Journal of Mathematics and Statistics 7 (2): 116-123, 2011
ISSN 1549-3644
© 2010 Science Publications
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Abstract: Problem statement: Here, we develop a discretized scheme using only the penalty method
without involving the multiplier parameter to examine the convergence and geometric ratio profiles.
Approach: This approach reduces computational time arising from less data manipulation.
Objectively, we wish to obtain a numerical solution comparing favourably with the analytic solution..
Methodologically, we discretize the given problem, obtain an unconstrained formulation and construct
an operator which sets the stage for the application of the discretized extended conjugate gradient
method. Results: We analyse the efficiency of the developed scheme by considering an example and
examining the generated sequential approximate solutions and the convergence ratio profile computed
quadratically ~ per  cycle using  the  discretized  conjugate gradient ~ method.
Conclusion/Recommendations: Both results, as shown in the table, look comparably and this
suggests that the developed scheme may very well approximate an analytic solution of a given
problem to an appreciable level of tolerance without its prior knowledge.
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INTRODUCTION

Here, we examine a discretized scheme via the
penalty method to examine the convergence analysis of
optimal control problem constrained by evolution
equation with real coefficients.. The constrained
problem is converted to an unconstrained problem via
the penalty method (Fletcher and Reeves, 1964).
Discretization of its time interval and finite difference
method for its differential constraint were employed to
obtain the discretized formulation of the problem. With
this formulation, an associated operator was obtained
using the modified extended Conjugate Gradient Method
(CGM) (Hestenes, 1969; Ibiejugba and Onumanyi,
1984). Using the modified conjugate gradient method, an
example was considered to examine the numerical
solution and the convergence analysis as it compares
favorably with each other. To this end, a generalized
quadratic problem constrained by evolution equation
with real coefficients is considered in the next paragraph
for our developed scheme.

MATERIALS AND METHODS

Generalized problem:

()

Minimize L(t,x,u), = -[OT[(px2 + quz)dt]
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Such that:

ax(t—r)+bx(t) =cx(t)+ du(t),

N @)
x(0) =x,,%(t) =h(t),t €[-1,0]

where, p,g>,a,b,c are real numbers and K denotes the
Cartesian product of the following two spaces
K =H,[0.6]xLi[0,6], where H;[0,6] stands for the

Sobolev space of the absolutely continuous functions
x(e) such that both x(e) and x(e) are square integrable

over [0,6] and L}[0,c] stands for the Hilbert space

consisting of equivalence classes of square integrable
functions from [0,6]-R.

Remark:

h(s),s €

x(s),s €

. . [_ra O]
x(t—-r1)= x(t)[ [0 T—r]j

When h(t) =0, then x(t-r)=x(t)

Discretization: By discretizing (1) and (2) using
(Fletcher and Reeves, 1964; Glad, 1979) subdivide
[0,T] into n equal intervals [tgt.;] at meshpoints
X0<X1<X,,<...<x, where n-1 is the number of partition
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points chosen arbitrarily, thus having (n+1) partition
points, with x; = j*A;, j = 0,1,2,.....n and A; = A is the
fixed length of each subinterval for j = k or not. By
J*4A;, it means j multiplied by A; Let t, = 0 and
t, = Z:Aj,k =1,2,3,..n,t =T:
x(k)= xu(ti),u = uk(t), k= 0,1.2,....n

By Euler's scheme or finite difference method:
x(k) = (x(k+1)—x(k)/A,k=0,1,2,..n—1

the generalized problem (1) becomes.

Generalized problem 3.1:

n A (x (t
Minirnizej(tk,xkjuk)zzk . (X (t)

B (3)
Tpx (b)) +u (t)quy (L))

Subject to Eq. 3 and 4:

a(Xer 1=t 1=V 1) -Xi(teYi0) ) Arctb (X 1 (1)
-Xi(t))/Ax = exi(ti)+Hdu(t)x(0) = 0 4

Application of the penalty parameter:

A ()

Minimize j(t,,x,,u)=Y "
Upx, (6) +uy (8,)qu, (t,))

(5
Such that:

18 [an+ 1 (tk—’y k)-an(tk)+ka+ 1 (tk)-Akcxk-Akduk] 2 (6)

Now (5) and (6) become the following using (Di
Pillo and Grippo, 1979; Glad, 1979) Eq. 7:

n o Xp(tak +ug(ty)
k=0 2
bk + X (tysy =Ty )ek

Fxier1 (b1 =T 1) Xt ek 1A% (b1 =T 1) X1 (b1 )ek2
FXer 1 (tier 1T 1) Xi(tiemTi) PR X 1 (i1 =T 1) i (i) mk
+xk(tk-rk)xk+1 (tk+] )mk2+xk(tk-rk)xk(tk)nk

Minimize J(t,,X,,u,,1) =

+X (tk I )uk (tk )Wk + Xiﬂ (tk+l)Wk1+Xk+] (b )X, (tk )Vk
et (b D) Ukt it Xt u(ti) dk 1 (7)
Where:

ak = pA, + b’ +2bcA, u+Alc’n
bk =qA, +uAld’

ck = pa’

ckl=—2pa’

ck2 =2pab

pk = —2abp —2acA,
mk = —2adA,

mkl = pa’

mk2 = —2pab

nk = 2pab + 2pacA,
wk =2padA,

wk1 = ub?

vk = —2pb’

gk =—-2pbdA,

dkl=2pbdA, +2ucdA;
Setting yy = X+1(ti+1) in Eq. 7 we have Eq. 8:

n (x2(t, )ak +u (t, )bk + y2 (t, —

Minimize It )= 30 )
iock +y, (t, —1)x, (t, —1,)ckl)

+y}d(tk _rk)Yk(tk)Ck2+Yk(tK _rk)Xk

(tk)pk+yk(tk—rk)uk(tk)mk

At~ )KL+ X, (8, —1), (8. Jmk2 ®)

+x, (t, —1,)x, (t, )nk

X, (t, —1Ou, (t )wk + yi (twkl+y, (t)x,

(t v + ¥, (tOu, (t gk +x, (t )u, (t, )dkl

Construction of operator v: We now construct the
operator V for the conjugate gradient method. The
bilinear form associated with (7) using (Ibiejugba and
Onumanyi, 1984) is given as Eq. 9 and 10:

<Zk],VZk2> _ Z":{xkl(tk)xkz(tk)ak +uy, (t)u,(t,)
0By + Yia(t 1)y (t —1)e,

¥ (b = 1) X0 (t =5 ) e + Yo (t — 1) % (t — 1)

Cu + Vi (t = 1) Vio (1) G

+¥io (t = 1) Vi (t) €0 + Yia (B — 1) X0 (£,)

Pic + Yie (t —5) %4 () Py

+yk](tk )ukz(tk)mk +Ye(t rk)ukl(tk)

m, + X, (t, =5 )X (4 — 5 )my,

Xy (b = 1) Vi (t )My, + X (6 =1 ) vio () )

my, + X, (t, =15 )X, (t )0,

Xy (t — )Xkl(tk)nk+xkl rk)ukz(tk)

W, + sz(tk —rk)ukl(tk)wk
+yk]( )ykz( )wkl+ykl(tk)xk2(‘[k)vk+yk2
(t) % (t) Vi + Yia (1) uio (1) @i
+¥ie (ti) i (1) d + %40 (6 )0 (1)
(

d, +xy, tk)ukl( k)
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<Zk1 ,VZkz> _ Zzzoxm(tk)x“(tk)ak .+uk1(tk)ukz(tk2)
bk +x,,(t, —15,)X,,(t, =1, )ckA;}

+Xi, (t, —1)X,, (8, —1)Ack + %, (t, —1)%,,(t, —1.)Ack
+X, (t, —1)X,, (8, =1 )k + X, (t, —1,)X,,(t, —1,)A,ckl
+X, (t, —1)X,, (4, — 1 )ckl+ %X, k2(t, —1,)%,,(t, — 1, )A.ckl
+Xi, (t, —1)x,, (8, — 5 )kl + %, (t, —1,)%,,
(t)A k2 +%, (t, —1)X,,(t)A,ck2
+Xg, (t, —1)X,, (8 A k2 + X, (t, —1)X,,(t,)
ck2 + %, (t, — 1, )%, (t, )Arck2
+X i, (t, — 1%, (8 )Ack2 +x,,(t, —1)X,,(t,)
A ck2 +x,,(t, —1,)x,,(t,)ck2
+X i, (t, —1)X,, (8 )A P2 + X, (t, —15)X,,(t,)
pk +X,,(t, —1,)x,,(t,)A,pk
+X i, (t, — 1%, (4 )pk + X, (t, —1)u,,(t,)
A, mk +x,,(t, —1,)u,,(t, )mk
X, (t, —1)u,, (t A, mk +x,,(t, =1 )u,,(t,)
mk +x,,(t, —1,)X,,(t, —1, )mkl
+X i, (t, —1)X,, (4 )nk +x,,(t, —1,)x,,(t,)
mk2 +x,,(t, —1)%,,(t,)A, mk2
+X i, (t, —1)x,, (1, )mk2 + X, (t, —1,)x,,(t,)
nk +x,,(t, —1,)x,,(t, )nk
Xy, (8, — 1)U, (t Wk +x,,(t, — 1)
u,, (t)wk + %, (t,)%,,(t,)A, wkl
+X i, (t, —1)x,, (L )Wkl +x,, (8, )X, ,(t,)
A WKL+x, ()X, (t )W,
+X i, (6 )X, (6 A VK + X (8 )X, (t,)
vk +X,,(t,)x,,(t, )VKA,
Xy, (1 )X, (8 VK + X, (8 )0, ()
A, gk +x,,(t u,, (t)gk + x,,(t,))u,, (t,)A, gk
+Xg, (t)u, (8 gk + x,,(t,) (10)
u,,(t)dk +x,,(t, )u,,(t,)dk

Now, we state the Theorem establishing operator V
and provide a proof;

Theorem 5.1 Let the initial guess of the conjugate
gradient algorithm be zy(t) so that zy(t) = (Xo(te),Uo(ty),h-
o(t)), then the control operator V associated with the
generalized problem is given by Eq. 11:

Vii Vi Vi [ x0(t)
Vz,(t)=| Vo Vy Vi || u,(ty) (11)
Vi Vi, Vi JLh,(t)
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where, Zy(tk) = (Xka(tk), Uka(ti)hia(te))

Proof: Find xiu(ty) by setting u(ty) = he(ty) = 0 in
(5.2) and noting the fact that if he(ty) = 0 then
X, (t, =7, =X, =(t,,) . So Eq. 10 becomes:

(20:Vz) = D X (B)Xa (L)
(a,,ck2+ pk + wk2 + nk + wk1 + 2vk)]
+Xp, (1 (A ck2 + A, pk + wk1 + vk)

+2X,, (t, + 1, )(ck +2ckl + ck2 + pk + mk1 + mk2 + nk)
+2X,, (t, + 1, )(A (ck +ckl+ ck2 + mk2))]
X, (8 )[X,, (8, )(A] (ck2 + wkl)
+X,,(t,)[A, (ck2 + mk2 + v, +wkl)
+X,, (t, + 1 )AL (ck +ck2)

+X,, (t, =1 )(A, (ck +ckl +ck2 + pk))
+u,, (t)[X, (t)(mk + wk + gk + dk)]
+X, (1A (mk + qk)) + by, (8, +v1,)

(A, (ck +ckl+ck2 + pk))

+X,, (t, + 1 )(A] (ck +ck2))

(12)

For further compactness, (12) becomes (13):

X (6)DX (GNKT+ X5 (8,)
(740, Vzio ) = D N2 +2x,,(t, +1,)NK3 +
2k, (1, + 1 )(Nk4)]
+X,, (6%, (t, )NKS + X, (t, )NK6 + X, ,
(t, + 1 )NK7 +x,, (t, +1, )NK8]
+u,, (8, [%,, (£, )NK9 + X, (t, )NK10]
+h,,(t, + 5 )[x,,(t, + 15 )NkI1+X,,(t, +1 )Nk2]

(13)

Where:

Nkl =a, +ck2+ pk + wk2 +nk + wkl +2vk
Nk2 = A, ck2 + A, pk + wkl+ vk

Nk3 = ck + 2ckl + ck2 + pk + mkl + mk2 + nk
Nk4 = A, (ck + ckl + ck2 + mk2

NkS5 = A (ck2 + wkl)

Nk6 = A; (ck2 + mk2 + v, + wkl)

Nk7 = A} (ck +ck2)

Nk8 = A, (ck + ckl + ck2 + pk)

Nk9 = (mk + wk + gk + dk)

Nk10 = A, (mk + gk)

Nk11=A, (ck +ckl+ck2 + pk)

Nk12 = A? (ck +ck2)
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Now, we represent (14) by the following Eq. 15-18:

n X (G)Vy X (t)

o (14)

Zkiovn Uy (L) Vy +hy (8 V5,

Where:

V,, =[x, (t =5 )NKkI1+ X, (t, +1, )Nk12] (15)

Vi =[x, (1)NK9 + %, (1, )NK10] (16)
To solve for V,, set:

Q, (t,) =x,,(t, )Nkl + %, (t, )Nk2 + 2x,, a7

(t, +1,)Nk3 +2%,,(t, +1, )Nk4

and:

£, (t) =X, (4, )NKS + x,, (8, )Nk6 + X, (18)

(t, + 1, )NkK7 +x,,(t, +1,)Nk8

Now, both Q(t,) and fi(ty) are continuous
functions on [0,T]. Vy(ty) is continuous and at least
twice differentiable on [0,T]. Hence Q,(t)-V(t) and
fi(t)-Vii(ty) are continuous on [0,T]. x(.\)e D;[0,T]
such that x(0) = x(T) and by (Polak, 1971), we have:

J‘T{Xkl(tk)[Ql (t) = Vi ]+ x,(t) (19)
[, (t) = Vi (t)]Hdt, =0

Hence:

S (1) - Vi (0) =0 (6) - Vi (1) (20)
So:

£ ()= Vi (t) =Q () =V, (1,),0< 8, <T @20
Let:

Vll(tk)_vll(tk):f-‘l(tk)_Ql(tk):q(tk) (22)
By:

Vll(tk) - Vll(tk) = XkZ(tk)NkS + XkZ(tk)

Nk6 +X,, (t, + 5, )NK7 + %, (t, +1, )Nk8 23)

—[x,, (t, )NKI + %, (t, )NK2 + 2x , (t, +T.,)
NK3 +2%,, (t, +1, )(Nk4)]
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This is a second order ordinary differential
equation that needs to be solved. So we impose the
following initial conditions Eq. 19-23:

Vll(o) =h and \.]11(0)13

where, p; and y; are to be determined. Let Q(s) =
L(q(ty)) and Vyi(s) = L(Vii(ty)) denote the Laplace
transform of q(t,) and Vy;(t;) respectively. Taking the
Laplace transform of (22), we have Eq. 24:

$"Vi1(s)-pis-y-Vii(s) = Q(s) (24)
VRO LI i (25)
S S S

We take the inverse Laplace transform of (25) and
using convolution theorem for the first term on the right
to obtain Eq. 26 and 27:

Tq(s,)sin h(t, —s,)

Vi(t) =
ww=], dt, +p, cosh (t,)+sinh(t, )
h(T)E (0) J_Tf1 (s, )cosh(t, —s,)ds, (26)
=—sin| L (0)+ .
0 —IOTQI (t,)sinh(t, —s, )ds,
+p, cosh(t, )+ v, sinh(t,) (27)

where, qs, = =fi(s,-Q;(s)) and Eq. 28:

{f, (s, )cosh(T —s, )ds, +
sinh(Df, (0)- [ [} s, sinh(T -5,)ds, ~ ¢ (28)
Q(0)cosh(T) +©,(T)

U
sinh(T)

Now, solve for uy, by setting x(ty) = hpo(ty) =
0—xyo(ty) = 0 in EQ. 5.2, following the same sequence
as from the beginning of the proof to equation(28), we
then have Eq. 29-34:

Vi, (t) = uy, (8, )A,mk (29)
V(L) =u,,(t, )bk (30)
£, (t,) = v, (t)A gk (€29)
Q,(t) =u,(t)a, +2,)+ (32)

Uy, (t, +7v,)(2mk + 2wk + A, mk)
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V,,(t,) =—sinh(T)f, (0) + LT f, (s, )cosh(t, —s, )ds,

(33)
_J-OTQz(sk)sinh(tk —s,)ds, +p, cosh(t, ) +, sinh(t, )
1 : T
kN sinh(T) {sinh(T)f, (0) _L £, (s, )cosh(T —s,)
ds, + JOT Q,(s,)sinh (T —s,)ds, — Ql (34)

(0)cosh(T) +Q, (T)}

Finally, we solve for hyy(t) by setting Xy,(ty) =
Uo(ty) = 0—-X(ty) = 0, in Eq. 10 and following the
same sequence as from the beginning of the proof to
(28), we have Eq. 35-41:

Vo, (t)=h,(t)[A (A, +c, +c,))] (35)
Vas(t) = hy, (t,)[A,m, )] (36)
£, (T) = hy, (6)(AD) (37)
Q,(t) =h, (t)[A(C, + P +C AL+ +¢)] (38)

Vi (t,) = —sinh(T)f, (0) + [ £, (5, ) cosh(t, —s,)ds, -
J-TQ3(tk)sinh(tk —s)ds, + 39
® p,cosh (t, )+ y,sinh(t, )

1 . T
T, = m{smh(T)ﬂ 0)- IO f, (s, )cosh(T —s,)
ds, + IOT Q, (s, )sinh(T —s, )ds, — (40)
Q;(0)cosh(T) + Q,(T)}
Having constructed operator V, written as:
Vll \/12 \/13
V=V, V, V, (41)
V}l V32 V33

with the generalized scheme and associated operator, a
program is written using the Conjugate Gradient
Method Algorithm (Polak, 1971) to execute and
examine the convergence profile and the geometric
ratio profile.Next we give the theoretical backing for
the geometric convergence ratio.
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Convergence analysis of the discretized scheme: This
section shows that the discretized penalty extended
conjugate gradient method converges geometrically
by(Shannon, 1978; Aruchunan and Sulaiman, 2010).

Definition 6.1 The sequence {z,} generated by the
discretized conjugate gradient method of K converges
geometrically to z* such that:

. Zn+l —z ‘
lim =
oo ‘Zn - ‘

p<l

where, p is the convergence ratio.

Now we sate the conjugate gradient method
algorithm using our developed scheme for quadratic
objective function:

f(x) =%XTAx+bx+c

Step 1: Pick the initial solution zy(t,) arbitrarily,
wherez(t) = (Xo,U0,hp) € K

Step 2: Compute the initial direction; py = -(Ax+a) = -
go

Step 3: Update the initial guess as follows:

Xier1(t) = Xi(ti)+HaxPyk
U1 (t) = Wit aPuk
hies1(t) = hi(ti)+aipnk

(84-81)

Pr>aPy

where, a, =
Step 4: Update the gradient and stepsize at the (k+1) th
step as follows:

okt = Sxk TAADPx K
Susktl = SukTakAPyk

gx.k px.k
Chio = Ehx T2AD,, Whereg=|g  |andp=|p,,
Ehk Phx
and:
Py i1 = -Zekr1BiPxk
Pt = -Zur1BiPuk
Ph i1 = -gxkr1HPpnx where g = (B
(8..84)
Setting Eq. 11 equal to Eq. 42-45:
Vlle (tk) + VIZZX (tk) + VISZX (tk) +
VZkZ(tk) = VZIZx(tk) + VZZZx(tk) + VZSZx(tk) +
V,z, (t)+ Vy,z (t,) + Vy,z (t,) + (42)
Vz, ()
= YZZ(tk)
VZB(tk)
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Where:

1q, (s, )sinh(t, —s,)dt

Vz, (t,) = j “(t,)+7, sinh(t, )

 +p, cosh
+J-T q,(s,)sinh(t, —s, )dt, +
% p,cosh

J-T q5(s,)sinh(t, —s, )dt

0

(t) + v, sinh(t,)
+p, cosh

\721 (t) =X, (t)(my + Wy + g, +dy ) + X, (6 )(A)

(44)
(m, +q,)+u,(t)b, +hy,(t)(A,m,)

VZS(tk) =X (t 7 I)A (e, +¢y +¢4, D)
+Xk2(tk)(Ai (¢ +2¢,,) +uy, ()b, +hy,)
(t (A (my +c¢, +¢,,))

(45)

Now, we state and prove the geometric
convergence property of the developed scheme.

Theorem 6.1: The sequence of estimated solutions {z}
generated by the discretized penalty method converges
to z* with ratio ® given by:

T

o =1-—
2

3
[va|

n>En

where, t=max{ }+ and z is the initial guess.

Proof: Define:

f(z) = (z-z*,Vz-z*)k and z'(t) = (X1, Ui, hy) (46)

With optimality condition Vz* = 0. From (46)

f(z) = (z-z*,Vz1-2%)«

= (21, V2 )-(z% VZi)k

f(ZkH) = (Zk+akpk-z*,V(zn+akpk-z*,V))k

= (21, Vziita(zi, VP ta(Pr, YV zi)ia(Pr, V Pk
-(z*,Vzi)-al(z*,Vpik

Therefore:

(Vz,,Vz,),  f(z,)
(P, V) (Vz,,2),

f(z,)-1f(z,,) = 47)

since V is self-adjoint and Vz* = 0.Again Eq. 46-50:

N-1
(Vzk3zk)k (Vzkazo) + Zj:() (VZk ap_j)
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and:

Y (VZ,p), =0, k# ]
Hence:
(Vz,z = (Vzi,Zo) (48)

V is a bounded operator then there are positive numbers
m and M such that for every z in K:

mHz—z'H2 SHV(Z—Z')H2 SMHZ—Z'H2 (49)
Hence:
(Vz,,z,) < HVZ"HHZOH (50)

Substitute inequality (50) in Eq. 47 to obtain:

(Vz,,Vz, )i f(z,)

51
Voo [Vale] e

f(z,)-1(z,,,) 2

Using (6.10):
f(z,)2 msz - ZH

and Eq. 51 becomes Eq. 52 and 53:

|

Zy 1 _Z.H < f(z.1) <1- HVZk
[-2] "t T e veo |

(52)

Therefore:

v
(P, VP HZOH ’

|

(53)
HVZk

(pk7vpk)k}

where T = sup {

This completes the proof.
Numerical example: This example validates Theorem (9)

and Theorem(39) by minimizing the following quadratic
functional with real coefficients Eq. 54 and 55:

Minimize L(t,x,u), = E(xz(t) +ul(t)dt (54)

subject to the linear restoring dynamic equation:
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X(t—0.2) + x(t) = 2x(t) + 5u(t)

. (55)
x(0) =x(t) =h(t),t €[-0.2,0]

For better understanding of the results, the
following abbreviations and notations shall be invoked:

J(x,Xk(t-Y),ux) = the objective functional
F(x,xk(t-7),u, 1) = the penalized functional

The analytic solution is given as 0.2328 by (Olotu
and Adekunle, 2010).

RESULTS AND DISCUSSION

For every fixed penalty constant per cycle, it is
seen that convergence is attained as evidenced by the

Table 1: Numerical results comparable to the analytical solution (0.2328)

values of the objective functional. For instance, for
penalty constant p = 0.01, the objective functional
values initiating at 0.26 and ending at .2537889, a value
attained at the sixth iteration compares more favorably
with the analytic solution 0.2328 . The same applies to
every cycle with at most six iterations. As the penalty
parameter increases, the better the approximation to the
analytic solution. Also, the geometric convergence ratio
profile is attained favorably, since the geometric ratio is
greater than zero and less than one, as exhibited under
the geometric ratio column in Table 1. For instance, for
pn = 0.01, we see that the geometric convergence ratios;
0.785294, 0.984049, 0.998686, 0.999888 and 0.999999
and are all greater zero and less than one. The same
information is seen for other cycles.

Constr Penalized
Parameters Iteration No Ob;j. functional satisfaction functional Geometric ratio
p=0.01 1 0.2600000 7.290000 0.3329000
2 0.2541600 7.062863 0.3248046 0.7852940
3 0.2538193 7.012422 0.3239435 0.9840490
4 0.2537917 7.006729 0.3238590 0.9986860
5 0.2537892 7.006135 0.3238590 0.9998880
6 0.2537889 7.006078 0.3238497 0.9999990
p=0.002 1 0.2600000 7.290000 0.2745800
2 0.2544980 7.060028 0.3686180 0.7977200
3 0.2541324 7.011543 0.2686180 0.9833380
4 0.2541083 7.006103 0.2681205 0.9986360
5 0.2540550 7.005534 0.2681166 0.9974980
6 0.2540530 7.005477 0.2681162 0.9999250
pn=0.003 1 0.2600000 7.290000 0.2818700
2 0.2546610 7.060249 0.2756469 0.8037130
3 0.2541061 7.011531 0.2756469 0.8037130
4 0.2540772 7.006063 0.2750954 0.9986435
5 0.2540745 7.005490 0.2750910 0.9998730
6 0.2540742 7.005434 0.2750905 0.9999800
pn=0.04 1 0.2600000 7.290000 0.2891600
2 0.2544343 7.060483 0.2826762 0.7953780
3 0.2540749 7.011533 0.2821210 0.9833870
4 0.2540462 4.006033 0.2820703 0.9986500
5 0.2540435 7.005458 0.2820653 0.9998720
6 0.2540432 7.005402 0.2820648 0.9999850
p=0.05 1 0.2600000 7.290000 0.2964500
2 0.2544024 7.060731 0.2897016 0.7942050
3 0.2540436 7.011546 0.2891040 0.9833900
4 0.2540151 7.006015 0.2890452 0.9986580
5 0.2540124 7.005437 0.2890396 0.9998720
6 0.2540122 7.00538 0.2890391 0.9999900
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CONCLUSION

Considering the minimum of the objective
functional values for each cycle, it is readily seen that
the numerical solution approximates the analytic
solution 0.2328 within an error tolerance of 0.021. The
convergence analysis is equally favorable. This shows
that the developed scheme for the solution of optimal
problem constrained by evolution equation is
adequately effective and efficient.

Recommendation: The results obtained and the
information gathered from the geometric ratio profile
imply that a solution of an hypothetical constrained
problem can be approximated with this scheme, even
without a prior knowledge of the analytical solution.
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