lim p (Z) 0

lim U(Z) q ( Z )

1 2
U (Z) q ( Z ) (Z Z )q ( Z ) ....

4 4 5
1

lim U (Z) q ( Z )
4

2
U (Z) q ( Z )

4 5
2 3

              (Z Z )q ( Z ) ....
4 5 6

lim U (Z)

→−

→−

→−

→−

→

= −

=

= −

= − + + − +
×

= −

= − +
×

× + − +
× ×

= (5)
0

1
q ( Z )

10




















− 


 (23) 

 
 Then substituting the value of (23) into (22) we get 
the following formula: 
 

( )
( )

(5)
0 0

0 (3) 2
0

2(4)
0 0

3(3)
0

1 p(Z )q (Z )
Res[f , Z ] 3

10 (q (Z ))

q (Z ) p(Z )1

8 q (Z )


− = − − +








 (24) 

 
 Because q (Z) is even with order (m = 3) then: 
 

(5) (5) (3) (3)
0 0 0 0q ( Z ) q (Z ) and q ( Z ) q (Z )− = − − = −  

 
 Therefore: 
 

0 0Res[f , Z ] Res[f ,Z ]− =  

 
 In the above manner the procedure can be easily 
extended for any pole of order (m)[1].  
 Then by the same way, we can generalize the 
procedure for any high order poles (m>3).  
 

Theorem 2: Let 
p(Z)

f (Z)
q(Z)

=  is analytic function in and 

on a simple closed curve C except at 

i(Z Z , i 1,2,3,....)= ± = if f has poles of order (m>0) 

where p (Z) is constant then:  
 

i
i 1 i 1

Res[f , Z ] Res[f ,Zi]
∞ ∞

= =

− =∑ ∑  

 
Proof: From above theorem (1) if i(Z Z )= ± is a simple 

pole (m = 1) then we have: 
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1 1

2 2

3 3

n n

Res[f , Z ] Res[f ,Z ]

Res[f , Z ] Res[f ,Z ]

Res[f , Z ] Res[f ,Z ]

.

.

.

Res[f , Z ] Res[f ,Z ]

.

.

.

− =


− = 


− = 





− =






 (25) 

 
 By addition (25) we get:  
 

1 2 n

1 2 n

Res[f , Z ] Res[f , Z ] ..... Res[f , Z ] ...

Res[f ,Z ] Res[f ,Z ] ... Res[f ,Z ] ....

− + − + + − +

= + + + +
 (26)  

 
 Then: 
 

i i
i 1 i 1

Res[f , Z ] Res[f ,Z ]
∞ ∞

= =

− =∑ ∑  (27) 

 
 Then the relation is true for all (m>1). 
 

Theorem 3: Let 
p(Z)

f (Z)
q(Z)

=  is analytic function in and 

on a simple closed curve C except at 

i(Z Z , i 1,2,3,....)= ± = if f has poles of order (m0> ) 

where p (Z) is constant then: 
 

C

p ( Z )
d Z z e ro

q ( Z )
=∫  

 
Proof: For all order m>0, we know that: 
 

 
i

i 1C

p(Z)
dZ 2 i Res[f , Z ]

q(Z)

∞

=

= π ±∑∫  (28) 

 
 But: 
 

i i i
i 1 i 1 i 1

Res[f , Z ] Res[f , Z ] Res[f ,Z ]
∞ ∞ ∞

= = =

± = − +∑ ∑ ∑  (29) 

 
 By theorem 2 we have: 
 

 i i
i 1 i 1

Res[f , Z ] Res[f ,Z ]
∞ ∞

= =

− =∑ ∑  (30) 

 
 Then: 
  

i
i 1

Res[f , Z ] zero
∞

=

± =∑  # 

RESULTS 
 
 For computing the residues for improper functions 
of definite poles on x-axis let us consider the following 
example. 
 
Example 1: Evaluate the following integral:  
 

2 5 2 6

k
dx

(x 4) (x 1)

∞

−∞ − −∫  

 
where, k is constant. 
 
Solution: We know that:  
 

R

R2 5 2 6 2 5 2 6
R

k k
dx lim dZ

(x 4) (x 1) (Z 4) (Z 1)

∞

→∞
−∞ −

=
− − − −∫ ∫  

 
 By CPV and on (x-axis). 

 The function 
2 5 2 6

k
f (Z)

(Z 4) (Z 1)
=

− −
 has 4th poles 

Z = ±1 is a pole of order (m = 6) and Z = ±2 is a pole of 
order (m = 5). 
 We calculate the integral by Jordan lemma Fig. 1: 
 
γR = Is the boundary of a semicircle of radius R in the 

interval (-R, R) 
Sr1 = Is the boundary of a semicircle of radius r1 in the 

interval (-2-r1,-2+r1)  
Sr2 = Is the boundary of a semicircle of radius r2 in the 

interval (-1-r2,-1+r2)  
Sr3 = Is the boundary of a semicircle of radius r3 in the 

interval (-1-r3,-1+r3)  
Sr4 = Is the boundary of a semicircle of radius r4 in the 

interval (-2-r4,-2+r4)  
 

 
 
Fig. 1: Different poles with different semicircles and 

different radius for the set Z = ±1 and Z = ±2 
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 where, R→∞ and ri → 0, I = 1, 2, 3, 4  
 
 Then by Jordan lemma we have: 
 

i

r r r r R1 2 3 4

R

R r 0

R S S S S

lim f (Z)dZ lim ( )f (Z)dZ;

i 1,2,3,4

→∞ →
− γ

= + + + +

=

∫ ∫ ∫ ∫ ∫ ∫  

 
Where:  

R

r1

r1

r3

r4

S

S

S

S

f (Z)dZ 0 as R

f (Z)dZ iRes[f , 2]

f (Z)dZ iRes[f , 1]

f (Z)dZ iRes[f ,1]

f (Z)dZ iRes[f ,2]

γ

= → ∞

= π −

= π −

= π

= π

∫

∫

∫

∫

∫

 

 
 By new relation we get: 
 
Res[f , 1] Res[f ,1] , Res[f , 2] Res[f ,2]− = − =  
 
 We evaluate the residue at Z = 2 (of order m = 5) 
by the new procedure where: 
 

2 5 2 6p(Z) k ; q(Z) (Z 4) (Z 1)= = − −  
 
 Then:  
 

(9) (6) (8)

(5) 2 (5) 3

(7) 2 (6) 2 (7)

(5) 3 (5) 4

(6) 4

(5) 5

1 q (2)p(2) 1 q (2)q (2)p(2)
Res[f ,2] 5

126 (q (2)) 42 (q (2))

(1 21 q (2)) p(2) (1 6 q (2)) q (2)p(2)
6 36

(q (2)) (q (2))

(1 6 q (2)) p(2)
24

(q (2))


= × × + ×



× ×+ × − ×

×+ × 


 

 
 Substituting the following values in above 
equation:  
 

( 5 )

( 6 )

( 7 )

( 8 )

( 9 )

p (2 ) k

q (2 ) 8 9 5 7 9 5 2 0

q (2 ) 4 .9 7 1 7

q (2 ) 1 .4 7 8 2

q (2 ) 3 .0 6 1 9

q (2 ) 4 .8 6 8 9

=
=
=
=
=
=

 

 
 We get:  
 

Res[f ,2] 5k [4.8 5.04 4.08 2.61 1.85] 65.8k= × + + − + =  

k is a constant. Then we get: 
 

Res[f , 2] Res[f ,2] 65.8k− = =−  
 
 Also by the same procedure we get: 
  

Res[f , 1] Res[f ,1] Res[f ,1]− = =−  
 
 Therefore: 
 

f (Z)dZ (65.8k 65.8k Res[f ,1] Res[f , 1]) i 0
∞

−∞

= − + + − π =∫  

 
 For computing the residues for improper functions 
of infinite pole on x-axis let us consider the following 
example. 
 
Example 2: Evaluate the following integral: 
 

3

k
dx

(cos x)
2

∞

−∞
π∫  

 
where, k is a constant. 
 
Solution: By C.P.V: 
 

R

R
3 3R

k k
dx lim dx

(cos x) (cos x)
2 2

∞

→∞
−∞ −

=π π∫ ∫  

 
R R

3 3R R

k k
dx dZ

(cos x) (cos Z)
2 2

− −

=π π∫ ∫  

 
 On the real axis (x-axis). 

 We know that the function 
3

k
f (Z)

(cos Z)
2

= π
 has 

infinite pole (Z 1, 3, 5,...)= ± ± ± of order (m = 3) (Fig. 2). 
 

 
  
Fig. 2: Different poles with different semicircles and 

different radius for the set (Z 1, 3, 5,...)= ± ± ±  
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γR = The boundary of a semicircle of radius R in the 
interval (-R, R) 

1r
s  = The boundary of a semicircle of radius r1 in the 

interval (1-r1,1+r1)  
Sr−1 = The boundary of a semicircle of radius r−1 in the 

interval (-1-r-1,-1+r-1) 
. 
. 
. 
. 

nr
s  = The boundary of a semicircle of radius rn in the 

interval (±n-r1, ±n+r1) where n is odd number  
 
where, R→∞ and ri → 0, I = ±1, ±2, ±3, …. 
 

r r r1 1 n

R

R S S S

f (Z)dZ f (Z)dZ f (Z)dZ ..... f (Z)dZ ...
−−

= + + + +∫ ∫ ∫ ∫  

 
Where:  

r1
S

f (Z)dZ iRes[f ,1]=π∫  

r 1
S

f (Z)dZ iRes[f , 1]
−

=π −∫  

r3
S

f (Z)dZ iRes[f ,3]=π∫  

r 3
S

f (Z)dZ iRes[f , 3]
−

=π −∫  

. 

. 

r n
S

f (Z)dZ iRes[f , n]
±

= π ±∫ ; n = 5, 7  

 
 We find residue at (Z = 1) by using equation then: 
 

(5) (4) 2

(3) 2 3 3

1 p(1)q (1) 1 (q (1)) p(1)
Res[f ,1] 3

10 (q (1)) 8 (q (1))

 
= × − × + × 

 
 

 
When: 
 

3p(Z) k ,q(Z) (cos( Z))
2

π= =  

 
 Then we get:  
 

3 5
(3) (4) (5)3 12

p(1) k ; q (1) ; q (1) 0 ; q (1)
4 16

π π= = = =  

 
 Therefore:  
 

3

6

12
k ( )1 3 4k 2k16Res[f ,1] 3

910 10 3 5( )
16

 × π   = × − × = − = −   π π  π
 

 

k is a constant. Then by new relation we get: 
 

2k
Res[f , 1] Res[f ,1]

5
− = =

π
 

 
 Also by the same procedure we get: 
 

2k
Res[f ,3]

5
=

π
; 

2k
Res[f , 3] Res[f ,3]

5
− = = −

π
 

. 

. 

. 
 
 Then we get the general solution: 
 

i 2k
Res[f ,n] ( 1)

5
= − ×

π
 

 
where, n = 1 ,3 ,5 ,… (n is pole of order m = 3) and i = 
1, 2, 3…. 
 
 By new relation we get: 
 

i 1 2k
Res[f , n] Res[f ,n] ( 1)

5
+− = = − ×

π
 

 
 Then: 
 

R

3 n 2 i 1R

i i 1

i 1

3

k
dZ (Res[f ,n] Res[f , n]) , i 1,2,3,...

cos( Z)
2

2k
(( 1) ( 1) ) Zero

5

k
dx Zero

(cos x)
2

∞

= −−

∞
+

=

∞

−∞

= + − =π

= − + − =
π

∴ =π

∑∫

∑

∫

 

 
DISCUSSION 

 
 Since there are a finite number of poles of that lie 
in the upper half plane, a real numbers can be found 
such that the poles all lie inside the contour C, which 
consists of the segment -R < x < R of the x axis 
together with the upper semicircle of radius R. In this 
study we have investigated and evaluated definite and 
indefinite integrals of higher order poles with some 
computationally complex techniques with an efficient 
numerical results.  
 

CONCLUSION 
 
 In this study, we have concluded that the residues 
of complex functions which had definite and infinite 
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poles of higher order with constant numerator and we 
have find a general form of these residues for functions 
when we have used these facts to evaluate improper 
integrals. Also we can able to change numerator of 
these complex functions from a constant number to 
either even or odd function.  
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