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Abstract: Problem statement: The modeling of claims count is one of the mostadntgnt topics in
actuarial theory and practice. Many attempts wetplémented in expanding the classes of mixed
and compound distributions, especially in the disttion of exponential family, resulting in a batte
fit on count data. In some cases, it is proven thated distributions, in particular mixed Poisson
and mixed negative binomial, provided better filngared to other distributioné.pproach: In this
study, we introduce a new mixed negative binomiatridbution by mixing the distributions of
negative binomial (r,p) and Lindle®), where the reparameterization of p = eXp(s considered.
Results: The closed form and the factorial moment of the mdistribution, i.e., the negative
binomial-Lindley distribution, are derived. In atldn, the parameters estimation for negative
binomial-Lindley via the method of moments (MME)dathe Maximum Likelihood Estimation
(MLE) are provided.Conclusion: The application of negative binomial-Lindley dibtition is
carried out on two samples of insurance data. Basethe results, it is shown that the negative
binomial-Lindley provides a better fit comparedth@ Poisson and the negative binomial for count
data where the probability at zero has a largeevalu
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INTRODUCTION many ways, Lindley is a better distribution comphbie
exponential and hence, one should expect that the
The modeling of claims count is one of the mostPoisson-Lindley provides a better fit compared he t
important topics in actuarial theory and practite. Poisson-exponential. The distribution of zero-tated
some cases, it is proven that mixed distributians, Poisson-Lindley was introduced by Ghitargy al.
particular mixed Poisson and mixed negative bingmia (2008a; 2008b), who used the distribution for mougl
provided better fit on count data compared to othecount data in the case where the distribution balset
distributions. Examples of mixed Poisson and mixedadjusted for the count of missing zeros.
negative binomial distributions are the negative In this study, we introduce a new mixed negative
binomial obtained as a mixture of Poisson and gammainomial distribution by mixing the distributionsf o
(Klugmanet al., 2008; Lemaire, 1979; Simon, 1961), negative binomial (r, p) and Lindleyo){ where the
the negative binomial-Pareto (Klugma al., 2008;  reparameterization of p = exp}-is considered. This
Meng et al., 1999) and the Poisson-inverse Gaussiathew mixed distribution has a thick tail and may be
(Klugman et al., 2008; Tremblay, 1992; Willmot, considered as an alternative for modeling coura dét

1987). insurance claims which has a thick tail and a la@ee
The mixing of negative binomial with inverse at zero.

Gaussian which considers the reparameterization of

p = exp(A) was introduced by Gomea al. (2008) MATERIALSAND METHODS

who considered the distribution in univariate and

multivariate versions and estimated the parameter€losed form and factorial moment: In this part, the
using the method of moment and the maximumclosed form and the factorial moment of the negativ
likelihood estimation. The distribution of Poisson- binomial-Lindley distribution are given.

Lindley for modeling count data was introduced by A classical negative binomial distribution is
Sankaran (1970). Ghitargf al. (2008a) showed that in denoted with probability mass function (pmf):
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(r+x-1 B 1 NB-L(r,8) has the highest mass at zero for several
Pre)= X P @-p). = 012. @ values of r and@. Hence, the NB-L(8) may has a good
fit for claims count data in the case where the

i Probability at zero has a large value.
where, r>p and O<p<1. The first two moments abou

zero and the factorial moment of order k of a negat Theorem: Let X~NB-L(r,8) be a negative binomial-
binomial distribution are given respectively by Lindley distribution defined in (5) and (6). The

Gomezet al. (2008): probability mass function (pmf) and the factorial
moment of order k of the distribution are given(as
E(x) = rt-p) and (8) respectively:
2y = (A= P)[i+ 1A= p)] _ 8 (rrx-D)gu (K)o o
cocy =B - o= 2 e 0.
and 1
08
Mg (X) = E[X(X -1)...(X —k +1)] P
— ) 2 =S 06
P &
02
The Lindley distribution function which is .
specified by the probability density function (pdf) 0.0 — — —
0 1 2 3 4
02 No. of claims
f(x) = (1+x)e™, x>0,6>0 3)
0+1 Fig. 1: Plot of p.m.f for NB-L (r = 26 = 100)
was introduced by Lindley (1958). It can easilyshewn 04
that the Lindley distribution is a mixture of exputial
and gamma Witrp:ﬁ, where f(x) = Gamma(A), £ >3
f, = exp@) and f(x) = pi(x)+(1-p)f(x). The moment 2 024
generating function of Lindley distribution is givéy: & o1 I
02 8-z+1 _ H m =
My(2) = z (4) o0 0 1 2 3 4

0+1 (8- zy

Wo. of claims

Definition: A random variable X has a negative Fig. 2: Plot of p.m.f for NB-L (r = 59 = 20)
binomial-Lindley (rp) distribution if it satisfies the

stochastic representation: 04
XA~NB(r,p = €") (5) g %7
and E 02
&

A~Lin(6) (6) ¢19 I I

_ il na= _
where, r>0 an®>0. oo 0 1 2z 3 4 5 6 7 ?

Throughout this study, we will use the notation No. of claims

NB-L(r,0) as a reference for the negative binomial-
Lindley distribution. Figure 1-4 show that the poff  Fig. 3: Plot of p.m.f for NB-L (r = 100 = 100)
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Fig. 4: Plot of p.m.f for NB-L (r =10 = 1)
and
CO+r+j+L

T+ 8 ok (K e
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Proof: If X]A~NB(r,p = €") andA~Lin(8), then the pmf
of X can be obtained by:

Pr(x)= [ Pr(X= x|\ ) 8)ch (9)

We know that:

Pr(X = x |A):[r+;(_1Je‘“ 1 ée'

_[TEX=D Gox (X v e
(g

By inserting (10) in (9) we have:

(10)

Pr(X=x|A)=[r+§_l}i(—1¥jj & 10 9)h
e (11)

:(”:_1]27_0[_*](—1)" M, (=1 + )

J
Then, (7) is obtained by using (4) in (11).

Gomez et al. (2008) showed that the factorial

E(X) :{632—1}
(6+1)(0-1)
and
2y 2 92(9_1) 2
EX)=(r+r)————5—(r+2r%)
93(6+1)(6— 2) (13)

— 47
0+1)(6-1y

Parameter estimation: In this segment, the estimation
of parameters for NB-L(8) via the method of moments
and the maximum likelihood procedure are provided.

Method of moments (MME): For the method of
moments, the parameters may be obtained by equating
the sample and the theoretical moments. In the chse
NB-L(r,0), the first two moments are required for
estimating r an@.

The ith moment for the sample, mi, is equated as:

m, :%z;oxi (14)
Then, from (13) and (14) we have:

m, = [(91)9(91) _1} (15)

and

m, = (r+r?) 6%(0-1) - (r+2pP) ¢ +r* (16)

6+1)0 -2y ©+1@-1f

The solution of r an@ may be obtained by solving
both (15) and (16). It should be noted that r>0 @id.

moment of order k of a mixed negative binomial Maximum Likelihood Estimation (MLE): The log

distribution where p = exp(} can be obtained by using:

r(r+k)
r(r)

=F(r+k) k (K PN =D
r(r) Z"'”(J’]( WEET)

k (K i .
= r(r + k) Zj—o(j j(_l)l M)\(k _ ])

Mg (X) = E, (€ - 1f

(12)

r(r)

Therefore, (8) is obtained by inserting (4) in )12

From (12), the first two moments of the NB-B are
given by:

likelihood function of the NB-L(8) is given by:

logL(r,6) = £(r,8) = Zio n logp

(r +X —1}
_zx:onx 0g » BrjHL

0 x [ X _1Y (8+r+))?
9+1Zj'°[i j( g

By taking partial derivatives of the log likelihdo
function each with respect to r aBdand by equating
both partial derivates to zero, we obtain the equat

17)




O rroy=n(2-_ 1
ﬁﬁ(r,e)—n[— }

6 6+1
Z ( l)J ( )?;::2
+Zx =0 X = e+r+1+1
z] 0( 1)( (0+r+j)?
and
0 _ 0 o« x+r-1
aﬁ(r,e) =5 Do Iog( < ]
z ( 1)J ( )?&;:::;g
+ Z 120
x=0 x O+r+j+1
z] 0( l)( (6+r+j)?

where,n=3" n, .

Klugmanet al. (2008) showed that:

1] =Y > in(r+ m)

gzk n, lo rex-
or <=x=0"* g

Therefore, by using (18-20) we have:

x-1
(f 9+J > In(r+ m)
Let us assume:

B= ZXO XZ JIn(r+m)

Equation 21 has two distinct real roots fér
However, sinced>0, the only acceptable root is given

by:

o(r) = n-B+/(n+ By +4nB

2B
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Replacing (22) in (19) yields the following:

(18)  HO® =X nX

r+m
z ( )e(r)+r+1+§
~ ( l) (B(F)+7+])
+Zi:0nx = ( )B(r)+r+J+1
zr ( l) (B(F)+7+])

(23)

The solution fort in Eq. 23 may be solved
numerically by using Newton-Raphson method. The
(19) required equation for the kth iteration is:

rk=r._, -

H(r )
H'(r_,)

The solution foré can be obtained by insertirig

in (21).
(20)

RESULTSAND DISCUSSION

The NB-L(rf) distribution is applied on two

(1) presented in this results.

samples of insurance count data and the results are

Example 1: The data for this example was taken from
Klugman et al. (2008), whereby it was collected by
Dropkin in 1956-1958 and analyzed in a paper in9195

The distributions of NB-L, Poisson and negative
binomial are fitted to the data using R programming

and the results are provided in Table 1. Basedhen t

log likelihood and p-value,
provides the best fit for the data. The p-valuechi
square statistics for the NB-L is 99.9%.

(22)

Table 1: Estimated parameters, p-value and logdjliéed for Example 1

the NB-L distribution

Fitting distribution

Number of accidents Number of claims Poisson Negdtinomial NB-L

0 81,714 80,655.90 81,692.60 81,718.60

1 11,306 13,146.90 11,294.80 11,294.70

2 1,618 1,071.50 1,656.20 1,630.60

3 250 58.20 247.5 245.3

4 =3+ 40 =297 2.40 ;= 60.7C 37.30 = 291.4( 38.40 ;= 291.1(

5+ 7 0.10 6.60 7.40

Parameters A =0.163 r=0.892 R =19.20
6=0.845 6 =119.70

Chi squares 1140.74 1.14 0.29

Degrees of freedom 2 3 3

p-value <1% 97.9% 99.9%

Log likelihood -45,298.00 -44,764.60 -44,764.30
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Table 2: Estimated parameters, p-value and logdjliged for Example 2

Fitting distribution

Number of claims Number of drivers Poisson Negaiveomial NB-L

0 7,840 7,638.3 7,843.3 7853.6

1 1,317 1,634.6 1,290.2 1287.4

2 239 174.9 257.7 247.6

3 42 12.5 54.5 54.2

4 14 0.7 11.8 13.2

5 4 0 2.6 35

=13.2

6 4 0 0.6 }=15.2 10| _ 5

7 1 0 0.2 0.3

8+ 0 0 0.1 0.2

Parameters A=0.214 r=0.70 r=4.63
6 =0.765 6 =23.55

Chi squares 293.8 8.65 6.99

Degrees of freedom 2 2 3

p-value <1% 7% 32%

Log likelihood -5490.78 -5348.00 -5344.70

Example 2. The data which was obtained from in Table 1 and 2 proved that the NB-Bjrprovides a
Klugmanet al. (2008), provides information on 9,461 better fit for the sample data compared to the
automobile insurance policies whereby the number oflistributions of Poisson and Negative Binomial.
accidents of each policy is recorded. The distrinst
of Poisson, negative binomial and NB-L are fittedhe

data using R programming. Based on the log likeltho
and p-value, the negative binomial provides a béitte
compared to the Poisson. However, the p-value bf ch
square statistics for the negative binomial isl stil
considered as small. The NB-L distribution however,
provides quite a significant improvement over the
Poisson and the negative binomial by providing &imu
better fit for the data (Table 2).

In this study, a two-parameter negative binomial-
Lindley distribution, NB-L(r8), is introduced by mixing
the distributions of negative binomial (r,p) andhdley
(6), where the reparameterization of p = eXp(is
considered. In patrticular, the closed form and thq_e
factorial moment of NB-L(§) are derived. In
addition, the parameters estimation of NB-8)ryvia
the method of moments (MME) and the Maximum
Likelihood Estimation (MLE) are shown. The

CONCLUSION

Gbémez,
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