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Abstract: Problem statement: The modeling of claims count is one of the most important topics in 
actuarial theory and practice. Many attempts were implemented in expanding the classes of mixed 
and compound distributions, especially in the distribution of exponential family, resulting in a better 
fit on count data. In some cases, it is proven that mixed distributions, in particular mixed Poisson 
and mixed negative binomial, provided better fit compared to other distributions. Approach: In this 
study, we introduce a new mixed negative binomial distribution by mixing the distributions of 
negative binomial (r,p) and Lindley (θ), where the reparameterization of p = exp(-λ) is considered. 
Results: The closed form and the factorial moment of the new distribution, i.e., the negative 
binomial-Lindley distribution, are derived. In addition, the parameters estimation for negative 
binomial-Lindley via the method of moments (MME) and the Maximum Likelihood Estimation 
(MLE) are provided. Conclusion: The application of negative binomial-Lindley distribution is 
carried out on two samples of insurance data. Based on the results, it is shown that the negative 
binomial-Lindley provides a better fit compared to the Poisson and the negative binomial for count 
data where the probability at zero has a large value. 
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INTRODUCTION 

 
 The modeling of claims count is one of the most 
important topics in actuarial theory and practice. In 
some cases, it is proven that mixed distributions, in 
particular mixed Poisson and mixed negative binomial, 
provided better fit on count data compared to other 
distributions. Examples of mixed Poisson and mixed 
negative binomial distributions are the negative 
binomial obtained as a mixture of Poisson and gamma 
(Klugman et al., 2008; Lemaire, 1979; Simon, 1961), 
the negative binomial-Pareto (Klugman et al., 2008; 
Meng et al., 1999) and the Poisson-inverse Gaussian 
(Klugman et al., 2008; Tremblay, 1992; Willmot, 
1987). 
 The mixing of negative binomial with inverse 
Gaussian which considers the  reparameterization of 
p = exp(-λ) was introduced by Gómez et al. (2008) 
who considered the distribution in univariate and 
multivariate versions and estimated the parameters 
using the method of moment and the maximum 
likelihood estimation. The distribution of Poisson-
Lindley for modeling count data was introduced by 
Sankaran (1970). Ghitany et al. (2008a) showed that in 

many ways, Lindley is a better distribution compared to 
exponential and hence, one should expect that the 
Poisson-Lindley provides a better fit compared to the 
Poisson-exponential. The distribution of zero-truncated 
Poisson-Lindley was introduced by Ghitany et al. 
(2008a; 2008b), who used the distribution for modeling 
count data in the case where the distribution has to be 
adjusted for the count of missing zeros. 
 In this study, we introduce a new mixed negative 
binomial distribution by mixing the distributions of 
negative binomial (r, p) and Lindley (θ), where the 
reparameterization of p = exp(-λ) is considered. This 
new mixed distribution has a thick tail and may be 
considered as an alternative for modeling count data of 
insurance claims which has a thick tail and a large value 
at zero. 
 

MATERIALS AND METHODS 
 
Closed form and factorial moment: In this part, the 
closed form and the factorial moment of the negative 
binomial-Lindley distribution are given. 
 A classical negative binomial distribution is 
denoted with probability mass function (pmf): 
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where, r>p and 0<p<1. The first two moments about 
zero and the factorial moment of order k of a negative 
binomial distribution  are  given  respectively by 
Gómez et al. (2008): 
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  The Lindley distribution function which is 
specified by the probability density function (pdf): 
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was introduced by Lindley (1958). It can easily be shown 
that the Lindley distribution is a mixture of exponential 

and gamma with 
1

p
1

=
+ θ

, where f1(x) = Gamma(2,θ), 

f2 = exp(θ) and f(x) = pf1(x)+(1-p)f2(x). The moment 
generating function of Lindley distribution is given by: 
 

2

X 2

z 1
M (z)

1 ( z)

θ θ − +=
θ + θ −

 (4) 

 
Definition: A random variable X has a negative 
binomial-Lindley (r,θ) distribution if it satisfies the 
stochastic representation: 
 
X|λ~NB(r,p = e−λ) (5) 
 
and 
 
λ~Lin(θ) (6) 
 
where, r>0 and θ>0. 
 Throughout this study, we will use the notation 
NB-L(r,θ) as a reference for the negative binomial-
Lindley distribution. Figure 1-4 show that the pmf of 

NB-L(r,θ) has the highest mass at zero for several 
values of r and θ. Hence, the NB-L(r,θ) may has a good 
fit for claims count data in the case where the 
probability at zero has a large value. 
 
Theorem: Let X~NB-L(r,θ) be a negative binomial-
Lindley distribution defined in (5) and (6). The 
probability mass function (pmf) and the factorial 
moment of order k of the distribution are given as (7) 
and (8) respectively: 
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Fig. 1: Plot of p.m.f for NB-L (r = 20, θ = 100) 
 

 
 
Fig. 2: Plot of p.m.f for NB-L (r = 5, θ = 20) 
 

 
 
Fig. 3: Plot of p.m.f for NB-L (r = 100, θ = 100) 
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Fig. 4: Plot of p.m.f for NB-L (r = 1, θ = 1) 
 
and 
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Proof: If X|λ~NB(r,p = e−λ) and λ~Lin(θ), then the pmf 
of X can be obtained by: 
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 By inserting (10) in (9) we have:  
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 Then, (7) is obtained by using (4) in (11).  
 Gómez et al. (2008) showed that the factorial 
moment of order k of a mixed negative binomial 
distribution where p = exp(-λ) can be obtained by using: 
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 Therefore, (8) is obtained by inserting (4) in (12). 
From (12), the first two moments of the NB-L(r,θ) are 
given by: 
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Parameter estimation: In this segment, the estimation 
of parameters for NB-L(r,θ) via the method of moments 
and the maximum likelihood procedure are provided. 
 
Method of moments (MME): For the method of 
moments, the parameters may be obtained by equating 
the sample and the theoretical moments. In the case of 
NB-L(r,θ), the first two moments are required for 
estimating r and θ. 
 The ith moment for the sample, mi, is equated as: 
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 Then, from (13) and (14) we have: 
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 The solution of r and θ may be obtained by solving 
both (15) and (16). It should be noted that r>0 and θ>0. 
 
Maximum Likelihood Estimation (MLE): The log 
likelihood function of the NB-L(r,θ) is given by: 
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 By taking partial derivatives of the log likelihood 
function each with respect to r and θ and by equating 
both partial derivates to zero, we obtain the equations: 
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 Equation 21 has two distinct real roots for θ. 
However, since θ>0, the only acceptable root is given 
by: 
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 The solution for r̂  in Eq. 23 may be solved 
numerically by using Newton-Raphson method. The 
required equation for the kth iteration is: 
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 The solution for ̂θ  can be obtained by inserting r̂  
in (21). 
 

RESULTS AND DISCUSSION 
 
 The NB-L(r,θ) distribution is applied on two 
samples of insurance count data and the results are 
presented in this results. 
 
Example 1: The data for this example was taken from 
Klugman et al. (2008), whereby it was collected by 
Dropkin in 1956-1958 and analyzed in a paper in 1959. 
The distributions of NB-L, Poisson and negative 
binomial are fitted to the data using R programming 
and the results are provided in Table 1. Based on the 
log likelihood and p-value, the NB-L distribution 
provides the best fit for the data. The p-value of chi-
square statistics for the NB-L is 99.9%. 

Table 1: Estimated parameters, p-value and log likelihood for Example 1 
  Fitting distribution 
  ---------------------------------------------------------------------------------------------------- 
Number of accidents Number of claims Poisson Negative binomial NB-L 

0

1

2

3

4 3

5


 = +
+

 

81,714

11,306

1,618

250

40 297

7


 =



 

80,655.90

13,146.90

1,071.50

58.20

2.40 60.70

0.10


 =



 

81,692.60

11,294.80

1,656.20

247.50

37.30 291.40

6.60


 =



 

81,718.60

11,294.70

1,630.60

245.30

38.40 291.10

7.40


 =



 

Parameters  λ = 0.163 r = 0.892 R = 19.20 
   θ = 0.845 θ = 119.70 
Chi squares  1140.74  1.14  0.29 
Degrees of freedom 2  3  3 
p-value   <1%  97.9%  99.9% 
Log likelihood -45,298.00  -44,764.60  -44,764.30 
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Table 2: Estimated parameters, p-value and log likelihood for Example 2 
  Fitting distribution 
  ------------------------------------------------------------------------------------------------ 
Number of claims Number of drivers Poisson Negative binomial NB-L 

0

1

2

3

4

5

6

7

8+

 

7,840

1,317

239

42

14

4

4

1

0

 

7,638.3

1,634.6

174.9
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0
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0
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7,843.3
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11.8

2.6

0.6 15.3
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0.1



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7853.6
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54.2

13.2

3.5

1.0
5

0.3

0.2



 =



 

Parameters  λ = 0.214 r = 0.70 r = 4.63 
   θ = 0.765 θ = 23.55 
Chi squares 293.8  8.65  6.99 
Degrees of freedom 2  2  3 
p-value   <1%  7%  32%  
Log likelihood -5490.78  -5348.00  -5344.70 
    
Example 2: The data which was obtained from 
Klugman et al. (2008), provides information on 9,461 
automobile insurance policies whereby the number of 
accidents of each policy is recorded. The distributions 
of Poisson, negative binomial and NB-L are fitted to the 
data using R programming. Based on the log likelihood 
and p-value, the negative binomial provides a better fit 
compared to the Poisson. However, the p-value of chi-
square statistics for the negative binomial is still 
considered as small. The NB-L distribution however, 
provides quite a significant improvement over the 
Poisson and the negative binomial by providing a much 
better fit for the data (Table 2).  

 
CONCLUSION 

 
 In this study, a two-parameter negative binomial-
Lindley distribution, NB-L(r,θ), is introduced by mixing 
the distributions of negative binomial (r,p) and Lindley 
(θ), where the reparameterization of p = exp(-λ) is 
considered. In particular, the closed form and the 
factorial moment of NB-L(r,θ) are derived. In 
addition, the parameters estimation of NB-L(r,θ) via 
the method of moments (MME) and the Maximum 
Likelihood Estimation (MLE) are shown. The 
application of NB-L(r,θ) is carried out on two samples 
of insurance data. Based on the results, it is shown 
that NB-L(r,θ) provides a better fit compared to the 
Poisson and the negative binomial for count data 
where the probability at zero has a large value. In 
particular, Fig. 1-4 show that the pmf of NB-L(r,θ) has 
the highest mass at zero for several values of r and θ 
and the results of log-likelihood and p-value provided 

in Table 1 and 2 proved that the NB-L(r,θ) provides a 
better fit for the sample data compared to the 
distributions of Poisson and Negative Binomial. 
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