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Abstract: Problem statement: Most of the statistical procedures heavily depend on normality 
assumption of observations. In regression, we assumed that the random disturbances were normally 
distributed. Since the disturbances were unobserved, normality tests were done on regression residuals. 
But it is now evident that normality tests on residuals suffer from superimposed normality and often 
possess very poor power. Approach: This study showed that normality tests suffer huge set back in the 
presence of outliers. We proposed a new robust omnibus test based on rescaled moments and coefficients 
of skewness and kurtosis of residuals that we call robust rescaled moment test. Results: Numerical 
examples and Monte Carlo simulations showed that this proposed test performs better than the existing 
tests for normality in the presence of outliers. Conclusion/Recommendation: We recommend using our 
proposed omnibus test instead of the existing tests for checking the normality of the regression 
residuals. 
 
Key words: Regression residuals, outlier, rescaled moments, skewness, kurtosis, jarque-bera test, 

robust rescaled moment test 
 

INTRODUCTION 
 
 In regression analysis, it is a common practice over 
the years to use the Ordinary Least Squares (OLS) 
method mainly because of tradition and ease of 
computation. The assumption of normality, that is, the 
data are a random sample from a normal distribution is 
the most important assumption for many statistical 
procedures. Under a normal assumption of regression 
errors, the OLS method has many desirable properties 
in both estimation of parameters and in testing of 
hypotheses. But in practice we often deal with data sets 
which are not normal in nature. Non-normality may 
occur because of their inherent random structure or 
because of the presence of outliers. Nevertheless, 
evidence is available that such departures can have 
unfortunate effects in a variety of situations. In 
regression problems, the effect of departure from 
normality in estimation was studied by Huber[12]. In 
testing hypotheses, the effect of departure from 
normality has been investigated by many 
statisticians[15]. When the errors are not normally 
distributed, the estimated regression coefficients and 
estimated error variances are no longer normal and chi-
square and consequently the t and F tests are not 
generally valid in finite samples. Koenker[16] pointed 

out that the powers of t and F tests are extremely 
sensitive to the hypothesized error distribution and may 
deteriorate very rapidly as the error distribution 
becomes long-tailed. Furthermore, Bera and Jarque[1] 
have found that homoscedasticity and serial 
independence tests suggested for normal errors may 
result in incorrect conclusions under non-normality. It 
may be also essential to have proper knowledge of the 
error distribution in prediction and in confidence limits 
of predictions. Most of the standard results of this 
particular study are based on the normality assumption 
and the whole inferential procedure may be subjected to 
error if there is a departure from this. In all, violation of 
the normality assumption may lead to the use of 
suboptimal estimators, invalid inferential statements 
and inaccurate predictions and for this reason test for 
normality has become an essential part of regression 
analysis.  
 Several methods have been suggested in the 
literature for assessing the assumption of normality. 
There are a considerable amount of written papers 
relating to the performance of various tests for 
normality in regression[5,8,9,13,18,20]. Among them the 
Jarque-Bera (JB) test[14] for normality (also known in 
statistics the Bowman-Shenton test) has become very 
popular with the statisticians. The JB test statistic is a 
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sum of the sample coefficients of skewness and kurtosis 
and asymptotically follows a x2 distribution with two 
degrees of freedom. But the main shortcoming of the JB 
test is that it possesses very poor power when the 
sample size is small or moderate[21]. To overcome this 
problem Imon[13] modified this test by suitably rescaling 
the moment estimators obtained from the least squares 
residuals. His proposed Rescaled Moment (RM) test 
improves the estimation of moments, coefficients of 
skewness and kurtosis and gives better power than the 
JB test for normality. However, both the JB and the RM 
test statistics rely on coefficients of sample skewness 
and kurtosis which are very sensitive to outliers. For 
this reason some robust tests of normality are being 
proposed by some authors[9,8]. Gel and Gastwirth[8] 
propose a modification of the JB test utilizing a robust 
estimate of spread, namely the average absolute 
deviation from the median (MAAD), in the 
denominators of skewness and kurtosis. This Robust 
Jarque-Bera (RJB) test statistic asymptotically follows a 
x2 distribution[8] with two degrees of freedom and 
provides higher or similar power in detecting heavy-
tailed alternatives compared to the JB. Since the RJB is 
designed as a general statistical test for normality, we 
suspect that it may not perform well in regression 
analysis. In this study we propose a robust rescaled 
moment test (RRM) for normality designed for 
regression models extending the idea of Imon[13] and 
Gel and Gastwirth[8]. The main objective of the 
proposed method is to suggest a normality test that is 
fairly robust in the presence of outliers and also 
performs best in general. The empirical evidence shows 
that the proposed RRM test offers substantial 
improvements over the existing tests of normality. 
 

MATERIALS AND METHODS 
 
The robust rescaled moments test: The simplest form 
of the general linear model is given by: 
 

T
i i iy x , i 1,2,...,n= β+ ∈ =    (1) 

 
Where: 
yi = The i-th observed response 
xi = A p×1 vector of predictors 
β = A p×1 vector of unknown finite parameters 
∈ = Uncorrelated random errors with mean 0 and 

variance σ2 
 
 Writing  Y = (y1,y2,….yn)

T ,  X = (x1,x2,…xn)
T and 

∈ = (∈1, ∈2,… ∈n)
T the model is: 

 
Y = X β+∈ (2) 

where, E(∈) = 0, V(∈) = σ2I and I is an identity matrix 
of order n. 
 Now we establish general expressions for the 
moments, coefficients of skewness and kurtosis of the 
true errors assuming only that the errors are 
uncorrelated, zero mean and identically distributed and 
the existence of their first four moments. Let us define 
the k-th moment about the origin of the i-th error by:  
 

k
k iE( ), k 1,2,...µ = ∈ =   (3) 

 
 As E(∈) = 0, on the null model, we need not 
distinguish here between moments about the origin and 
those about the mean. Simple forms of the coefficients 
of skewness and kurtosis are given by: 
 

3 4
1 23 2

2 22

,
µ µβ = β =

µµ
  (4) 

 
 In practice population moments are often estimated 
by sample moments. We generally define the k-th 
sample moment by: 
 

( ) ( ) k

k i
i

1
m , k 1,2,...

n
∈ = ∈ − ∈ =∑   (5) 

 
and hence the raw coefficients of skewness and kurtosis 
can be defined as:  
 

3 4
3 2

2 22

m ( ) m ( )
S( ) ,K( )

[m ( )][m ( )]

∈ ∈∈ = ∈ =
∈∈

 (6) 

 
 Much work has been done in producing omnibus 
tests for normality, combining S and K in one test 
statistic. So a large deviation either of S from 0 or K 
from 3 should give a significant result, regardless of 
which one deviates from normal values. D'Agostino 
and Pearson[6] first suggested this kind of test. 
However, it requires an assumption of independence 
between S and K which is only asymptotically correct. 
Bowman and Shenton[2] suggested a normality test, 
popularly known as Jarque-Bera test, with the test 
statistic: 
 

 
( )

( )
( )

22

2 2

K 3S
JB 

S K

−
= +

σ σ
 (7) 

 
Where: 
σ2(S) = 6/n and σ2(K) = 24/n are the asymptotic 

variance of S and K respectively  
S = Under normality asymptotically, is distributed 

as x2 distribution with 2 degrees of freedom 
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 Gel and Gastwirth[8] give a robust version of the 
Jarque-Bera test using a robust estimate of spread 
which is less influenced by outliers in the denominators 
of the sample estimates of skewness and kurtosis. They 
consider the average absolute deviation from the 
sample median (MAAD) proposed by Gastwirth[7] and 
is defined by: 
 

n

n i
i 1

A
J | X M |

n =

= −∑   (8) 

 
where, A = / 2π . The robust sample estimates of 
skewness and kurtosis are 3

3 nm̂ / J  and 4
4 nm̂ / J , where 

3m̂ and 4m̂ are the 3rd and 4th order of the estimated 

sample moments respectively, which lead the 
development of Gel and Gastwirth Robust Jarque-Bera 
(RJB) test statistic: 
 

2 2

3 4
3 4

1 n 2 n

ˆ ˆn m n m
RJB 3

B J B J

   
= + −   

   
   (9) 

 
 To obtain the constants B1 and B2, we need to find 
the expressions for 3

nE(J ), 4
nE(J ), 6

nE(J ) and 8
nE(J )for a 

finite sample size n, which can be calculated as 
suggested by Geary[10]. However, such calculations are 
quite tedious and are not of practical use since the 
convergence of estimators of kurtosis to the asymptotic 
normal distribution is very slow. We obtain B1 and B2 
from the Monte Carlo simulation results given by Gel 
and Gastwirth[8]. In particular, if one desires to preserve 
the nominal level of 0.05, they recommend B1 = 6 and 
B2 = 64. 
 The above test procedures are designed in a fashion 
that we know the value of each observation and we can 
easily compute the value of a test statistic and can come 
to a conclusion. It is a common practice over the years 
to use the Ordinary Least Squares (OLS) residuals as 
substitutes of true errors but there is evidence that 
residuals have very different skewness and kurtosis 
than their corresponding true errors and hence 
normality tests on OLS residuals may perform poorly 
unless the test statistics are modified.  
 Let us assume that X is an n×p matrix of full 
column rank p, the OLS estimator of β is 

T 1 Tˆ (X X) X Y−β = . The OLS residuals are given by: 
 

T
i i i

ˆˆ y x∈ = − β  , I = 1,2,…n (10) 
 
 In matrix notation, the residual vector is: 
 

ˆˆ Y X∈= − β   (11) 

 The residual vector can also be expressed in terms 
of unobservable errors as: 
 

T 1 Tˆ [I X(X X) X ] H−∈= − ∈= ∈  (12)  
 
 We shall follow Chatterjee and Hadi[3] by referring 
to T 1 TH [I X(X X) X ]−= −  as the residual hat matrix. The 
elements hij of this matrix will be termed as residual hat 
elements, which play a very important role in linear 
regression. The quantities ii(1 h )−  are often referred to 

as leverage values which measure how far the input 
vector xi are from the rest of the data. Let the k-th 
moment of the i-th OLS residual be defined as: 
 

( ) ( )k
k i iˆ ˆE , k 1,2,...µ ∈ = ∈ =   (13) 

 
for i = 1,…,n,  where  we  note that ( )iˆE 0∈ = . Using 

Eq. 12, the i-th residual can be expressed in terms of 
true errors as: 
 
 i ij j

j

ˆ h , i 1,2,...,n∈ = ∈ =∑  (14) 

 
 Hence the second, third and fourth order moments 
of OLS residuals can be expressed[11] as:  
 

2 i 2 iiˆ( ) hµ ∈ = µ   (15) 

 
3

3 i 3 ij
j

ˆ( ) hµ ∈ = µ ∑  (16) 

 
2 4 2 2

4 i 4 2 ij 2 ii
j

ˆ( ) [ 3 ] h 3 hµ ∈ = µ − µ + µ∑   (17) 

 
 The coefficients of skewness and kurtosis of ˆ i∈  

are: 
 

( )
3 4
ij ij

j j
1 i 1 2 i 23 2

2 iiii

h h

ˆ ˆ( ) , ( ) 3 3
hh

   
   β ∈ = β β ∈ = + β −   
   
   

∑ ∑
 (18) 

 
 In the case of OLS residuals, their sample mean is 
zero and therefore, the k-th sample moment is defined 
as:  
 

( ) k
k i

i

1
ˆ ˆm , k 1,2,...

n
∈ = ∈ =∑   (19) 

 
 The sample coefficients of skewness and kurtosis 
on OLS residuals are then directly obtained from (5) by 
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substituting ∈  by ∈̂  in it and thus coefficients of 
skewness and kurtosis based on OLS residuals can be 
defined as: 
 

3 4
3 2

2 22

ˆ ˆm ( ) m ( )
ˆ ˆS( ) ,K( )

ˆ[m ( )]ˆ[m ( )]

∈ ∈∈ = ∈ =
∈∈

 (20) 

 
 Imon[13] shows that the sample moments as defined 
in (19) are biased and he also suggests unbiased 
estimates of the second, third and fourth order moments 
defined as:  
 

( ) ( ) ( )*
2 2 22 2

ij ii
i j i

n n
ˆ ˆ ˆm m m

h h
∈ = ∈ = ∈

∑∑ ∑
 (21) 

  

( ) ( )*
3 33

ij
i j

n
ˆ ˆm m

h
∈ = ∈

∑∑
 (22) 

 

( ) ( )

( ){ }

2

*
4 44

ij
i j

2
ii

2i
24

ij
i j

n n
ˆ ˆm m 3

h n p

h
ˆ1 m

h

 
∈ = ∈ −  − 

 
 − ∈ 
 
 

∑∑

∑

∑∑

 (23) 

 
 Imon[13] also suggests some simple approximations 
for the scaling factors which avoid the necessity of 
additional computation with theijh 's after the 

regression. He shows that an expression such ask
ij

j

h∑ , 

where k>1, is often dominated by the termkiih . When 

also summing over i, the replacement of k
ij

j

h∑  by 

k
n p

n

− 
 
 

 the k-th power of the average value of ijh  may 

be considered as possible approximations. Thus we 
might approximate: 
 

2
2
ii

i

(n p)
h

n

−≈∑  (24)   

 
and 
 

k
k
ij k 1

i j

(n p)
h

n −

−≈∑∑  (25)    

 
 Substituting the values (24) and (25) in (21-23), 
Imon[13] suggests Rescaled Moments (RM) of OLS 
residuals as: 

( ) ( )*
2 2ˆ ˆm cm∈ = ∈       (26) 

 
( ) ( )* 3

3 3ˆ ˆm c m∈ ≈ ∈                                     (27) 

 

( ) ( ) ( ) ( ){ }2* 4 2
4 4 2ˆ ˆ ˆm c m 3 1 c m− ∈ ≈ ∈ − − ∈  

  (28) 

 
where, c = n/(n-p). Using the above approximations, the 
rescaled coefficients of skewness and kurtosis become: 
 

* ˆS ( )∈ = 3/2 ˆc S( )∈ , * ˆK ( )∈ = 2 ˆc [K( ) 3]∈ −          (29) 

 
and the Rescaled Moment (RM) normality test statistic 
is defined as: 
 

RM = 3nc / 6   ( )22S c K 3 / 4 + −
 

                      (30) 

 
 Likewise the JB statistic, the RM statistic follows a 
chi-square distribution with 2 degrees of freedom. Now 
using the average absolute deviation from the sample 
median (MAAD) as a robust estimate of spread we can 
define the Robust Rescaled Moment (RRM) test 
statistic as: 
 

2 23 4
3 4

3 4
1 n 2 n

ˆ ˆnc m nc m
RRM 3

B J B J

   
= + −   

   
                     (31) 

 
 Under the null hypothesis of normality, the RRM 
test statistic asymptotically follows a chi-square 
distribution with 2 degrees of freedom. B1andB2 are 
computed similar to the RJB test statistic in Eq. 9 as 
suggested by Geary[10]. 
 

RESULTS 
 
Numerical examples: We consider few real life data 
sets for testing normality assumption in the presence of 
outliers. 
 
Belgian road accident data: Our first example 
presents the number of road accidents in Belgium 
recorded between 1975 and 1981 taken from 
Rousseeuw and Leroy[19] and shown in Table 1. It has 
been reported by many authors that the Belgian road 
accident data contains a single outlier (record of 1979) 
which must cause nonnormality of residuals. Table 2 
exemplifies the power of normality tests of this data.   
 
Shelf-stocking data: Next we consider the shelf-
stocking   data    given   by   Montgomery   et     al.[17]. 
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Table 1: Belgian road accident data 
Year No. of accident 
1975 18031 
1976 18273 
1977 16660 
1978 16660 
1979 23805 
1980 15241 
1981 13295 

 
Table 2: Power of normality tests for Belgian road accident data 
Tests Value of statistic p-value 
JB 4.379730 0.112 
RM 12.83904 0.002 
RJB 54.50434 0.000 
RRM 177.7253 0.000 

 
Table 3: Shelf- stocking data (original and modified) 
Time Cases  Time Cases Time Cases 
(min) stocked (min) stocked (min) stocked 
10.15 25 5.06 13 7.57 19 
2.96 6 9.14 23 1.74 4 
3.00 8 11.86 30 9.38 24 
6.88 17 11.69 28 0.16 (1.70) 1 
0.28 2 6.04 14 1.84 5 

 
Table 4: Power of normality tests for original data modified Shelf- 

stocking data 
 Original data  Modified data 
 --------------------------------- ----------------------------------- 
Tests Value of statistic p-value Value of statistic p-value 
JB 1.2643 0.5314 2.1820 0.3359 
RM 1.9700 0.3735 3.4524 0.1779 
RJB 1.4632 0.4811 5.0890 0.0785 
RRM 2.2477 0.3250 8.2475 0.0161 
 
This data presents the time required for a merchandiser 
to stock a grocery store shelf with a soft drink product 
as well as the number of cases of product stocked. We 
deliberately change one data point (putted in 
parenthesis) to get an outlier and both the original and 
modified data are shown in Table 3. Table 4 shows the 
power of normality test of this original and modified 
data. 
  
Power simulations: We carry out a simulation 
experiment to compare the performance of the newly 
proposed RRM test with the existing tests of normality, 
in particular, with the Jarque-Bera, the Rescaled Moment 
(RM) and the Robust Jarque-Bera (RJB) tests. The 
estimated powers of these tests under various 
distributions for different sample sizes are shown in 
Table 5-7. We consider simulated power for ten different 
distributions; the normal, the exponential, the t-
distribution with 3 and 5 degree of freedom, the logistic, 
the Cauchy, the exponential, the log-normal and the 
contaminated normal distributions with shifts in location, 

Table 5: Simulated power of different tests for normality for n = 20 
Distribution JB RM RJB RRM 
Normal 0.0256 0.0425 0.0619 0.0892 
t3 0.3126 0.3720 0.4400 0.4892 
t5 0.1629 0.2115 0.2570 0.3106 
Logistic 0.0904 0.1305 0.1721 0.2148 
Cauchy 0.8193 0.8532 0.9122 0.9288 
Exponential 0.4842 0.5855 0.6019 0.6609 
Log-normal 0.7233 0.7975 0.8109 0.8458 
Cont. normal (scale shift) 0.3243 0.3740 0.4063 0.4473 
Cont. normal (location shift) 0.8065 0.8850 0.9292 0.9552 
Cont. normal (outlier) 0.7958 0.9151 0.9616 0.9805 

 
Table 6: Simulated power of different tests for normality for n = 50 
Distribution JB RM RJB RRM 
Normal 0.0385 0.0497 0.0637 0.0754 
t3 0.6674 0.6893 0.7475 0.7638 
t5 0.3999 0.4286 0.4897 0.5143 
Logistic 0.2197 0.2478 0.2992 0.3266 
Cauchy 0.9932 0.9947 0.9985 0.9987 
Exponential 0.9517 0.9706 0.9463 0.9590 
Log-normal 0.9958 0.9976 0.9953 0.9968 
Cont. normal (scale shift) 0.6487 0.6696 0.6919 0.7091 
Cont. normal (location shift) 0.9977 0.9984 0.9995 0.9998 
Cont. normal (outlier) 0.9989 0.9995 0.9999 0.9999 

 
Table 7: Simulated power of different tests for normality for n = 100 
Distribution JB RM RJB RRM 
Normal 0.0395 0.0442 0.0540 0.0601 
t3 0.8988 0.9050 0.9353 0.9404 
t5 0.6308 0.6504 0.6959 0.7076 
Logistic 0.3770 0.3934 0.4464 0.4613 
Cauchy 1.0000 1.0000 1.0000 1.0000 
Exponential 1.0000 1.0000 0.9999 1.0000 
Log-normal 1.0000 1.0000 1.0000 1.0000 
Cont. normal (scale shift) 0.8652 0.8712 0.8792 0.8845 
Cont. normal (location shift) 0.5536 0.5702 0.5851 0.5976 
Cont. normal (outlier) 1.0000 1.0000 1.0000 1.0000 

 
scale and containing outliers. For contaminating normal 
distributions, 90% observations are generated from 
standard normal distribution and the remaining 10% 
observations come from a normal with either shifted 
mean or variance or containing outliers. All our results 
are given at the 5% level of significance and are based 
on 10,000 simulations.  
 

DISCUSSION 
 
 Here we discuss the results that we have obtained 
in previous section using real data sets and Monte Carlo 
simulation experiments. 
 Figure 1 shows us a genuine picture that the 
residuals for this data do not follow normality pattern. 
We compute the coefficients of skewness (1.764) and 
kurtosis (4.601) for this data which are also far from 
normality. 
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Fig. 1: Normal probability plot of the residuals of the 

Belgian road accident data 
 
 But it is interesting to observe from the results 
shown in Table 2 that the classical Jarque-Bera test 
fails to detect the  nonnormality pattern of residuals 
for  this  data  even  at  the  10%  level of significance. 
The rescaled moments tests as suggested by Imon[13] 
can successfully detect nonnormality at the 5% level. 
Both the robust RJB and RRM rejects normality in a 
highly significant way, but the RRM possesses higher 
power than the RJB for this data. 
 The normal probability plots of the original and 
modified shelf-stocking data are shown in Fig. 2. It is 
not clear from these plots whether the residuals are 
normally distributed or not. We apply the classical and 
robust methods to check the normality and the results 
are shown in Table 4. 
 For the original data all the methods show that the 
residuals for this data are normally distributed. Since 
we have inserted an outlier in the modified data it is 
expected that the normality pattern of residuals will be 
affected. It is worth mentioning that all commonly 
used outlier detection techniques such as the Least 
Median of Squares (LMS), the Least Trimmed 
Squares (LTS), the Block Adaptive Computationally-
Efficient Outlier Nominator (BACON)[4] can  easily 
identify one observation as an outlier. The standard 
theory tells us that the normality should break down in 
the presence of outliers. But it is interesting to observe 
that both the Jarque-Bera and the RM test fail to detect 
non-normality here. The RJB test also fails to detect 
non-normality at the 5% level of significance. But the 
performance of the RRM test is quite satisfactory in 
this occasion. It can detect the problem of non-
normality even at 1.6% level of significance. 

 
 (a) 

 

 
(b) 

 
Fig. 2: Normal probability plot of the residuals of (a): 

The original and (b): The modified shelf-
stocking data 

 
 Simulation results shown in Table 5-7 show that 
when the data come from normal distributions the 
performance of classical normality tests are good. Both 
the RJB and the RRM show a slightly higher size but 
the values are not that big and tend to decrease with the 
increase in sample size. But the classical tests perform 
poorly when the errors come from either heavier tailed 
or contaminated normal distributions. But the newly 
proposed RRM test performed best throughout and 
hence may be considered as the most powerful test for 
normality. 
 Figure 3 shows the merit of using the RRM test for 
normality. We observe that this test possesses much 
higher power than the Jarque-Bera, the RM and the 
robust Jarque-Bera tests under a variety of error 
distributions.  
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Fig. 3: Power of the normality tests for different 

distributions 
 

CONCLUSION 
 
 In this study we develop a new test for normality in 
the presence of outliers, called the RRM, which is a 
robust modification of the rescaled moments test for 
normality. The real data sets and Monte Carlo 
simulation shows that the modified rescaled moment 
test offers substantial improvements over the existing 
tests and performs superbly to test the normality 
assumption of regression residuals. 
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