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Decomposition of Marginal Homogeneity into L ogit and
Mean Ridits Equality for Square Contingency Tables
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Abstract: Problem statement: For square contingency tables with ordered categioif the Marginal
Homogeneity (MH) model holds, then the probabilitsit X selected at random from the row marginal
distribution is less than Y selected independeatlyandom from the column marginal distribution
equals the probability that X is greater than Y wdwer, the converse does not hold. We are intateste
in the condition in order that the converse holdsproach: This study gave a decomposition theorem
that the MH model holds if and only if both the giaal cumulative logistic model and the model of
equality of mean ridits for the row and column maad distributions hold. Examples are given.
Results: For the data of cross-classification of ewes atiogrto number of lambs born in consecutive
years and cross-classification of unaided distasgien of women in British, the decomposition oéth
MH model is applied and the detailed analysis v@giConclusion: When the MH model fits the data
poorly, this decomposition is useful for seeing ethof decomposed two models influences stronger.

Key words: Decomposition, marginal cumulative logistic modekrginal homogeneity, mean ridit,
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INTRODUCTION =4 :z‘ Pes
i k=1

Consider an RR square contingency table with the R = ZIH Pr
same row and column ordinal classifications. LedrXi
Y denote the row and column variables, respectively
and let Pr(X=iY =j) =p; (i=1..,R;j=1..,R). The

Marginal Homogeneity (MH) model is defined by

(Stuart, 1955; Bhapkar, 1966; Bishap al., 1975;

Caussinus, 1965): LX =log(—1 .
' 1-F

Let LY and L] denote the marginal cumulative
logit of X and Y, respectively. These are given as:

X

)
Po=pPy (=1..,R)

and
Where:
R
Pi= qu Bt L‘_( =Iog( FiY )
R ' 1-F
pm = 25:1 psi I

fori=1..,R-1.

This indicates that the row marginal distributisn The MH model may be further expressed as:

identical to the column marginal distribution. T+

model also may be expressed as: X =LY (i =1,...R -1)

FP=F (i=1..,R-1) As an extension of the MH model, the Marginal
cumulative Logistic (ML) model is defined by
Where: McCullagh (1977) and Agresti (1984):
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=LY +A (i=1,...R-1) for, i=1..,R, where R'=F =0, =R =1. The
{r*} and {r'} are the marginal ridits; Bross (1958).
This model states that the odds that X is i or.
bel tead of i+1 b ¢ hiah The mean ridit for the distribution of Y when the
elow instead of i or above, is eﬂp(lmes I9Ner istribution of X is the identified distribution fio
than the odds that Y is i or below instead of i+1 o ; e e
i calculating the ridits is:
above, fori=1...,R-1. If A>0, X rather than Y tends
to be i or below instead of i+1 or above, for R
i=1,..,R-1. A special case of this model obtained by R (Y)=21'py
j=1
puttingA = 0 is the MH model. J
Miyamoto et al. (2005) and Tahatat al. (2007)
gave the theorem that the MH model holds if and/ onl
if both the ML model and the marginal mean equality .
model (i.e.,E(X) = E(Y)) hold (Tahatat al., 2008). R,(X)=>t'p,
On the other hand, Agresti (1983; 1984) considered =
the comparison between the marginal distributions
using the measure defined by:

Similarly, we have:

and alsor, (X) =R, (Y) =0.5, where:

1= Py — = Pr(X< Y)- Pr(x> Y R R
2,2.PiP5 72, 2 A= PO )= PO ) R(0)=Y 1Py R, (V)= 1P
. —
Where: _ _
X =Selected at random from the row marginal  ThenTis expressed as Agresti (1984):
distribution
Y = Selected independently at random from the calum =R, (Y)-R,(X)

marginal distribution
We shall refer to the structure of = 0 as the
This is a population value of the difference marginal Mean Ridits equality (MR) model.
between discrete analogs of the Mann-Whithey We see:
statistics. This measure is positive when X is

stochastically less than Y and negative when X is DRV B R,
stochastically greater than Y. Note thatcan be F-F :;; Ry — ;zl P
expressed using the mean ridits; as described later . R R
We note that the MH model implies the structure =2 PP D PR
s=1 t=i+1 shkltl

of T=0, thus, the MH model is not equivaldat

= 0. We are now interested in what structure is, . _
necessary to obtain the MH model in addition to thefor i=1...R-1. Therefore, the MH model may be
structure oft = 0. expressed as:

The purpose of this study is to give a theorem tha _ o
the MH model holds if and only if both the ML model Hip =Hy (1=1...R=1)

and the structure af= 0 hold.

Where:
MATERIALSAND METHODS L3
Hp =2, 2, PP =F (- F)
s=1 t=i+1
Let: R i
Hom = z PPy = (- EK )F
X s=i+l t=1
xRtk
2 This indicates that the probability that the row
q variable X selected at random from the row marginal
an distribution is in category i or below and the cuolu
v variable Y selected independently at random from th
nY:M column marginal distribution is in category i+1 or
2 above is equal to the probability that such X is in
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category i+1 or above and sudhis in categoryi or RESULTS
below. Using {Hp} and {H,;}, the ML model may
also be expressed as: Example 1: The data in Table 1, are taken directly
from Bishopet al. (1975). These data indicate that ewes
Hyp =6H,, (1=1...R-1) are cross-classified by the number of lambs born to
them in two consecutive years, 1952 and 1953.
This model withd = 1 is the MH model. The MH model fits these data poorly, yielding the
We obtain the following theorem. likelihood ratio chi-squared statistic’6& 18.65 with 2

degrees of freedom. Also, the ML model fits theatad
Theorem 1: The MH model holds if and only if both poorly, yielding G= 18.55 with 1 degree of freedom.
the ML and MR models hold. However, the MR model fits these data well, yietdin

G? = 0.78 with 1 degree of freedom.
Proof: If the MH model holds, then the ML and MR From Theorem 1, we see that the poor fit of the
models hold. Assuming that both the ML and MRMH model is caused by the influence of the lack of
models hold, then we shall show that the MH modektructure of the ML model rather than the MR model.
holds.

Since the ML model holds, we have: Example 2: The data in Table 2, taken from Stuart

< . (1955), are constructed from unaided distance wisio
F-F =H,-H,=0-DH, (=1.,R-1) 7477 women aged 30-39 employed in royal ordnance
factories in Britain from 1943-1946. These dataehav
If 8 = 1, we see that the MH model holdsBi1, been analyzed by many statisticians, for example,
we have: including Stuart (1955), Caussinus (1965), Biskoal.
(1975), Agresti (1984).
F*>F (i=1..,R-1) The MH model fits these data poorly, yielding the
likelihood ratio chi-squared statistic’G 11.99 with 3
degrees of freedom. Also, the MR model fits thesta d
poorly, yielding G = 11.94 with 1 degree of freedom.
However, the ML model fits these data well, yiefglin

Noting thatR, (Y) + R, (X) =1, if 6>1, we have:

T=2R,(Y)-1 G? = 0.39 with 2 degrees of freedom.
L& FUHFE We see from Theorem 1 that the poor fit of the MH
- 2;‘( 2 )p;~1 model is caused by the influence of the lack afcstire

ROE 4 of the MR model rather than the ML model.
> 22 (ﬂij)p@ -1

= 2 Table 1: Cross-classification of ewes accordingqiaanber of lambs
=2R, (Y)-1 born in consecutive years; from Bisheiml. (1975)
Number of lambs 1952

. - . Number of
SinceR, (Y) =0.5, we haver>0. Similarly, if6<1,  |zmbs1953 o0 1 5 Total
we have: 0 58 (57.73) 52 (47.94) 1(0.88) 111
1 26 (28.35) 58 (58.17) 3(2.87) 87
. 2 8 (9.27) 12 (12.72) 9 (9.07) 29
<k (i=1..,R-1) Total 92 122 13 227

Note: The parenthesized values are the maximum likelihood

Thus. if 6<1. we haver<0. Since the MR model estimates of expected frequencies under the MR mode
holds, i.e.,t = 0, we obtain® = 1. Namely, the MH

model holds. The proof is completed. Table 2: Unaided distance vision of 7477 women a@&d39
] A . " ; 3 employed in Royal Ordnance factories in Britainniro
Assume that a multhom|al .d|st.r|but|0n is applied 1943-1946: from Stuart (1955)

to the RR table. The maximum likelihood estimates of Left eye grade
expected frequencies under the MH, ML and MRRight eye
models could be obtained using the Newton-Raphsograde Best(1) Second (2) Third(3) Worst(4) Tota
method in the log-likelihood equation. The numbefs Best() 1520 266 124 66 1976
degrees of freedom for testing the goodness-aftfihe ~ ccond (@ 234 1512 432 78 2256

g gtheg Third (3) 117 362 1772 205 2456
MH, ML and MR models are R-1, R-2 and 1, worst(4) 36 82 179 492 789
respectively. Total 1907 2222 2507 841 7477
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DISCUSSION Bishop, Y.M.M., S.E. Fienberg and P.W. Holland,
1975. Discrete Multivariate Analysis: Theory and
In Example 1, we have seen that the MR model fits  Practice. 1st Edn., The MIT Press, Cambridge,
well, however, the MH model fits poorly. The reagler ISBN: 13: 978-0-262-52040-9, pp: 568.
may be interested in why this situation arises. Wit  Bross, 1.D.J., 1958. How to use ridit analysis.
out that testing the MR model is not equivalent to Biometrics, 14: 18-38.
testing the MH model. From Theorem 1, the structure  http://www.jstor.org/stable/2527727
of uniformity of ratio{H,, /H .} is necessary to obtain Caussinus, H., 1965. Contribution to the statistica

the MH model in addition to the MR model. Under the analysis of correlation tablesnn. Fac. Sci. Univ.

MR model, the maximum likelihood estimates of Etct)u'll(;use’ g /2_t9: S— 1;2'5183'2
) and {H,} are R, =0272, M, =0049, p/TWW.nUmdam.orgitem AId=ArS T _19069_%_

9 770
Hoq =0.223 and ﬁz(2)=0.129 and thus McCullagh, P., 1977. A logistic model for paired
NI, =1.221 and .../ 0..=0378 so these comparisons with ordered categorical data.
M Haa Hia Hee Biometrika, 64: 449-453.

ind_icate that the_re is not the structure of l_mif'mym)f http://www.jstor.org/stable/2345320
ratio {H,, /H,.} in these data. Therefore it would be Miyamoto, N., K. Niibe and S. Tomizawa, 2005.
natural that the MH model does not fit the data in  Decompositions of marginal homogeneity model

Table 1 well. using cumulative logistic models for square
contingency tables with ordered categories. Aus. J.
CONCLUSION Stat., 34: 361-373.

http://www.stat.tugraz.at/AJS/ausg054/054Tomiza
This study gave the theorem that the MH model  wa.pdf

holds if and only if both the ML and MR models hold Stuart, A., 1955. A test for homogeneity of the giaal
When the MH model fits the data poorly, this theore distributions in a two-way classification.
would be useful for seeing which of the lack of MR Biometrika, 42; 412-416.
model and the lack of the ML model influences http://www.jstor.org/stable/2333387
stronger. Indeed, for the data in Table 1, the giv@mf  Tahata, K., H. Kobayashi and S. Tomizawa, 2008.
the MH model is caused by the poor fit of the ML Conditional marginal cumulative logistic models
model rather than the MR model (Example 1). For the  and decomposition of marginal homogeneity model

data in Table 2, the poor fit of the MH model izisad for multi-way tables. J. Stat. Applied, 3: 239-252.
by the poor fit of the MR model rather than the ML http://www.mdppl.com/journals/journal-of-

model (Example 2). statistics-and-applications/content.html?issue=108

Tahata, K., S. Katakura and S. Tomizawa, 2007.
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