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A Robust Rescaled Moment Test for Normality in Regression
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Abstract: Problem statement: Most of the statistical procedures heavily depemd normality
assumption of observations. In regression, we asdutfmat the random disturbances were normally
distributed. Since the disturbances were unobsenaunality tests were done on regression residuals
But it is now evident that normality tests on resil$ suffer from superimposed normality and often
possess very poor poweérpproach: This study showed that normality tests suffer hegfeback in the
presence of outliers. We proposed a new robusttmmrest based on rescaled moments and coefficients
of skewness and kurtosis of residuals that we roddust rescaled moment teResults: Numerical
examples and Monte Carlo simulations showed thatpitoposed test performs better than the existing
tests for normality in the presence of outli€@snclusion/Recommendation: We recommend using our
proposed omnibus test instead of the existing témtschecking the normality of the regression
residuals.

Key words: Regression residuals, outlier, rescaled momentswiséss, kurtosis, jarque-bera test,
robust rescaled moment test

INTRODUCTION out that the powers of t and F tests are extremely
sensitive to the hypothesized error distributiod aray
In regression analysis, it is a common practicerov deteriorate very rapidly as the error distribution
the years to use the Ordinary Least Squares (OLS)ecomes long-tailed. Furthermore, Bera and J&fque
method mainly because of tradition and ease ohave found that homoscedasticity and serial
computation. The assumption of normality, thatti®  independence tests suggested for normal errors may
data are a random sample from a normal distributon result in incorrect conclusions under non-normality
the most important assumption for many statisticaimay be also essential to have proper knowledgaef t
procedures. Under a normal assumption of regressioarror distribution in prediction and in confiderigmits
errors, the OLS method has many desirable progertieof predictions. Most of the standard results ofs thi
in both estimation of parameters and in testing ofparticular study are based on the normality assiompt
hypotheses. But in practice we often deal with data  and the whole inferential procedure may be subgettie
which are not normal in nature. Non-normality may error if there is a departure from this. In alplaition of
occur because of their inherent random structure othe normality assumption may lead to the use of
because of the presence of outliers. Neverthelessuboptimal estimators, invalid inferential statetsen
evidence is available that such departures can hawnd inaccurate predictions and for this reason ftest
unfortunate effects in a variety of situations. Innormality has become an essential part of regnessio
regression problems, the effect of departure fromanalysis.
normality in estimation was studied by Huf@r In Several methods have been suggested in the
testing hypotheses, the effect of departure fronliterature for assessing the assumption of norgnalit
normality has been investigated by manyThere are a considerable amount of written papers
statistician®®. When the errors are not normally relating to the performance of various tests for
distributed, the estimated regression coefficieamsl  normality in regressidn®®**#2% Among them the
estimated error variances are no longer normalchird  Jarque-Bera (JB) té¥! for normality (also known in
square and consequently the t and F tests are netatistics the Bowman-Shenton test) has become very
generally valid in finite samples. KoenKér pointed  popular with the statisticians. The JB test statiit a
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sum of the sample coefficients of skewness andkigt
and asymptotically follows a®xdistribution with two
degrees of freedom. But the main shortcoming ofiiie Now we establish general expressions for the
test is that it possesses very poor power when thmoments, coefficients of skewness and kurtosishef t
sample size is small or moder&te To overcome this true errors assuming only that the errors are
problem Imof® modified this test by suitably rescaling uncorrelated, zero mean and identically distribuaed

the moment estimators obtained from the least sguar the existence of their first four moments. Let @ik
residuals. His proposed Rescaled Moment (RM) testhe k-th moment about the origin of the i-th etogr
improves the estimation of moments, coefficients of

skewness and kurtosis and gives better power t@n t p, =E[), k=1.2,... 3)

JB test for normality. However, both the JB and i
test statistics rely on coefficients of sample skess
and kurtosis which are very sensitive to outlidtsr
this reason some robust tests of normality are
proposed by some authBf8, Gel and Gastwirt
propose a modification of the JB test utilizingodust
estimate of spread, namely the average absolutg _ M B, = My (4)
deviation from the median (MAAD), in the " %’ YT
denominators of skewness and kurtosis. This Robust

Jarque-Bera (RJB) test statistic asymptoticalliofes a In practice population moments are often estimated

X2 distributioﬁs] with two degrees of freedom and by Samp|e moments. We genera"y define the k-th
provides higher or similar power in detecting heavy sample moment by:

tailed alternatives compared to the JB. Since thg R
designed as a general statistical test for normalie 1 K

suspect that it may not perform well in regressionmk(D)zﬁZ(Di_D) » k=12, )
analysis. In this study we propose a robust redcale

moment test (RRM) for normality designed for gnqg hence the raw coefficients of skewness andéisrt
regression models extending the idea of IHfbmand can be defined as:

Gel and Gastwirfl. The main objective of the '
proposed method is to suggest a normality testithat

fairly robust in the presence of outliers and alsoSO)=
performs best in general. The empirical evidenaswvsh [m,(
that the proposed RRM test offers substantial
improvements over the existing tests of normality.

where, E[) = 0, V() = ¢? and | is an identity matrix
of order n.

As E{d) = 0, on the null model, we need not
distinguish here between moments about the origth a
einthose about the mean. Simple forms of the coefftsie
of skewness and kurtosis are given by:

m, () _
o 07

m, ()
4 6
[m, @) ©)

Much work has been done in producing omnibus
tests for normality, combining S and K in one test
statistic. So a large deviation either of S fronorOK
from 3 should give a significant result, regardleds
which one deviates from normal values. D'Agostino
and Pearsdfl first suggested this kind of test.
However, it requires an assumption of independence

MATERIALSAND METHODS

Therobust rescaled momentstest: The simplest form
of the general linear model is given by:

y, =x'B+0, i=12,..,n (1) between S and K which is only asymptotically cotrec
Bowman and Shent&h suggested a normality test,

Where: popularly known as Jarque-Bera test, with the test

y, = The i-th observed response statistic:

X; = A px1 vector of predictors )

B = A px1 vector of unknown finite parameters IB = s + (K-3) (7)

0= Uncorrelated random errors with mean 0 and o’(s)  o*(K)

varianceo”

Where:

Writing Y = (Yo,Ya .V, X = (XuXo,...%,)" and
0= (g, Oy,... 0,)" the model is:

Y = X B+0 2)
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0%S) = 6/n andc’(K) = 24/n are the asymptotic
variance of S and K respectively

Under normality asymptotically, is distributed
as ¥ distribution with 2 degrees of freedom

S =
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Gel and Gastwirtfl give a robust version of the The residual vector can also be expressed in terms
Jarque-Bera test using a robust estimate of spreaaf unobservable errors as:
which is less influenced by outliers in the dencahims
of the sample estimates of skewness and kurtobisy T [1=[1 -X(X X) X | O=H O (12)
consider the average absolute deviation from the

sample median (MAAD) proposed by Gastwittiand We shall follow Chatterjee and H&#by referring

is defined by: to H=[I -X(X™X) X ] as the residual hat matrix. The
A elements hof this matrix will be termed as residual hat

J, == IX - M| (8) elements, which play a very important role in linea
ni= regression. The quantitiq@- h,) are often referred to

where, A = Ji/2. The robust sample estimates of & leverage values which measure how far the input
P vector x are from the rest of the data. Let the k-th

skewness and kurtosis are, /J, and f, /J, wh_ere moment of the i-th OLS residual be defined as:
m,and m,are the 3rd and 4th order of the estimated

sample moments respectively, which lead the, (Di)zE(E\k)  k=1,2,.. (13)
development of Gel and Gastwirth Robust Jarque-Bera

RJB) test statistic:
(RIB) fori=1,..,n, where we note tha&(’)=0. Using

ny 2 n Aﬂ_; © Eg. 12, the i-th residual can be expressed in terfns
7 B,| T true errors as:

n

RIB=
Bl

To obtain the constants,&nd B, we need to find =20 0. i=12..r (14)
the expressions foE(E), E(J}), E(X) and E(F )for a :

finite sample size n, which can be calculated as Hence the second, third and fourth order moments
suggested by Geat§. However, such calculations are of OLS residuals can be expredsbas:
quite tedious and are not of practical use sina th

convergence of estimators of kurtosis to the asgtigpt w, () = ph, (15)
normal distribution is very slow. We obtain Bnd B ' !
from the Monte Carlo simulation results given byl Ge

—_ 3
and Gastwirtlf. In particular, if one desires to preserve Hs(©) _“3Zj:h"’ (16)
the nominal level of 0.05, they recommend-86 and
B, = 64. _ ) 4 242
The above test procedures are designed in a fashidJ“(D') =l SHZ]Zh” 3N, (17)

that we know the value of each observation and are c
easily compute the value of a test statistic amdozeme
to a conclusion. It is a common practice over tharg )
to use the Ordinary Least Squares (OLS) residumls £€
substitutes of true errors but there is evidencat th
residuals have very different skewness and kurtosis 2h; 2

B (0) =3+ (B, - 3)1 - (18)

The coefficients of skewness and kurtosis [of

2
ii

than their corresponding true errors and hencé:(©) =B %
normality tests on OLS residuals may perform poorly !
unless the test statistics are modified.

Let us assume that X is amm matrix of full In the case of OLS residuals, their sample mean is
column rank p, the OLS estimator of is zero and therefore, the k-th sample moment is ddfin
B=(X"X)™X Y . The OLS residuals are given by: as:

—v v TN —
O=y,-x'B,1=12..n (10) mk(m)zlzm, k=12,.. (19)
n-s

In matrix notation, the residual vector is:

R The sample coefficients of skewness and kurtosis
O=Y -XB (11)  on OLS residuals are then directly obtained froinb{p
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substituting [ by [ in it and thus coefficients of m ()= cm,(C) (26)
ske_wness and kurtosis based on OLS residuals can be
defined as: m, (1) = ¢ my(0) 27)
m, () m, )
S()=——2= KO =—=4 20 . R 2
O o O mor GO m)=¢[m()-q+ ) mO)] (28)

Imort*® shows that the sample moments as defineavhere, ¢ = n/(n-p). Using the above approximatidins,
in (19) are biased and he also suggests unbiasedscaled coefficients of skewness and kurtosisiineco
estimates of the second, third and fourth order evdm

defined as: S O)=c's0), K'(O) =KD -3) (29)
M (0) = e M (D) = s M, (0) (21)  and the Rescaled Moment (RM) normality test sfatist
sz:h” Zh‘ is defined as:
s (1) = e my (0 22) RM=[nc’/g] [SZ+ o K-3’ /4} (30)
05350

Likewise the JB statistic, the RM statistic followa

. n n \? chi-square distribution with 2 degrees of freeddlow
m“(D):zzw‘m“(D)_{n—J using the average absolute deviation from the sampl
o P median (MAAD) as a robust estimate of spread we can
e (23) define the Robust Rescaled Moment (RRM) test

statistic as:
5o im0}
2 2
sz:hij c(m Y né(+ 2
RRM:;[;@} +g(;}_3] (31)
Imon*® also suggests some simple approximations 1\ 2\ *n

for the scaling factors which avoid the necessity o

additonal computation with thg's after the Under the null hypothesis of normality, the RRM
test statistic asymptotically follows a chi-square

distribution with 2 degrees of freedom.dBdB, are
computed similar to the RJIB test statistic in Eqas9
suggested by GeatY.

regression. He shows that an expression sughts
i

where k>1, is often dominated by the tetm When
also summing over i, the replacement dfh¢ by
j RESULTS

k
n-p
—— | the k-th power of the average valuegf ma . . .
[ n j P g 9 y Numerical examples. We consider few real life data
be considered as possible approximations. Thus weets for testing normality assumption in the presesf

might approximate: outliers.

th:(n—p)z (24) Belgian road accident data: Our first example
- n presents the number of road accidents in Belgium
recorded between 1975 and 1981 taken from

and Rousseeuw and LerBy and shown in Table 1. It has
been reported by many authors that the Belgian road
N (n-p) (25) accident data contains a single outlier (record @f9)
T n<?* which must cause nonnormality of residuals. Table 2

exemplifies the power of normality tests of thisada
Substituting the values (24) and (25) in (21-23),
Imor*®¥ suggests Rescaled Moments (RM) of OLSShelf-stocking data: Next we consider the shelf-

residuals as: stocking data given by Montgomemt al*’.
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Table 1: Belgian road accident data Table 5: Simulated power of different tests formality for n = 20
Year No. of accident  Distribution JB RM RJB RRM
1975 18031 Normal 0.0256 0.0425 0.0619 0.0892
1976 18273 ts 0.3126 0.3720 0.4400 0.4892
1977 16660 ts 0.1629 0.2115 0.2570 0.3106
1978 16660 Logistic 0.0904 0.1305 0.1721 0.2148
1979 23805 Cauchy 0.8193 0.8532 0.9122 0.9288
1980 15241 Exponential 0.4842 05855 0.6019 0.6609
1981 13295 Log-normal 0.7233 0.7975 0.8109 0.8458

Cont. normal (scale shift) 0.3243 0.3740 0.4063 4%

. . . Cont. normal (location shift) 0.8065 0.8850 0.9292.9552
Table 2: Power of normality tests for Belgian r@adident data

Cont. normal (outlier) 0.7958 0.9151 0.9616 0.9805
Tests Value of statistic p-value
JB 4.379730 0.112 . ) .
RM 12.83904 0.002 Table 6: Simulated power of different tests formality for n = 50
RJB 54.50434 0.000 Distribution JB RM RJB RRM
RRM 177.7253 0.000 Normal 0.0385 0.0497 0.0637 0.0754
ts 0.6674 0.6893 0.7475 0.7638
. n ) ts 0.3999 0.4286 0.4897 0.5143
Table 3: Shelf- stocking data (original and modifie Logistic 02197 0.2478 02992 0.3266
Time Cases Time Cases Time Cases Cauchy 0.9932 0.9947 09985 0.9987
(min) stocked  (min) stocked  (min) stocked Exponential 0.9517 0.9706 0.9463 0.9590
10.15 25 5.06 13 7.57 19 Log-normal 0.9958 0.9976 0.9953 0.9968
2.96 6 9.14 23 1.74 4 Cont. normal (scale shift) 0.6487 0.6696 0.6919 0917
3.00 8 11.86 30 9.38 24 Cont. normal (location shift) 0.9977 0.9984  0.999%).9998
6.88 17 11.69 28 0.16 (1.70) 1 Cont. normal (outlier) 0.9989 0.9995 0.9999 0.9999
0.28 2 6.04 14 1.84 5
Table 7: Simulated power of different tests formality for n = 100
Table 4: Power of normality tests for original datedified Shelf- Distribution JB RM RJB RRM
stocking data Normal 0.0395 00442 00540 0.0601
Original data Modified data ts 0.8988 0.9050 0.9353 0.9404
ts 0.6308 0.6504 0.6959 0.7076
Tests Value of statistic p-value Value of statisticp-value Logistic 0.3770 0.3934 0.4464 0.4613
JB 1.2643 0.5314 2.1820 0.3359 Cauchy 1.0000 1.0000 1.0000 1.0000
RM  1.9700 0.3735 3.4524 0.1779  Exponential 1.0000 1.0000 0.9999 1.0000
RJB  1.4632 0.4811 5.0890 0.0785 Log-normal 1.0000 1.0000 1.0000 1.0000
RRM 2.2477 0.3250 8.2475 0.0161 Cont. normal (scale shift) 0.8652 0.8712 0.8792 8458
Cont. normal (location shift) 0.5536  0.5702  0.5851 0.5976
This data presents the time required for a merdsand C0nt normal (outiier) 1.0000 10000 1.0000 1.0000

to stock a grocery store shelf with a soft drinkdurct
as well as the number of cases of product stodké&l. scale and containing outliers. For contaminatingras
deliberately change one data point (putted indistributions, 90% observations are generated from

parenthesis) to get an outlier and both the orlgim&l  standard normal distribution and the remaining 10%
modified data are shown in Table 3. Table 4 shdws t gpservations come from a normal with either shifted
power of normality test of this original and modii

dat mean or variance or containing outliers. All ousuls
ata.

are given at the 5% level of significance and aased

. . ) ) on 10,000 simulations.
Power simulationss We carry out a simulation

experiment to compare the performance of the newly
proposed RRM test with the existing tests of noitymal

in particular, with the Jarque-Bera, the Rescaleaniént ) )
(RM) and the Robust Jarque-Bera (RJB) tests. The He_re we d|§cuss _the results that we have obtained
estimated powers of these tests under variou) Previous section using real data sets and MGato
distributions for different sample sizes are shoiwn Simulation experiments.

Table 5-7. We consider simulated power for teredéfit Figure 1 shows us a genuine picture that the
distributions; the normal, the exponential, the t-residuals for this data do not follow normality tean.
distribution with 3 and 5 degree of freedom, thgidic, = We compute the coefficients of skewness (1.764) and
the Cauchy, the exponential, the log-normal and théurtosis (4.601) for this data which are also fiamdf
contaminated normal distributions with shifts indtion,  normality.
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Fig. 1: Normal probability plot of the residuals tfe '
Belgian road accident data .

But it is interesting to observe from the results
shown in Table 2 that the classical Jarque-Berta tes
fails to detect the nonnormality pattern of residu '
for this data even at the 10% level of digance. .
The rescaled moments tests as suggested by!ffnon y
can successfully detect nonnormality at the 5%lleve .

Both the robust RJB and RRM rejects normality in a -
highly significant way, but the RRM possesses highe -1.0 0.5 0.0 03 1.0
power than the RJB for this data. Modified residuals

The normal probability plots of the original and (b)
modified shelf-stocking data are shown in Fig. t2isl
not clear from these plots whether the residuats argig . Normal probability plot of the residuals @):
normally distributed or not. We apply_the classiaat The original and (b): The modified shelf-
robust methods to check the normality and the tesul .

. stocking data
are shown in Table 4.

For the original data all the methods show that th
residuals for this data are normally distributethcg Simulation results shown in Table 5-7 show that
we have inserted an outlier in the modified dates it when the data come from normal distributions the
expected that the normality pattern of residualslvé  performance of classical normality tests are gddmth
affected. It is worth mentioning that all commonly the RJB and the RRM show a slightly higher size but
used outlier detection techniques such as the Leaghe values are not that big and tend to decreatsetine
Median of Squares (LMS), the Least Trimmedincrease in sample size. But the classical testome
Squares (LTS), the Block Adaptive C]omputatlonally- poorly when the errors come from either heavidedhi
Efficient Outlier Nominator (BACONJ can easily or contaminated normal distributions. But the newly

identify one observation as an outlier. The sta;[idarproposed RRM test performed best throughout and

theory tells us that the normality should break daomw hence mav be considered as the most powerful dest f
the presence of outliers. But it is interestingbserve y P

that both the Jarque-Bera and the RM test failiect n°rmality. _ _

non-normality here. The RJB test also fails to dete ~ Figure 3 shows the merit of using the RRM test for

non-normality at the 5% level of significance. Boe ~ hormality. We observe that this test possesses much
performance of the RRM test is quite satisfactary i higher power than the Jarque-Bera, the RM and the
this occasion. It can detect the problem of non+obust Jarque-Bera tests under a variety of error
normality even at 1.6% level of significance. distributions.

Score
[
-
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Fig. 3: Power of the normality tests for different 11.

distributions
CONCLUSION

In this study we develop a new test for normality

the presence of outliers, called the RRM, whichais 13.

robust modification of the rescaled moments test fo
normality. The real data sets and Monte Carlo
simulation shows that the modified rescaled moment
test offers substantial improvements over the mxjst
tests and performs superbly to test the normality
assumption of regression residuals.
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