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Abstract: Problem statement: Non-oriented case of Two-Dimensional Rectangular Bin Packing 
Problem (2DRBPP) was studied in this study. The objective of this problem was to pack a given set of 
small rectangles, which may be rotated by 90°, without overlaps into a minimum numbers of identical 
large rectangles. Our aim was to improve the performance of the MultiCrossover Genetic Algorithm 
(MXGA) proposed from the literature for solving the problem. Approach: Four major components of 
the MXGA consisted of selection, crossover, mutation and replacement are considered in this study. 
Initial computational investigations were conducted independently on the named components using 
some benchmark problem instances. The new MXGA was constructed by combining the rank 
selection, modified Partially Mapped Crossover (PMXm), mutation with two mutation operators and 
elitism replacement scheme with filtration. Results: Extensive computational experiments of the new 
proposed algorithm, MXGA, Standard GA (SGA), Unified Tabu Search (UTS) and Randomized Descent 
Method (RDM) were performed using benchmark data sets. Conclusion: The computational results 
indicated that the new proposed algorithm was able to outperform MXGA, SGA, UTS and RDM. 
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INTRODUCTION 

 
 Bin packing problem is a branch of cutting and 
packing problems which has many applications in wood 
and metal industries. Non-oriented case of Two-
Dimensional Rectangular Single Bin Size Bin Packing 
Problem (2DRSBSBPP) based on classification of 
Wascher et al. (2007) is studied in this study. Without 
loss of generality, the problem will be referred as Two-
Dimensional Rectangular Bin Packing Problem 
(2DRBPP) henceforth. Lodi et al. (1999) defined the 
problem as follows: 
 

“Given are a set of n rectangles, which may be 
rotated by 90°. Each rectangle is defined by a 
height hj and a width wj, for j = 1, 2,...,n and an 
unlimited number of identical rectangular bins, 
each having height H and width W. The 
objective of this problem is to pack all the 
rectangles without overlaps, into the minimum 
number of bins” 

 
 The aims of this study is to improve the 
MultiCrossover Genetic Algorithm (MXGA) proposed 

by Lee (2008) for solving 2DRBPP and compare the 
effectiveness of the new proposed algorithm with 
MXGA, SGA and UTS and RDM. The multICrossover 
operator in the MXGA is able to repeat a standard 2-
point crossover operator on the selected parents for t 
times in order to generate a list of temporary offspring 
with size of 2t. Then the fittest and a selected temporary 
offspring using the probabilistic binary tournament 
selection mechanism is chosen to be the offspring of the 
current generation. Swap operator is used instead of the 
reproduction strategy in MXGA when the 
multiCrossover operator is not applied to the selected 
parents. A random swap point is selected in a parent 
and the position of the substrings is swapped to form a 
new offspring. Two mutation operators are applied in 
the MXGA. First, a subset of individuals is selected 
from the new offspring population with a given 
individual mutation probability. Then each gene in the 
selected offspring will go through the gene mutation 
operator with the given probability. The replacement 
strategy used in MXGA is the elitism replacement 
scheme. In this strategy the fittest individuals are 
always selected from the combination of parents and 
offspring population before proceeding to the next 
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generation. Filtration is used to remove the identical 
individuals and replaced them with randomly generated 
new individuals. 
 Our proposed algorithm is constructed by 
combining the most competitive techniques from each 
component of MXGA. The competitive techniques are 
obtained from the initial investigations. The new 
algorithm is referred as Improved MultiCrossover 
Genetic Algorithm (MXGAi) henceforth. 
 

MATERIALS AND METHODS 
 
Improved MultiCrossover Genetic Algorithm 
(MXGAi): 
Representation: Bin permutation proposed by Lee 
(2008) is applied as the gene representation in the 
MXGAi. The length of the individual is equal to the 
number of rectangles. Each gene is represented by a 
uniform random permutation of the integer numbers of 
bins in the interval [1,LB], where LB is the lower bound 
proposed by Dell’Amico et al. (2002). After generating 
the initial population, the Lowest Gap Filled (LGF) 
developed by Lee (2008) is applied as a heuristic 
placement routine in the decoding stage of MXGAi. 
This placement routine provides a dynamic selection of 
the best fitting rectangle which can fill the existing gap 
in the partial layout. During the packing stage, any 
rectangle that cannot be feasibly packed in the bin will 
be kept as an unassigned rectangle in a list, which will 
be packed later using repack strategy. The repack 
strategy will try to pack any unassigned rectangles from 
the list into the used bin by unpacking the selected bin 
and repacking it after adding a rectangular from the 
unassigned rectangle list. 
 
Selection mechanism: Rank selection scheme 
proposed by Baker (1985) is used as the selection 
mechanism in MXGAi. The initial investigations 
indicate that this selection strategy produced a better 
solution quality in comparison with other selection 
mechanisms namely: probabilistic binary tournament 
(Goldberg and Lingle, 1985), stochastic universal 
sampling (Baker, 1987) and sexual selection (Goh et al., 
2003). 
 
Crossover operator: Since maximizing the bin 
utilization of each bin is one of the objective for 
2DRBPP, a specific crossover operator is proposed in 
this study to help the offspring to inherit the maximum 
bin utilization from their parents. The idea behind this 
crossover operator is derived from the Partially Mapped 
Crossover (PMX) (Goldberg and Lingle, 1985) and we 
will refer this crossover as modified Partially Mapped 

Crossover (PMXm). Similar to MXGA, the crossover 
operator is applied for t times in MXGAi. This 
crossover operator is applied as follows: 
 
Step 1: Sort the bins in Parent 1 and Parent 2 (P1 and 

P2) in a non-increasing order of their bin 
utilization. 

Step2: Group the rectangles with the same bin number 
in both P1 and P2. 

Step 3: Let n1 and n2 be the number of applied bins in 
P1 and P2 respectively and N = min{n1, n2}. 

Step 4: Set i←1 and C←0. The variables i(i = 1, 
2,…,N) and C are represent the bin number and 
the number of bins with different bin utilization 
in P1 and P2 respectively. Let U1i and U2i be the 
bin utilization of the bin number i in P1 and P2 
respectively and let c1i and c2i be the number of 
rectangles which are allocated in the bin 
number i in P1 and P2 respectively. 

Step 5: While i≤N, if U1i = U2i, set i←i+1. Else Go to 
Step 6. If (i>N and C = 0) then two offspring 
are generated by duplicating the parents and the 
procedure is stopped.  

Step 6: (i) If U1i>U2i and c1i = c2i, the bin number i in 
the offspring will inherit the corresponding 
rectangles from P1 and the other bins will 
inherit the ordering from P2, while the 
interchange mapping is applied for the 
rectangles which were allocated in the bin 
number i of P2. Go to Step 7. 

 (ii) If U 1i>U2i and c1i>c2i, the bin number i in 
the offspring will inherit the 
corresponding rectangles from P1 and the 
other bins will inherit the ordering from 
P2, while the interchange mapping is 
applied and the extra rectangle(s) will be 
removed from the relevant bin(s) of P2 
and they will be allocated in the bin 
number i of offspring. Go to Step 7.  

 (iii) If U 1i>U2i and c2i>c1i, the interchange 
mapping is applied and the extra 
rectangles will be removed from bin 
number i of P2 and they will be allocated 
in the other bin which is randomly 
selected from the interval [1,n2]. Note that 
if the generated random number is equal 
to i, another random number should be 
generated. Go to Step 7.  

 (iv) Else if U1i < U2i, the process in (i), (ii) or 
(iii) performs in apposite fashion. Go to 
Step 7. 

Step 7: Set i←i+1 and C←C+1. If (i>N) or (C≥t) (t = 5), 
stop the procedure. Else go to Step 5. 
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 Note that generating large number of temporary 
offspring is very time consuming and in the case that 
the computational time is fixed, the algorithm will fail 
to explore the other region of the solution space. On the 
other hand a small number of temporary offspring may 
fail to use the advantage of MultiCrossover process. 
Depending on the variable N and C, parameter t has the 
ability to change during the procedure but it will not 
exceed 5.  
 Since PMXm is an effective but complicated 
crossover operator and applying this operator in the 
MultiCrossover process will be time consuming, it can 
be mixed with other simple crossover operators (e.g., 1-
point Crossover, 2-point Crossover and Uniform 
Crossover (UX)). This can be done by generating 2 
temporary offspring from applying each crossover 
operator on the selected parents in order to generate a 
pool of temporary offspring. We refer to this crossover 
operator as Mixed Crossover (MX). 
 Initial computational experiments which are 
conducted independently for MXGA with different 
crossover operators show that PMXm is able to 
outperform other crossover operators. Other crossover 
operators which were applied in the initial 
investigations are namely: 2-point Crossover, Standard 
UX (Syswerda, 1989), 1X (Davis, 1985), Order 
Crossover (Davis, 1985), Maximal Preservative 
Crossover (Muhlenbein et al., 1988), Matrix Crossover 
(Homaifar et al., 1993) and MX. 
 It is worth noting that except for the standard UX 
which can be applied to any type of gene 
representation, the other crossover operators are only 
suitable for item permutation, while the matrix 
crossover is only suitable for matrix representation. 
Since the gene representation which is defined in the 
MXGAi is bin permutation we considered some 
modifications in order to apply the above crossover 
operators in the MXGAi. Note that in all cases the 
MultiCrossover operator is applied to the selected 
parents via a given crossover probability (pc = 0.75). 
 
Mutation operator: Initial investigations indicate that 
the proposed mutation operator with two mutation 
operators by Lee (2008) in MXGA will generate a 
better solution quality in comparison with the Exchange 
Mutation (Banzhaf, 1990), Scramble Mutation 
(Syswerda, 1991) and Displacement Mutation 
(Michalewiz, 1992). Hence the applied mutation 
operator for MXGAi is the mutation with two mutation 
operators. 
 
Replacement strategy: Initial computational results 
show that elitism replacement scheme produces a better 

solution quality in comparison with the steady state 
strategy. Thus the proposed MXGAi applies elitism 
replacement scheme. The advantage of this scheme is 
that the fit individuals are never lost unless fitter 
individuals are generated. During the elitism 
replacement stage, the combination of parent and 
offspring population with the size of 2Ppop is sorted in a 
non-increasing order of their related fitness value. Then 
the first half of the combined population forms the new 
population for the next generation. After the elitism 
replacement scheme, the filtration process is applied in 
the MXGAi to identify the identical individuals from 
population and replace them by uniform randomly 
generated new individuals. 

 
Unified Tabu Search (UTS): The UTS algorithm 
applied in the computational experiments is introduced 
by Lodi et al. (1999). According to them, this algorithm 
has the ability to generate high quality solutions, 
regardless of the inner heuristic placement routine 
applied in the search. The main feature of this algorithm 
is a unified parametric neighborhood which is 
independent of the specific packing problem to be 
solved and whose size is dynamically changed during 
the search. 

 
Randomized Descent Method (RDM): The RDM 
used in the computational experiments is developed by 
Lee (2008). The main characteristics of the RDM are 
similar to the UTS, while the main differences 
between RDM and UTS are an acceptance rule which 
allows the natural moves solution up to R consecutive 
iterations before terminating the algorithm and the 
randomization process which selects a random move 
from the list of identical moves in a single iteration. 

 
RESULTS 

 
 The performance of the proposed MXGAi is 
compared with the MXGA, SGA, UTS and RDM. All 
the algorithms are coded in ANSI-C using Microsoft 
Visual C++ 6.0 as the compiler and run on a Pentium 4, 
2.0 GHz processor with 1.0 GB memory. Ten different 
classes of problem instances are considered. The first 
six classes (I-VI) are proposed by Berkey and Wang 
(1987) and the next four classes (VII-X) are proposed 
by Martello and Vigo (1998) (Table 1). In each of the 
first six classes, all the rectangles are generated in the 
same interval while in the other four classes a more 
realistic situation is considered and the rectangles are 
classified into four types: 
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Type 1: wj uniformly random in 
2

W,W
3
 
 
 

, hj 

uniformly random in 
1

1, H
2

 
 
 

 

Type 2: wj uniformly random in 
1

1, W
2

 
 
 

, hj uniformly 

random in 
2

H,H
3
 
 
 

 

Type 3: wj uniformly random in 
1

W,W
2
 
 
 

, hj 

uniformly random in 
1

H,H
2
 
 
 

 

Type 4: wj uniformly random in 
1

1, W
2

 
 
 

, hj uniformly 

random in 
1

1, H
2

 
 
 

 

 
 For each class, we considered five values of n: 20, 
40, 60, 80 and 100 where n represents the number of 
rectangles which are going to be packed into the bins. 
For each combination of class and value of n, ten 
problem instances are generated. The performance of 
the local search algorithms is compared on the basis of 
the Average Ratio and the Overall Bin Utilization: 
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where, UBi and LBi represent the heuristic solution and 
the lower bound for the problem instance i respectively: 
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Where: 
A j = The total area of all the rectangles in bin j (j = 1, 2, 

…, UBi) 
A = The area of the bin 

 
  In order to have a fair comparison between 
MXGAi, MXGA and SGA, all these algorithms will 
start their implementation with the same initial 
population and a stopping criteria of 120 CPU seconds is 
employed  for  each  problem  instances in all algorithms.  

Table 1: Classes for the problem instances 

Class  Bin (W×H) Rectangle (wj and hj) 

I  10×10 Uniformly random in [1,10] 
II  30×30 Uniformly random in [1,10] 
III  40×40 Uniformly random in [1,35] 
IV  100×100 Uniformly random in [1,35] 
V  100×100 Uniformly random in [1,100] 
VI  300×300 Uniformly random in [1,100] 
VII  100×100 Type 1 with probability 70%, Type 2, 3 and  
  with probability 10% each 
VIII  100×100 Type 2 with probability 70%, Type 1, 3 and 
  4 with probability 10% each 
IX 100×100 Type 3 with probability 70%, Type 1, 2 and 
  4 with probability 10% each 
X 100×100 Type 4 with probabilty 70%, Type 1, 2 and 
  3 with probability 10% each 

 
Note that the crossover operator is applied for t (t = 5) 
and t’(t’≤5) times in both MXGA and MXGAi 
respectively. The MultiCrossover operator in MXGA has 
the ability to generate 2t temporary offspring, while in 
MXGAi the operator generates t’ temporary offspring. 
Unlike MXGA and MXGAi, SGA applies the standard 
2-point crossover operator in order to generate exactly 
two offspring from two selected parents. The 
reproduction strategy is applied in SGA instead of swap 
operator. The gene mutation operator in SGA applies for 
the entire population, while in MXGA and MXGAi only 
25% (pM = 0.25) of the individuals have the chance to be 
mutated. Steady state replacement strategy is employed 
as the replacement strategy in SGA. 
 The extensive computational results are presented 
in Table 2. The first pair of columns in Table 2 
indicates the class and the value of n. The following 
pairs of columns give the result of MXGA, MXGAi, 
SGA and UTS respectively. For each algorithm, entries 
in the first and second columns of the table report the 
average ratio (Eq. 1) and the average overall bin 
utilization (Eq. 2) respectively which are computed for 
15 times over all problem instances. The final row of 
each class gives the overall average over that class for 
all values of n and the final row of the table gives the 
overall average over all classes. 

 
DISCUSSION 

 
 The computational results of MXGAi and MXGA 
indicate that combining the PMXm crossover operator 
with rank selection mechanism in MXGAi can improve 
the average ratio over all classes about 0.4%. 
Improvement of 1.5% in the MXGA as compared to 
SGA, shows that applying the crossover operator for t 
times in MXGA can improved the solution quality.  
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Table 2: A Comparison of MXGAi with MXGA, SGA, UTS and RDM 
 MXGA  MXGAi  SGA  UTS  RDM 
 ----------------------- ------------------------ ----------------------- ----------------------- ------------------------ 
Class        n Ratio OBU Ratio OBU Ratio OBU Ratio OBU  Ratio OBU 
                 20 1.027 81.46 1.027 81.46 1.027 81.04 1.027 80.26 1.052 76.77 
                 40 1.033 86.45 1.031 86.72 1.049 84.42 1.032 85.48 1.064 80.75 
I                60 1.040 88.30 1.040 88.41 1.040 87.85 1.040 87.33 1.076 81.90 
                 80 1.059 87.30 1.059 87.49 1.059 86.93 1.059 86.43 1.046 82.13 
               100 1.025 92.79 1.023 93.29 1.025 92.59 1.035 90.75 1.063 86.31 
        Average 1.037 87.26 1.036 87.47 1.040 86.57 1.039 86.05 1.060 81.57 
                 20 1.000 42.40 1.000 42.40 1.000 42.40 1.000 42.40 1.000 42.40 
                 40 1.100 56.02 1.100 55.74 1.100 55.03 1.100 53.76 1.100 53.58 
II              60 1.000 76.42 1.000 76.34 1.167 70.38 1.000 75.80 1.007 75.12 
                 80 1.011 82.60 1.000 83.48 1.067 78.00 1.000 83.30 1.024 81.25 
               100 1.000 81.12 1.000 81.40 1.033 78.05 1.000 81.20 1.004 80.68 
        Average 1.022 67.71 1.020 67.87 1.073 64.77 1.020 67.29 1.027 66.61 
                 20 1.037 68.91 1.037 68.94 1.057 66.21 1.037 67.04 1.053 65.79 
                 40 1.087 74.47 1.084 74.81 1.106 71.15 1.089 72.32 1.118 68.61 
III             60 1.086 80.94 1.078 82.07 1.095 78.35 1.079 80.21 1.125 74.34 
                 80 1.080 81.37 1.072 82.46 1.092 79.17 1.081 80.66 1.125 74.41 
               100 1.067 83.65 1.061 84.36 1.087 80.39 1.062 83.41 1.138 75.79 
        Average 1.071 77.87 1.067 77.92 1.087 75.06 1.070 76.73 1.112 71.79 
                 20 1.000 38.36 1.000 38.36 1.000 38.36 1.000 38.36 1.000 38.36 
                 40 1.000 56.51 1.000 56.16 1.000 55.01 1.000 54.94 1.020 52.98 
IV             60 1.100 71.08 1.100 71.21 1.100 69.64 1.100 69.85 1.100 69.76 
                 80 1.091 74.54 1.058 77.13 1.100 72.86 1.033 78.44 1.071 76.99 
               100 1.038 78.21 1.033 78.94 1.067 75.37 1.037 78.82 1.038 78.36 
        Average 1.046 63.74 1.038 64.36 1.053 62.25 1.034 64.08 1.046 63.29 
                 20 1.042 70.46 1.042 70.50 1.058 68.06 1.042 68.38 1.060 66.83 
                 40 1.067 75.95 1.063 76.39 1.080 73.36 1.072 72.95 1.109 69.76 
V              60 1.067 78.23 1.062 78.96 1.075 76.33 1.074 76.52 1.110 71.55 
                 80 1.067 78.59 1.065 79.20 1.080 76.40 1.071 77.34 1.109 72.18 
               100 1.065 82.22 1.054 83.62 1.081 79.81 1.072 81.03 1.106 75.86 
        Average 1.061 77.09 1.057 77.74 1.075 74.79 1.066 75.24 1.099 71.23 
                 20 1.000 29.23 1.000 29.23 1.000 29.23 1.000 29.23 1.000 29.23 
                 40 1.400 48.92 1.400 48.63 1.400 47.42 1.400 46.73 1.400 47.44 
VI             60 1.023 68.37 1.017 68.79 1.050 65.96 1.050 65.47 1.030 66.72 
                 80 1.000 67.55 1.000 67.93 1.000 67.00 1.000 67.02 1.000 67.05 
               100 1.078 74.46 1.067 75.57 1.100 72.40 1.067 74.61 1.069 74.86 
        Average 1.100 57.70 1.097 58.03 1.110 56.40 1.103 56.61 1.100 57.06 
                 20 1.110 71.76 1.110 71.86 1.130 68.79 1.130 68.50 1.126 67.92 
                 40 1.083 79.52 1.076 80.46 1.116 75.28 1.083 78.07 1.123 73.41 
VII           60 1.047 85.16 1.042 85.72 1.085 80.68 1.057 84.18 1.100 77.93 
                 80 1.084 83.95 1.073 85.34 1.091 82.22 1.092 83.18 1.125 77.70 
               100 1.071 85.37 1.064 86.46 1.092 82.20 1.079 84.52 1.119 78.35 
        Average 1.079 81.15 1.073 81.97 1.103 77.83 1.088 79.69 1.119 75.06 
                 20 1.100 72.41 1.100 71.85 1.120 69.01 1.130 69.40 1.112 69.77 
                 40 1.093 80.06 1.092 80.47 1.093 78.41 1.105 78.27 1.122 75.18 
VIII          60 1.060 84.65 1.056 85.40 1.099 79.67 1.070 83.31 1.106 78.22 
                 80 1.075 84.59 1.066 85.95 1.106 80.62 1.081 83.86 1.116 78.37 
               100 1.070 85.43 1.061 86.68 1.086 82.79 1.083 84.23 1.113 78.99 
        Average 1.080 81.43 1.075 82.07 1.101 78.10 1.094 79.81 1.114 76.11 
                 20 1.000 43.57 1.000 43.57 1.007 43.03 1.000 42.97 1.004 42.31 
                 40 1.011 45.74 1.011 45.75 1.011 45.56 1.011 45.10 1.011 44.27 
IX             60 1.007 43.56 1.007 43.56 1.007 43.49 1.007 42.75 1.007 42.12 
                 80 1.009 45.11 1.009 45.11 1.009 45.01 1.009 43.68 1.009 43.50 
               100 1.007 45.69 1.007 46.06 1.007 46.01 1.007 43.96 1.008 43.87 
        Average 1.007 44.73 1.007 44.81 1.008 44.62 1.007 43.69 1.008 43.21 
                 20 1.125 68.33 1.125 68.33 1.125 67.01 1.125 64.12 1.157 62.95 
                 40 1.061 79.58 1.061 79.78 1.061 77.87 1.061 77.55 1.077 75.45 
X              60 1.069 83.74 1.061 84.72 1.085 80.59 1.076 81.90 1.094 79.20 
                 80 1.060 85.19 1.049 86.59 1.064 83.17 1.049 85.92 1.088 80.21 
               100 1.050 86.18 1.043 87.01 1.066 83.36 1.045 86.76 1.081 81.32 
        Average 1.073 80.60 1.068 81.29 1.080 78.40 1.071 79.25 1.099 75.82 
  AVERAGE 1.058 71.93 1.054 72.35 1.073 69.88 1.059 70.84 1.078 68.18 
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 Generally, RDM produces the least impressive 
results and this indicates that the algorithm is not a 
suitable choice for solving 2DRBPP. According to the 
computational results, UTS is performing better than 
RDM. Average computed values, for each class indicates 
that MXGAi outperformed the other algorithms with 
only one exception occurs for class IV. In this class UTS 
performs the best only in term of overall average ratio. 
The overall results over all the classes in Table 2 indicate 
that MXGAi is the more preferred choice followed by 
MXGA, UTS, SGA and RDM for solving 2DRBPP. 
 

CONCLUSION 
 
 This study presents a new MXGA for solving 
2DRBPP by combining the rank selection, PMXm, 
mutation with two mutation operators and elitism 
replacement scheme with filtration. Extensive 
computational experiments were conducted and the 
results indicated that the new proposed algorithm is 
able to outperform the MXGA, SGA, UTS and RDM. 
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