
Journal of Mathematics and Statistics 6 (3): 226-232, 2010
ISSN 1549-3644
© 2010 Science Publications

Corresponding Author: E.A. Adebile, Department of Mathematical Sciences, Federal University of Technology Akure, Nigeria
226

The Exact Root Algorithm for Computing the Real Roots of an Nth Degree Polynomial

E.A. Adebile and V.I. Idoko

Department of Mathematical Sciences, Federal University of Technology Akure, Nigeria

 Abstract: Problem statement: The need to find an efficient and reliable algorithm for computing the
exact real roots of the steady-state polynomial encountered in the investigation of temperature profiles
in biological tissues during Microwave heating and other similar cases as found in the literature gave
rise to this study. Approach: The algorithm (simply called ERA-Exact Root Algorithm) adopted
polynomial deflation technique and uses Newton-Raphson iterative procedure though with a modified
termination rule. A general formula was specified for finding the initial approximation so as to
overcome the limitation of local convergence which is inherent in Newton’s method. Results: A new
algorithm for finding the real roots of an nth degree polynomial at a practically low computational cost
was obtained. Conclusion/Recommendations: ERA is simple, flexible, easy to use and has clear
benefits and preferences to a number of existing methods.

Key words: Algorithm, computational cost, nth degree polynomial, real roots

INTRODUCTION

 The classical problem of solving an nth degree
polynomial equation has substantially influenced the
development of mathematics throughout the centuries
and still has several important applications to the theory
and practice of present-day computing as reported by
Pan (1997).
 Jenkins-Traub algorithm, a three-stage method for
computing the zeros of a polynomial in roughly
increasing order of magnitude was presented by Jenkins
and Traub (1970). Bairstow’s method attempts to find
the zeros of real polynomials by searching for pairs of
zeros which generate real quadratic factors as reported
by Brodlie (1975). Edelman and Murakami (1995)
presented a good method for computing the zeros of a
polynomial P(x). This method first finds the companion
matrix C of P(x) and then computes its eigenvalues
knowing that if λ is an eigenvalue of C then λ is a root
of P(x). Thus, finding the eigenvalues of C is equivalent
to finding the zeros of P(x).
 Bernoulli’s method exploits the connection
between a linear difference equation and the zeros of its
characteristic polynomial in order to find the zeros of a
polynomial without knowing crude first
approximations. Graeffe’s root-squaring method
basically replaces the equation:

n n 1 n 2 3 2

n n n 1 n 2 3 2 1 0P (x) a x a x a x ...a x a x a x a− −
− −= + + + + + +

by an equation still of degree n, whose roots are the
squares of the roots of Pn(x). By iterating this
procedure, the roots of unequal magnitude become
widely separated in magnitude. By separating the roots
sufficiently, it is possible to calculate the roots directly
from the coefficients. Newton’s method is a well-
known iterative method for approximating the zeros of
a polynomial equation. Starting with a given initial
approximation x0, a sequence x1, x2, x3, … is computed
where xn+1 is given by:

n 1 n nx x h+ = +

where, n
n

n

P(x)h
P'(x)

= .

 The iterative procedure is terminated when |hn| has
become less than the largest error permissible in the
root. These were reported in literature The Nth root
algorithm though a consequence of Newton’s method is
a fast converging method for finding the principal nth
root n A of a positive real number, A (Wikipedia,
2007).
 A comprehensive bibliography on roots of
polynomials covering (hopefully) most published works
between the “Dawn of history” and 1994 was presented
by McNamee (1993). His paper surveyed the twenty-
nine existing categories of polynomial root-finding
algorithms namely: Bracketting method; Newton’s
method; Simultaneous root-finding method; Graeffe’s
method; Integral methods esp. Legendre’s; Bernoulli’s

J. Math. & Stat., 6 (3): 226-232, 2010

227

and QD method; Interpolation methods such as Secant,
Muller’s; Minimization method; Jenkins-Traub method;
Sturm sequences, greatest common divisors, resultants,
stability questions, Interval methods; Miscellaneous;
Lin and Bairstow’s methods; Methods involving
derivatives higher than 1st; Complexity, convergence
and efficiency questions; Evaluation of polynomials
and derivatives; A priori bounds; Low-order
polynomials (special methods); Integer and Rational
arithmetic; Special cases such as Bessel polynomials;
Vincent’s methods; Mechanical devices; Acceleration
techniques; Existence questions; Error estimates,
deflation, sensitivity, continuity; Roots of random
polynomials; Relation between roots of a polynomial
and those of its derivatives; and Nth roots.
 For every one of the standard existing methods
listed above, there are some exceptional cases in which
the particular method applied fails to work. For
example, Newton’s method requires a good initial
approximation for convergence, Bracketing method
requires a previous knowledge of an initial interval
guaranteed to contain a root i.e. if a and b are the
endpoints of the interval (a, b) , the Graeffe’s method is
not suitable for polynomials some of whose roots are of
equal magnitude and so on .The research on approach
for finding and studying the behavior of roots for
polynomial equation is still going on vigorously as is
evident in literature (San Joe Math Circle, 2009;
Wikipedia, 2010; Gatton et al., 2007; Goedecker,
1994) (a, b).
 In this study, we present a new algorithm for
finding the exact real roots of an nth degree polynomial
at a practically low computational cost. The need to
find an efficient and reliable algorithm for computing
the exact real roots of the steady-state polynomial
encounter in our previous works and other similar cases
as found in the literature gave rise to this study. Our
algorithm (simply called ERA-Exact Root Algorithm)
adopts polynomial deflation technique and uses
Newton-Raphson iterative procedure though with a
modified termination rule. We specify a general
formula for finding the initial approximation so as to
overcome the limitation of local convergence which is
inherent in Newton’s method. Above all, ERA is
insensitive to “clusters” and computes the exact real
roots of polynomials (cases of multiple roots
inclusive).

Mathematical formulation: Given an nth degree
polynomial:

n n 1 n 2 3
n n n 1 n 2 3

2
2 1 0

P (x) c x c x c xc x

c x c x c

− −
− −= + + + +

+ +
 (1)

where, n∈Z+, ci∈R; i = 1(1)n.
 We set:

ni = n-i+1 (2)

 Thus, we have:

1

2

3

n

n n 1 1 n

n n 2 1 n 1

n n 3 1 n 2

...

n n n 1 1

= − + =

= − + = −

= − + = −

= − + =

 (3)

1 2 31

n

n n 1 n 2n n n

1n

P (x) P (x),P (x) P (x),P (x) P (x),

P (x) P (x)

− −= = =

=
 (4)

 Let a1 be a real root of

1n
P (x) .

 Then from factor theorem, the following holds:

1 1
1n n 1

P (x) (x a)P (x)
−

= − (5)

where

1n 1
P (x)

−
 is a polynomial of degree1n 1− .

 Recall from (3) that 1 2n 1 n− = .

 Thus, (5) becomes:

1 2
1n n

P (x) (x a)P (x)= − (6)

 Given a2, a real root of

2n
P (x) and from (6) we

have:

2 3
2n n

P (x) (x a)P (x)= − (7)

 Substituting (7) into (6) yields:

2 3
1 2n n

P (x) (x a) (x a)P (x)= − ⋅ − (8)

 It is easy to verify that (5) by extension becomes:

2 1
1 2 3 1n n 1

P (x) (x a) (x a) (x a)...(x a)P (x)
−

= − ⋅ − ⋅ − − (9)

Recall that P1(x) is of the form (x-an).
 Thus, (9) becomes:

2 1 1
1 2 3n n 1 n

P (x) (x a) (x a) (x a)...(x a)(x a)
−

= − ⋅ − ⋅ − − − (10)

J. Math. & Stat., 6 (3): 226-232, 2010

228

 holds if
1n

P (x) has n1 real roots;

1 1
1 2 3 n 1 n

a ,a ,a ,...,a and a .
−

 Suppose Pn(x) has k real roots, then we have:

n 1 2 3 k 1

k n k

P (x) (x a) (x a) (x a)...(x a)

(x a) P (x)

−

−

= − ⋅ − ⋅ − − ⋅

− ⋅
 (11)

where Pn-k(x) a factor of Pn(x) has (n k) 2− pairs of

complex conjugate roots.

MATERIALS AND METHODS

Method of solution: By substituting n = n1 in (1) we
obtain the following:

1 1

1 1 1

n n 1 n 2 3
n 2 3n n n 1

2
2 1 0

P (x) c x c x c x ...c x

c x c x c

− −
−−

= + + + +

+ +
 (12)

 We find a real root a1 of

1n
P (x) using Newton-

Raphson iterative procedure with a modified
termination rule and a predetermined initial
approximation as follows:

1

1

n
s 1 s s 0 0n

x x U (x) with x c+ = − = (13)

Where:

1

1

1

sn
sn

sn

P (x)
U (x)

P ' (x)
=

and

1

1

n
s sn

dP (x)
P ' (x) | x x

dx
= =

 We terminate the iterative procedure if

1
s 1n

U (x) 0+ = and then set 1 s 1a x += .

 From (6) we have:

1 2
1n n

P (x) (x a)P (x)= − (14)

 We deflate the polynomial

1n
P (x) using synthetic

division to obtain:

()
()

1 1

2 1 1 1 1

1

1 1 1

n 1 n 2
1n n 1 n n 1 n

n 32
1 1n 2 n 1 n

P (x) P (x) c x c a c x

c a c a c x

− −
− −

−
− −

= = + + +

+ + +
 (15)

 We select r1∈Z+ and satisfying the inequality
0≤r1≤n1-1 and find an expression for the coefficient

1r
c

of 1rx in
1n 1

P (x)
−

.

 By setting r1 = n1-k1 and observing the terms of

1n 1
P (x)

−
 in (15) it is easy to verify that:

1 1

1

1 1 1 1

1

n r 1
l

r l r l
l 0

c a c
− −

+ −
=

= ⋅∑ (16)

 Substituting (16) into (15) yields:

1 1 1

1 1

2 1 1 1

1 1

n 1 n r 1
l r
1n l r l

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑ (17a)

and

1 1 1

1 1

2 1 1

1 1

n 1 n r 1
l r 1

1 1n l r l
r 0 l 0

P' (x) r a c x
− − −

−
+ +

= =

 
=   

 
∑ ∑ (17b)

where,
1 1l r l

c
+ +

 is the coefficient of 1 1l r lx + + in
1n

P (x) .

 We again obtain a real root a2 of
2n

P (x) following

the same procedure as in (13):

2
s 1 s sn

x x U (x)+ = − (18)

Where:

2

2

2

sn
sn

sn

P (x)
U (x)

P ' (x)
=

and

21

2

n
s sn

dP (x)
P ' (x) | x x

dx
= =

 To obtain x0 we set r1 = 0 in (16) and substitute the
result in (16):

1

1
2

1

2

n 1
ln

0 1 l 1
l 0

x a c
−

+
=

⇒ = ∑ (19)

 The iterative procedure is terminated if

2
s 1n

U (x) 0+ = and we set 2 s 1a x += .

 We deflate
2n

P (x) following the same steps as

above to obtain:

J. Math. & Stat., 6 (3): 226-232, 2010

229

()
()

2 2

3 2 2 2 2

2

1 2 2

n 1 n 2
2n n 1 n n 1 n

n 32
2 2n 2 n 1 n

P (x) P (x) c x c a c x

c a c a c x

− −
− −

−
− −

= = + + +

+ + +
 (20)

which can be written as:

2 2 2

1 2

3 2 2

2 2

n 1 n r 1
l r
2n l r 1

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑ (21a)

where,
2 2l r 1

c
+ +

 is the coefficient of 2 2l r 1x + + in
2n

P (x)

and

2 2 2

2 2

3 2 2

2 2

n 1 n r 1
l r

2 1n l r l
r 0 l 0

P' (x) r a c x
− − −

+ +
= =

 
=   

 
∑ ∑ (21b)

where, r2 satisfies the inequality 0≤r2≤n2-1 and r2 = n2-k2.
 We perform the iteration to obtain:

2

2
3

3 2

2

n 1
ln

s 1 s s 0 2n l 1
l 0

x x U (x) with x a c
−

+ +
=

= − = ∑ (22)

Where:

3

3

3

sn
sn

sn

P (x)
U (x)

P ' (x)
=

and

31

3

n
s sn

dP (x)
P ' (x) | x x

dx
= =

 The iteration is terminated if

3
s 1n

U (x) 0+ = and we

set a3 = xs+1.
 Generalizing, we have:

h h h

h h

j h h

hh h

n 1 n r 1
l r
hn l r 1

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑ (23a)

and

h h h

h 2

j h h

h h

n 1 n r 1
l r

2 hn l r l
r 1 l 0

P' (x) r a c x
− − −

+ +
= =

 
=   

 
∑ ∑ (23b)

where,
h hl r l

c
+ +

 is the coefficient of h hl r lx + + in
hn

P (x) and

h = j-1.

 The iterative process becomes:

h

hj

j h

h

n 1
ln

s 1 s s 0 hn l 1
l 0

x x U (x) with x a c
−

+ +
=

= − = ∑ (24)

Where:

j

j

j

sn
sn

sn

P (x)
U (x)

P ' (x)
=

and

3 j

j

n

s sn

dP (x)
P ' (x) | x x

dx
= =

and terminates if

j
s 1n

U (x) 0+ = and we set aj = xs+1.

 Suppose Pn(x) has k real roots; a1, a2, a3,…ak-1 and
ak then we have:

n 1 2 3 k 1

k n k

P (x) (x a) (x a) (x a)...(x a)

(x a) P (x) 0

−

−

= − ⋅ − ⋅ − − ⋅

− ⋅ =
 (25)

where Pn-k(x) a factor of Pn(x) has (n-k)/2 complex
conjugate roots.
 If k = n then (25) becomes:

n 1 2 3 n 1

n

P (x) (x a) (x a) (x a)...(x a)

(x a) 0

−= − ⋅ − ⋅ − − ⋅

− =
 (26)

and the real roots of Pn(x) are a1, a2, a3,…an-1 and an.

The exact root algorithm:

(I) Input Degree of the polynomial, N
 Coefficients of the polynomial;
 c0, c1, c2, c3,…cn-1 and cn
 Number of iterations, M
(II) Define

0 0 1

n 1 n

c(0,n) c ,c(0,n) c ,c(1,n) c ,...,c(n 1,n)

c and c(n,n) c−

= = = − =

=

n n 1 2

nP (x) c(n,n)x c(n 1,n)x ... c(2,n)x

c(1,n)x c(0,n)

−= + − + + +
+

n 1 n 2

nP' (x) nc(n,n)x (n 1)c(n 1,n)x ...

2c(2,n)x c(1,n)

− −= + − − + +
+

J. Math. & Stat., 6 (3): 226-232, 2010

230

 n
n

n

P (x)U (x)
P ' (x)

=

(III) Compute Initial approximation

 n
nx c(0,n)=

 Repeat
 Xs+1 = xs-Un(xs)
 Until
 Un(xs+1) = 0 then set a1 = xs+1
 Or
 s = m then set a1 =0
(IV) Deflate Pn(x) using the factor (x-a1) to obtain

the expression
 n 1 n 1P (x) (x a) P (x)−= − ⋅

(V) Set The coefficient cr of xr in Pn(x) as

1

n r 1
1

r l r l
l 0

c a c
− −

+ −
=

= ⋅∑

 The polynomial Pn(x) as

2 r

2

n 1 n r 1
l r

n 1 1 l r l
l 0 l 0

P (x) a c x
− − −

− + −
= =

 
=   

 
∑ ∑

It’s first derivative nP' (x) as:

 2

2

n 1 n r 1
l r 1

n 1 1 l r l
l 0 l 0

P' '(x) r a c x
− − −

−
− + +

= =

 
=   

 
∑ ∑

 Their ratio Un(x) as:

 n 1
n 1

n 1

P (x)U (x)
P '(x)

−
−

−
=

(VI) Compute Initial approximation

 n 1
0x c(0,n 1)−= −

 Repeat
 Xs+1 = xs-Un-1(xs)
 Until

 Un-1(xs+1) = 0 then set a2 = xs+1
 Or
 s = m then set a2 = 0
(VII) Continue Steps IV, V and VI for n-2, n-3,

…, 3, 2 and 1
 to compute a1, a2, a3,…an-1 and an
(VIII) Output Roots of the polynomial; a1, a2,
a3,…an-1 and an

ERA IN C++ CODE: We present a model program (in
C++ computing language) for executing the Exact Root
Algorithm as shown below:

#include<iostream.h>
#include<math.h>

int main() {
 int m,n,r,j,i,m1,k1;
 int m2,l1,l2,l,h,k,s1;
 double u;
 double b,b1;
 double *c,*a,*x;
 cout<<"enter value for m ";
 cin>>m;
 cout<<"enter value for n ";
 cin>>n;
c=new double [n,n];
 if(c==0)
 cout<<"eroooor";
 a=new double [n];
 if(a==0)
 cout<<"erooor";
 x=new double [n];
 if(x==0)
 cout<<"erooor";
 for (i=0;i<=n;i++){
 cout<<"enter value for co-efficient of x raised to
power "<<i<<" ";
 cin>>c[n,i];
 }
 int s;
 double d,m0,p1,p,g,g1;
 d=c[n,0]*c[n,0];
 m0=0.5/n;
 x[0]=pow(d,m0);
 s=0; g=0;
 p=c[n,0];
 do {
 s1=s; s=s+1; r=0;
 do {
 r=r+1;
 p1=c[n,r]*pow(x[s1],r);
 g1=r*c[n,r]*pow(x[s1],(r-1));
 p=p+p1; g=g+g1;
 }while(r!=n);
 u=p/g;
 if(u=0)
 break;
 x[s]=x[s1]-u;
 }while(s!=m);
 if(u=0)
 a[1]=x[s1];
 else
 a[1]=0;
 j=1;
 do {
 h=j; j=j+1;
 m1=(n+1)-h;
 m2=(n+1)-j;

J. Math. & Stat., 6 (3): 226-232, 2010

231

 k=0;
 do {
 k=k1; k1=k1+1;
 r=m1-k1;
 l1=r+1;
 b=c[m1,l1];
 l=0;
 do {
 l=l+1;
 l2=l+r;
 b1=pow(a[h],l)*c[m1,l2];
 b=b+b1;
 }while(l!=k);
 c[m2,r]=b;
 }while(r!=0);
 d=c[m2,0]*c[m2,0];
 m0=0.5/m2;
 x[0]=pow(d,m0);
 s=0; g=0;
 p=c[m2,0];
 do {
 s1=s; s=s+1; r=0;
 do {
 r=r+1;
 p1=c[m2,r]*pow(x[s1],r);
 g1=r*c[m2,r]*pow(x[s1],(r-1));
 p=p+p1; g=g+g1;
 }while(r!=m2);
 u=p/g;
 if(u=0)
 break;
 x[s]=x[s1]-u;
 }while(s!=m);
 if(u=0)
 a[j]=x[s1];
 else
 a[j]=0;
 }while(m2!=0);
 for(i=0;i<=n;++i){
 cout<<a[i];
 }
return 0;
}

RESULTS AND DISCUSSION

 This study presents a very efficient and reliable
algorithm (simply called ERA-Exact Root Algorithm)
for computing the exact real roots of an nth degree
polynomial which has the following benefits over the
standard existing methods earlier mentioned:

• ERA prescribes a unique formula for deflating an

nth degree polynomial to another polynomial of
degree (n-1) (Eq. 17a)

• ERA specifies a general formula for computing the
initial approximation, x0, which guarantees
convergence for each stage of polynomial deflation
(Eq. 23a)

• ERA presents a modified termination rule,

j
s 1n

U (x) 0+ = , which guarantees accuracy in the

computation of polynomial roots and also
accommodates cases of multiple roots

• Most importantly, ERA is simple, flexible and easy
to use

 We pick polynomial (of degree 10, say) arbitrarily,
use ERA to compute the real roots and display the
results as follows:

The roots of the polynomial:

10 9 8 7 6 5 4

3 2

X 7X 3X 64X 10X 110X 85X

9X 95X 10X 24 0

− − − − − − +

− + + =

are
a[1] = 1.302775638
a[2] = 0.6180339887
a[3] = -0.5615528128
a[4] = -0.7015621187
a[5] = -1.6180339887
a[6] = -2.302775638
a[7] = 5.7015621187
a[8] = 3.561552813
a[9] = 0
a[10] = 0

 Note that a[j] = 0, j ε [1, n] implies that a[j] is a
complex root of Pn(x).

CONCLUSION

 In conclusion, ERA is good for teaching and
research and can be used to solve real life polynomial
models.

REFERENCES

Brodlie, K.W., 1975. On Bairstow’s method for

solution of polynomial equations. Math. Comput.,
29: 816-826. http://www.jstor.org/stable/2005292

Edelman, A. and H. Murakami, 1995. Polynomial roots
from companion matrix eigenvalues. Math.
Comput., 64: 763-776.
http://www.jstor.org/stable/2153450

Gatton, T., A. Datta, P. Dey, J.J. Martinez and C. Ting,
2007. A web-based intelligent tutorial system.
http://nucri.nu.edu/WebBasedTutorialSystem.pdf

J. Math. & Stat., 6 (3): 226-232, 2010

232

Goedecker, S., 1994. Remarks on algorithms to find
roots of polynomials. SIAM J. Sci. Comp.,
15: 1059-1063. DOI: 10.1137/0915064

Jenkins, M.A. and J.F. Traub, 1970. A three-stage
algorithm for real polynomials using quadratic
iteration. SIAM J. Numer. Anal., 7: 545-566.
http://www.jstor.org/pss/2949376

McNamee, J.M., 1993. A bibliography on roots of
polynomials. J. Comput. Applied Math., 47: 391-394.
DOI: 10.1016/0377-0427(93)90064-I

Pan, V.Y., 1997. Solving a polynomial equation: Some
history and recent progress. Soc. Ind. Applied
Math., 39: 187-220.
http://www.jstor.org/stable/2133107

San Joe Math Circle, 2009. Polynomials II.
http://www.sanjosemathcircle.org/handouts/2009-
2010/20090912.pdf

Wikipedia, 2007. Root-finding algorithms.
http://www.briefphone.com/.../Root-
finding+algorithm+-+Wikipedia

Wikipedia, 2010. Root-finding algorithms.
http://www.en.wikipedia.org/wiki/Root-
finding_algorithm

