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 Abstract: Problem statement: The need to find an efficient and reliable algorithm for computing the 
exact real roots of the steady-state polynomial encountered in the investigation of temperature profiles 
in biological tissues during Microwave heating and other similar cases as found in the literature gave 
rise to this study. Approach: The algorithm (simply called ERA-Exact Root Algorithm) adopted 
polynomial deflation technique and uses Newton-Raphson iterative procedure though with a modified 
termination rule. A general formula was specified for finding the initial approximation so as to 
overcome the limitation of local convergence which is inherent in Newton’s method. Results: A new 
algorithm for finding the real roots of an nth degree polynomial at a practically low computational cost 
was obtained. Conclusion/Recommendations: ERA is simple, flexible, easy to use and has clear 
benefits and preferences to a number of existing methods. 
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INTRODUCTION 

 
 The classical problem of solving an nth degree 
polynomial equation has substantially influenced the 
development of mathematics throughout the centuries 
and still has several important applications to the theory 
and practice of present-day computing as reported by 
Pan (1997). 
 Jenkins-Traub algorithm, a three-stage method for 
computing the zeros of a polynomial in roughly 
increasing order of magnitude was presented by Jenkins 
and Traub (1970). Bairstow’s method attempts to find 
the zeros of real polynomials by searching for pairs of 
zeros which generate real quadratic factors as reported 
by Brodlie (1975). Edelman and Murakami (1995) 
presented a good method for computing the zeros of a 
polynomial P(x). This method first finds the companion 
matrix C of P(x) and then computes its eigenvalues 
knowing that if λ is an eigenvalue of C then λ is a root 
of P(x). Thus, finding the eigenvalues of C is equivalent 
to finding the zeros of P(x). 
 Bernoulli’s method exploits the connection 
between a linear difference equation and the zeros of its 
characteristic polynomial in order to find the zeros of a 
polynomial without knowing crude first 
approximations. Graeffe’s root-squaring method 
basically replaces the equation: 

 
n n 1 n 2 3 2

n n n 1 n 2 3 2 1 0P (x) a x a x a x ...a x a x a x a− −
− −= + + + + + +  

by an equation still of degree n, whose roots are the 
squares of the roots of Pn(x). By iterating this 
procedure, the roots of unequal magnitude become 
widely separated in magnitude. By separating the roots 
sufficiently, it is possible to calculate the roots directly 
from the coefficients. Newton’s method is a well-
known iterative method for approximating the zeros of 
a polynomial equation. Starting with a given initial 
approximation x0, a sequence x1, x2, x3, … is computed 
where xn+1 is given by: 
 

n 1 n nx x h+ = +  

 

where, n
n

n

P(x )h
P'(x )

= . 

 The iterative procedure is terminated when |hn| has 
become less than the largest error permissible in the 
root. These were reported in literature The Nth root 
algorithm though a consequence of Newton’s method is 
a fast converging method for finding the principal nth 
root n A  of a positive real number, A (Wikipedia, 
2007). 
 A comprehensive bibliography on roots of 
polynomials covering (hopefully) most published works 
between the “Dawn of history” and 1994 was presented 
by McNamee (1993). His paper surveyed the twenty-
nine existing categories of polynomial root-finding 
algorithms namely: Bracketting method; Newton’s 
method; Simultaneous root-finding method; Graeffe’s 
method; Integral methods esp. Legendre’s; Bernoulli’s 
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and QD method; Interpolation methods such as Secant, 
Muller’s; Minimization method; Jenkins-Traub method; 
Sturm sequences, greatest common divisors, resultants, 
stability questions, Interval methods; Miscellaneous; 
Lin and Bairstow’s methods; Methods involving 
derivatives higher than 1st; Complexity, convergence 
and efficiency questions; Evaluation of polynomials 
and derivatives; A priori bounds; Low-order 
polynomials (special methods); Integer and Rational 
arithmetic; Special cases such as Bessel polynomials; 
Vincent’s methods; Mechanical devices; Acceleration 
techniques; Existence questions; Error estimates, 
deflation, sensitivity, continuity; Roots of random 
polynomials; Relation between roots of a polynomial 
and those of its derivatives; and Nth roots. 
 For every one of the standard existing methods 
listed above, there are some exceptional cases in which 
the particular method applied fails to work. For 
example, Newton’s method requires a good initial 
approximation for convergence, Bracketing method 
requires a previous knowledge of an initial interval 
guaranteed to contain a root i.e. if a and b are the 
endpoints of the interval (a, b) , the Graeffe’s method is 
not suitable for polynomials some of whose roots are of 
equal magnitude and so on .The research on approach 
for finding and studying the behavior of roots for 
polynomial equation is still going on vigorously as is 
evident in literature (San Joe Math Circle, 2009; 
Wikipedia, 2010; Gatton et al., 2007; Goedecker, 
1994) (a, b). 
 In this study, we present a new algorithm for 
finding the exact real roots of an nth degree polynomial 
at a practically low computational cost. The need to 
find an efficient and reliable algorithm for computing 
the exact real roots of the steady-state polynomial 
encounter in our previous works and other similar cases 
as found in the literature gave rise to this study. Our 
algorithm (simply called ERA-Exact Root Algorithm) 
adopts polynomial deflation technique and uses 
Newton-Raphson iterative procedure though with a 
modified termination rule. We specify a general 
formula for finding the initial approximation so as to 
overcome the limitation of local convergence which is 
inherent in Newton’s method. Above all, ERA is 
insensitive to “clusters” and computes the exact real 
roots of polynomials (cases of multiple roots 
inclusive). 
 
Mathematical formulation: Given an nth degree 
polynomial: 
 

n n 1 n 2 3
n n n 1 n 2 3

2
2 1 0

P (x) c x c x c x ....c x

c x c x c

− −
− −= + + + +

+ +
 (1) 

where, n∈Z+, ci∈R; i = 1(1)n. 
 We set: 
 
ni = n-i+1 (2) 
 
 Thus, we have: 
 

1

2

3

n

n n 1 1 n

n n 2 1 n 1

n n 3 1 n 2

... ... ...

n n n 1 1

= − + =

= − + = −

= − + = −

= − + =

 (3)  

 

1 2 31

n

n n 1 n 2n n n

1n

P (x) P (x),P (x) P (x),P (x) P (x),

P (x) P (x)

− −= = =

=
  (4) 

 
 Let a1 be a real root of 

1n
P (x) . 

 Then from factor theorem, the following holds: 
 

1 1
1n n 1

P (x) (x a )P (x)
−

= −  (5) 

 
where 

1n 1
P (x)

−
 is a polynomial of degree1n 1− . 

 Recall from (3) that 1 2n 1 n− = . 

 Thus, (5) becomes: 
 

1 2
1n n

P (x) (x a )P (x)= −  (6) 

 
 Given a2, a real root of 

2n
P (x)  and from (6) we 

have: 
 

2 3
2n n

P (x) (x a )P (x)= −  (7) 

 
 Substituting (7) into (6) yields: 
 

2 3
1 2n n

P (x) (x a ) (x a )P (x)= − ⋅ −  (8) 

 
 It is easy to verify that (5) by extension becomes: 
 

2 1
1 2 3 1n n 1

P (x) (x a ) (x a ) (x a )...(x a )P (x)
−

= − ⋅ − ⋅ − −  (9) 

 
Recall that P1(x) is of the form (x-an). 
 Thus, (9) becomes: 
 

2 1 1
1 2 3n n 1 n

P (x) (x a ) (x a ) (x a )...(x a )(x a )
−

= − ⋅ − ⋅ − − −  (10) 
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 holds if 
1n

P (x)  has n1 real roots; 

1 1
1 2 3 n 1 n

a ,a ,a ,...,a and a .
−

 

 Suppose Pn(x) has k real roots, then we have: 
 

n 1 2 3 k 1

k n k

P (x) (x a ) (x a ) (x a )...(x a )

(x a ) P (x)

−

−

= − ⋅ − ⋅ − − ⋅

− ⋅
  (11) 

 
where Pn-k(x) a factor of Pn(x) has (n k) 2−  pairs of 

complex conjugate roots. 
 

MATERIALS AND METHODS 
 
Method of solution: By substituting n = n1 in (1) we 
obtain the following: 
 

1 1

1 1 1

n n 1 n 2 3
n 2 3n n n 1

2
2 1 0

P (x) c x c x c x ...c x

c x c x c

− −
−−

= + + + +

+ +
 (12) 

 
 We find a real root a1 of 

1n
P (x)  using Newton-

Raphson iterative procedure with a modified 
termination rule and a predetermined initial 
approximation as follows: 
 

1

1

n
s 1 s s 0 0n

x x U (x ) with x c+ = − =  (13) 

 
Where: 
 

1

1

1

sn
sn

sn

P (x )
U (x )

P ' (x )
=  

 
and  
 

1

1

n
s sn

dP (x)
P ' (x ) | x x

dx
= =  

 
 We terminate the iterative procedure if 

1
s 1n

U (x ) 0+ =  and then set 1 s 1a x += . 

 From (6) we have: 
 

1 2
1n n

P (x) (x a )P (x)= −  (14) 

 
 We deflate the polynomial 

1n
P (x)  using synthetic 

division to obtain: 
 

( )
( )

1 1

2 1 1 1 1

1

1 1 1

n 1 n 2
1n n 1 n n 1 n

n 32
1 1n 2 n 1 n

P (x) P (x) c x c a c x

c a c a c x ....

− −
− −

−
− −

= = + + +

+ + +
 (15) 

 We select r1∈Z+ and satisfying the inequality 
0≤r1≤n1-1 and find an expression for the coefficient 

1r
c  

of 1rx  in 
1n 1

P (x)
−

. 

 By setting r1 = n1-k1 and observing the terms of 

1n 1
P (x)

−
 in (15) it is easy to verify that: 

 
1 1

1

1 1 1 1

1

n r 1
l

r l r l
l 0

c a c
− −

+ −
=

= ⋅∑  (16) 

 
 Substituting (16) into (15) yields: 
 

1 1 1

1 1

2 1 1 1

1 1

n 1 n r 1
l r
1n l r l

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑  (17a) 

 
and 
 

1 1 1

1 1

2 1 1

1 1

n 1 n r 1
l r 1

1 1n l r l
r 0 l 0

P' (x) r a c x
− − −

−
+ +

= =

 
=   

 
∑ ∑  (17b) 

 

where, 
1 1l r l

c
+ +

 is the coefficient of 1 1l r lx + +  in 
1n

P (x) . 

 We again obtain a real root a2 of 
2n

P (x)  following 

the same procedure as in (13): 
 

2
s 1 s sn

x x U (x )+ = −  (18) 

 
Where: 
 

2

2

2

sn
sn

sn

P (x )
U (x )

P ' (x )
=  

 
and 
 

21

2

n
s sn

dP (x)
P ' (x ) | x x

dx
= =  

 
 To obtain x0 we set r1 = 0 in (16) and substitute the 
result in (16): 
 

1

1
2

1

2

n 1
ln

0 1 l 1
l 0

x a c
−

+
=

⇒ = ∑  (19) 

 
 The iterative procedure is terminated if 

2
s 1n

U (x ) 0+ =  and we set 2 s 1a x += . 

 We deflate 
2n

P (x)  following the same steps as 

above to obtain: 
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( )
( )

2 2

3 2 2 2 2

2

1 2 2

n 1 n 2
2n n 1 n n 1 n

n 32
2 2n 2 n 1 n

P (x) P (x) c x c a c x

c a c a c x ....

− −
− −

−
− −

= = + + +

+ + +
 (20) 

 
which can be written as: 
 

2 2 2

1 2

3 2 2

2 2

n 1 n r 1
l r
2n l r 1

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑  (21a) 

 

where, 
2 2l r 1

c
+ +

 is the coefficient of 2 2l r 1x + +  in 
2n

P (x)  

and 
 

2 2 2

2 2

3 2 2

2 2

n 1 n r 1
l r

2 1n l r l
r 0 l 0

P' (x) r a c x
− − −

+ +
= =

 
=   

 
∑ ∑  (21b) 

 
where, r2 satisfies the inequality 0≤r2≤n2-1 and r2 = n2-k2. 
 We perform the iteration to obtain: 
 

2

2
3

3 2

2

n 1
ln

s 1 s s 0 2n l 1
l 0

x x U (x ) with x a c
−

+ +
=

= − = ∑  (22) 

 
Where: 
 

3

3

3

sn
sn

sn

P (x )
U (x )

P ' (x )
=  

 
and 
 

31

3

n
s sn

dP (x)
P ' (x ) | x x

dx
= =  

 
 The iteration is terminated if 

3
s 1n

U (x ) 0+ =  and we 

set a3 = xs+1. 
 Generalizing, we have: 
 

h h h

h h

j h h

hh h

n 1 n r 1
l r
hn l r 1

r 0 l 0

P (x) a c x
− − −

+ −
= =

 
=   

 
∑ ∑  (23a) 

 
and 
 

h h h

h 2

j h h

h h

n 1 n r 1
l r

2 hn l r l
r 1 l 0

P' (x) r a c x
− − −

+ +
= =

 
=   

 
∑ ∑  (23b) 

 

where, 
h hl r l

c
+ +

 is the coefficient of h hl r lx + +  in 
hn

P (x) and 

h = j-1. 

 The iterative process becomes: 
 

h

hj

j h

h

n 1
ln

s 1 s s 0 hn l 1
l 0

x x U (x ) with x a c
−

+ +
=

= − = ∑  (24) 

 
Where: 
 

j

j

j

sn
sn

sn

P (x )
U (x )

P ' (x )
=  

 
and 

3 j

j

n

s sn

dP (x)
P ' (x ) | x x

dx
= =  

 
and terminates if 

j
s 1n

U (x ) 0+ =  and we set aj = xs+1. 

 Suppose Pn(x) has k real roots; a1, a2, a3,…ak-1 and 
ak then we have: 
 

n 1 2 3 k 1

k n k

P (x) (x a ) (x a ) (x a )...(x a )

(x a ) P (x) 0

−

−

= − ⋅ − ⋅ − − ⋅

− ⋅ =
 (25) 

 
 
where Pn-k(x) a factor of Pn(x) has (n-k)/2 complex 
conjugate roots. 
 If k = n then (25) becomes: 
 

n 1 2 3 n 1

n

P (x) (x a ) (x a ) (x a )...(x a )

(x a ) 0

−= − ⋅ − ⋅ − − ⋅

− =
 (26) 

 
and the real roots of Pn(x) are a1, a2, a3,…an-1 and an. 
 
The exact root algorithm: 
 
(I) Input Degree of the polynomial, N 
  Coefficients of the polynomial; 
  c0, c1, c2, c3,…cn-1 and cn  
  Number of iterations, M 
(II) Define 
 

0 0 1

n 1 n

c(0,n) c ,c(0,n) c ,c(1,n) c ,...,c(n 1,n)

c and c(n,n) c−

= = = − =

=
 

 
n n 1 2

nP (x) c(n,n)x c(n 1,n)x ... c(2,n)x

c(1,n)x c(0,n)

−= + − + + +
+

 

 
n 1 n 2

nP' (x) nc(n,n)x (n 1)c(n 1,n)x ...

2c(2,n)x c(1,n)

− −= + − − + +
+
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  n
n

n

P (x)U (x)
P ' (x)

=  

(III) Compute  Initial approximation 

  n
nx c(0,n)=  

  Repeat 
  Xs+1 = xs-Un(xs) 
  Until 
  Un(xs+1) = 0 then set a1 = xs+1 
  Or 
  s = m then set a1 =0 
(IV) Deflate  Pn(x) using the factor (x-a1) to obtain 

the expression 
  n 1 n 1P (x) (x a ) P (x)−= − ⋅  

(V) Set The coefficient cr of xr in Pn(x) as 

  
1

n r 1
1

r l r l
l 0

c a c
− −

+ −
=

= ⋅∑  

   The polynomial Pn(x) as 
 

2 r

2

n 1 n r 1
l r

n 1 1 l r l
l 0 l 0

P (x) a c x
− − −

− + −
= =

 
=   

 
∑ ∑  

 
It’s first derivative nP' (x)  as: 
 

 2

2

n 1 n r 1
l r 1

n 1 1 l r l
l 0 l 0

P' '(x) r a c x
− − −

−
− + +

= =

 
=   

 
∑ ∑   

 
   Their ratio Un(x) as: 

   n 1
n 1

n 1

P (x)U (x)
P '(x)

−
−

−
=  

 
(VI) Compute  Initial approximation  

   n 1
0x c(0,n 1)−= −  

   Repeat 
   Xs+1 = xs-Un-1(xs) 
   Until 
 
 Un-1(xs+1) = 0 then set a2 = xs+1 
   Or 
   s = m then set a2 = 0 
(VII) Continue   Steps IV, V and VI for n-2, n-3, 

…, 3, 2 and 1    
   to compute a1, a2, a3,…an-1 and an 
(VIII) Output   Roots of the polynomial; a1, a2, 
a3,…an-1 and an  
 
ERA IN C++ CODE: We present a model program (in 
C++ computing language) for executing the Exact Root 
Algorithm as shown below: 
 
#include<iostream.h> 
#include<math.h> 

int main() { 
  int m,n,r,j,i,m1,k1; 
  int m2,l1,l2,l,h,k,s1; 
  double u; 
  double b,b1; 
  double *c,*a,*x; 
  cout<<"enter value for m "; 
 cin>>m; 
 cout<<"enter value for n "; 
  cin>>n; 
c=new double [n,n]; 
  if(c==0) 
   cout<<"eroooor"; 
  a=new double [n]; 
  if(a==0) 
   cout<<"erooor"; 
  x=new double [n]; 
  if(x==0) 
   cout<<"erooor"; 
  for (i=0;i<=n;i++){ 
 cout<<"enter value for co-efficient of x raised to 
power "<<i<<" "; 
   cin>>c[n,i]; 
  } 
  int s; 
  double d,m0,p1,p,g,g1; 
  d=c[n,0]*c[n,0]; 
  m0=0.5/n; 
  x[0]=pow(d,m0); 
  s=0; g=0; 
 p=c[n,0]; 
  do { 
   s1=s; s=s+1; r=0;  
   do { 
     r=r+1; 
     p1=c[n,r]*pow(x[s1],r); 
  g1=r*c[n,r]*pow(x[s1],(r-1)); 
     p=p+p1; g=g+g1; 
   }while(r!=n); 
   u=p/g; 
   if(u=0) 
     break; 
   x[s]=x[s1]-u; 
  }while(s!=m); 
  if(u=0) 
   a[1]=x[s1]; 
  else 
   a[1]=0; 
  j=1; 
  do { 
   h=j; j=j+1; 
   m1=(n+1)-h; 
   m2=(n+1)-j; 
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   k=0;  
   do { 
  k=k1; k1=k1+1; 
     r=m1-k1; 
     l1=r+1; 
     b=c[m1,l1]; 
     l=0; 
     do { 
      l=l+1; 
      l2=l+r; 
  b1=pow(a[h],l)*c[m1,l2]; 
      b=b+b1; 
     }while(l!=k); 
     c[m2,r]=b; 
   }while(r!=0); 
  d=c[m2,0]*c[m2,0]; 
  m0=0.5/m2; 
  x[0]=pow(d,m0); 
  s=0; g=0; 
 p=c[m2,0]; 
  do { 
   s1=s; s=s+1; r=0;  
   do { 
     r=r+1; 
  p1=c[m2,r]*pow(x[s1],r); 
  g1=r*c[m2,r]*pow(x[s1],(r-1)); 
     p=p+p1; g=g+g1; 
   }while(r!=m2); 
   u=p/g; 
   if(u=0) 
     break; 
   x[s]=x[s1]-u; 
  }while(s!=m); 
   if(u=0) 
     a[j]=x[s1]; 
     else 
     a[j]=0; 
  }while(m2!=0); 
  for(i=0;i<=n;++i){ 
   cout<<a[i]; 
  } 
return 0; 
} 
 

RESULTS AND DISCUSSION 
 
 This study presents a very efficient and reliable 
algorithm (simply called ERA-Exact Root Algorithm) 
for computing the exact real roots of an nth degree 
polynomial which has the following benefits over the 
standard existing methods earlier mentioned: 
 
• ERA prescribes a unique formula for deflating an 

nth degree polynomial to another polynomial of 
degree (n-1) (Eq. 17a) 

• ERA specifies a general formula for computing the 
initial approximation, x0, which guarantees 
convergence for each stage of polynomial deflation 
(Eq. 23a) 

• ERA presents a modified termination rule, 

j
s 1n

U (x ) 0+ = , which guarantees accuracy in the 

computation of polynomial roots and also 
accommodates cases of multiple roots 

• Most importantly, ERA is simple, flexible and easy 
to use  

 
 We pick polynomial (of degree 10, say) arbitrarily, 
use ERA to compute the real roots and display the 
results as follows: 
 
The roots of the polynomial: 
 

10 9 8 7 6 5 4

3 2

X 7X 3X 64X 10X 110X 85X

9X 95X 10X 24  0

− − − − − − +

− + + =
 

 
are 
a[1] = 1.302775638 
a[2] = 0.6180339887 
a[3] = -0.5615528128 
a[4] = -0.7015621187 
a[5] = -1.6180339887 
a[6] = -2.302775638 
a[7] = 5.7015621187 
a[8] = 3.561552813 
a[9] = 0 
a[10] = 0 
 
 Note that a[j] = 0, j ε [1, n] implies that a[j] is a 
complex root of Pn(x). 
 

CONCLUSION 
 
 In conclusion, ERA is good for teaching and 
research and can be used to solve real life polynomial 
models. 
 

REFERENCES 
 
Brodlie, K.W., 1975. On Bairstow’s method for 

solution of polynomial equations. Math. Comput., 
29: 816-826. http://www.jstor.org/stable/2005292 

Edelman, A. and H. Murakami, 1995. Polynomial roots 
from companion matrix eigenvalues. Math. 
Comput., 64: 763-776. 
http://www.jstor.org/stable/2153450 

Gatton, T., A. Datta, P. Dey, J.J. Martinez and C. Ting, 
2007. A web-based intelligent tutorial system. 
http://nucri.nu.edu/WebBasedTutorialSystem.pdf  



J. Math. & Stat., 6 (3): 226-232, 2010 
 

232 

Goedecker, S., 1994. Remarks on algorithms to find 
roots   of  polynomials.  SIAM  J.  Sci.  Comp., 
15: 1059-1063. DOI: 10.1137/0915064 

Jenkins, M.A. and J.F. Traub, 1970. A three-stage 
algorithm for real polynomials using quadratic 
iteration. SIAM J. Numer. Anal., 7: 545-566. 
http://www.jstor.org/pss/2949376 

McNamee, J.M., 1993. A bibliography on roots of 
polynomials. J. Comput. Applied Math., 47: 391-394. 
DOI: 10.1016/0377-0427(93)90064-I 

Pan, V.Y., 1997. Solving a polynomial equation: Some 
history and recent progress. Soc. Ind. Applied 
Math., 39: 187-220. 
http://www.jstor.org/stable/2133107 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

San Joe Math Circle, 2009. Polynomials II. 
http://www.sanjosemathcircle.org/handouts/2009-
2010/20090912.pdf 

Wikipedia, 2007. Root-finding algorithms. 
http://www.briefphone.com/.../Root-
finding+algorithm+-+Wikipedia 

Wikipedia, 2010. Root-finding algorithms. 
http://www.en.wikipedia.org/wiki/Root-
finding_algorithm  


