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Abstract: Problem statement: We consider the numerical solvers for the linestfiNavier-Stokes
problem. Both the Stokes problem and Oseen prob&msonsideredApproach: We used the Mark
and Cell (MAC) discretization method to discretitbe Navier-Stokes equations. We used
preconditioned Krylov subspace methods to solverésailting linear system®esults: Numerical
experimental results are performed to compare tffiereht preconditionersConclusion: The choice

of the preconditioner is highly problem dependem @e give the suggestions for individual cases.
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INTRODUCTION au-\Au+(v. D)u+dp =fin inQ %[0, (5)
We study numerical solution methods of the.u=0inQ x[0,I] (6)
incompressible viscous fluid problem. For an open
bounded domaifOR (d = 2, 3) with boundary, time Bu =g in9Q x[0,I"] )
interval [0,T] and data f, g and, y we aim to find a
velocity field u = u(x,t) and pressure field p =xg{  y(x,0) = 4 inQ (8)
such that:
where, v is a know velocity field from a previous
%—vAu+(uD)u+D o= finQx [OF | 1) |terat|2n. And we call v a wind function. Here
du a= O(a), wheredt is the time step. If a=0, we have the
O.u=0inQ x[0,] ) steady state Oseen problem Eq. 9-12:
Bu = g in8Q x[0,7] 3) -vAu+(v. D)u+Op =fin Q x[0,] (9)
u(x.0) = inQ ) O.u=0inQ x[0,I] (10)
Equation 1 represents the conservation oTBu =gindQ x[0r] (11)
momentum and it is called the convection form @& th o
momentum equation. Equation 2 represents thé’(x'o) =binQ (12)

conservation of mass, since for an incompressibte a . L :
homogeneous fluid the density is constant both with Wh_en the wind function is zero,. we obtain the
respect to time and the spatial coordinates. Eopstl-  Jeneralized Stokes problem Eq. 13-16:

4 describe the dynamic behavior of Newtonian fluids _

such as water, oil and other liquids. Acheson (}9903U-\A+0p =finQ x[0,r] (13)
and Batchelor (2000) for more details. Here v is th
kinematic viscosityA is the Lapalcian] is the gradient,

0 and is the divergence. We can use implicity

0.u=0inQ x[0,] (14)

discretization and linearization (for an examplieaRl’s  Bu =g in8Q x[0,[] (15)
iteration) of the Navier-Stokes equations to obtain
sequence of generalized Oseen problems of the form:  u(x,0) = 4 iIn Q (16)
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Again, if a=0, we will obtain the steady-state problems. We find out that even though there is no

Stokes problem. “ideal” preconditioners exist for all the cases, emld
Discretization of Eq. 5-8 using a div-stable €ggt choose the one with the best performance under
leads to a linear system of the form Eq. 17: difference cases. The remainder of the study is
organized as follows. Section 2 introduces theedfit
A B preconditioners. Section 3 will provides the nuralri
=[ ] a7 experimental results for the preconditioners weehav
B 0 introduced. Based on the results of section 3, an

analysis of the preconditioners will be given fiwet

where, A is a discrete convection-diffusion operato Navier-Stokes problems in section 4 and we will enak
i.e., A=ual-vH+N. Here H is a discrete diffusion acknowledgement in section 5.
operator and N is a discrete convection operat@and
B' are discrete divergence and gradient operators, MATERIALSAND METHODS
respectively. In this study, we will use the Marleard
Cell (MAC) discretization which is one of the div-
stable discretization methods, (Elnetral., 2006).

Numerical methods for solving the saddle point
linear system (17) are developed actively. Howeabr,
existing methods are not robust with respect to all (A B]:( ' OJ(A B]
problem parameters such as the time step and the cC o CA* 1)l0 -
viscosity. Once common approach for solving the
Navier-Stokes equation is the preconditioned Krylov
subspace method. However, the rate sof convergefnce
the Krylove submspace methods are very slow in .
general. We need to speed up the rate of conveggenc A BYA B) (I O
This goal can be achieved by preconditioning. [C 0](0 - ] _[ CA* I]
Preconditioning is a key ingredient for the succefks
Krylov subspace methods. Generally speaking,
preconditioning is a transformation of the original
system into another system such that the new syste
has more favorable properties for iterative sohutié
preconditioner P is a matrix that effects such
transformation. After we apply the preconditioner
matrix P to the original matrix A, the preconditezh p:[A BJ
system P'A is supposed to have a better spectral 0 -S
properties. If the matrix is symmetric, the rate of
convergence of the Conjugate Gradient (CG) methiod o I 0
Minimum Residual Method (MINRES) depend on the ~ This preconditioned SyStemP_lA:[CA_l Ij’
distribution of the eigenvalues of the matrix A.thfe

preconditioned matrix PA has a smaller spectral which contains eigenvalues \.N.ith the same va_luet L]
condition number or the eigenvalues are clustere¢®" be ShF’V_V” the precondmor_\ed .GMRES. lteration
around 1, then we can expect a fast rate of corviery would be finished at most two iterations. [citeThe
For nonsymmetric (nonnormal) problems the situation bottlengck for the r_Jrecondltloner we have proposed
more complicated and the eigenvalues may not descri 2P0Ve is to calculate B =w_k can be very EXpensive.
the convergence of nonsymmetric matrix iteratidke | 1h€ Schur complement is S = _CLB where A is a
General Minimum Residual Method (GMRES); see thedense matrix. Inverting the matrix S requires swva
discussion Elmaet al. (2005). Nevertheless, a clustered VeTy expensive system. Therefore we have to replace
spectrum (away from 0) often results in rapidthe Sf:hgr complement by a relat_lve easy ma\_trlxeBas
convergence, especially if the departure from néityna  ©N thls |d_ea, we have the following preconditiongrs
of the preconditioned matrix is not too high. We éad ~ consider in general.
detailed discussions Elmahal. (2005).

Our aim of this study is to study the behaviothef  Block diagonal preconditioner: The basic block
difference preconditioners for the Navier-Stokesdiagonal preconditioner is given by:
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In this section, we will derive a series of block
preconditioners based on the block factorization:

where, S is the Schur complement. Therefore:

Based on the block factorization above, it is
ossible to use the matrix as a right-oriented
ﬁ}econditioner. Therefore it is very nature to cd®the
preconditioner of the following form:
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A O of SIMPLE preconditioner is one solve for A and one
P":[O J solve for the approximate Schur complement. The
Schur complement system is a discrete elliptic agcal
PDE which can be solved by Multigrid. Therefore

here we choose the diagonal matrices and replacglMPLE is a relatively cheap preconditioner.

the Schur complement by the identity matrix. THues t
total cost of applying such a preconditioner only ] o o
involves solving linear systems with the matrix . ~ 1he pressure convection-diffusion preconditioner:

A is positive symmetric definite, then we can useThe pressure convection-diffusion preconditioner
many efficient methods like CG, Multigrid methods t (Elmanet al., 2002) is defined as the following block
solve the matrix A. The cost of this type of the triangular preconditioner:

preconditioner is low.

A BT
Block triangular preconditioner: The block triangular Pap=[ - ]
preconditioned is obtained by: 0 S
P :[A B where, S=BB'A;, where A is the discrete (reaction)
Clo o

convection--diffusion operator on the pressure spac
To implement such a preconditioner, solving theusch
We replace the Schur complement by the identiticomplement part requires the action of a Poisstreso
matrix. The total cost of applying such a precdodiér and a matrix-vector product with a specially
only involves solving linear systems with the math  constructed matrix A In addition we need to perform

and matrix vector products. The cost of the blockthe solves for A which are the same as the previous
triangular preconditioner is also very low and thispreconditioners.

preconditioned contains more information than the

block diagonal preconditioned. The least-squares commutator preconditioner:
o Another approach for the approximation of the Schur
Uzawa preconditioner: complement gives us a new block triangular

preconditioned:
A O
Pu =
(e 1)

T
Rsc:(ﬁ isj
where,wis a parameter. The Uzawa'’s preconditioner is
also regarded as a lower block triangular _ a1 T Tao1 .
preconditioner. This class of the preconditionersWhere’ b§ = (B B)" BAB (BB)". This
includes some of the most effective solvers fordid Preconditioner was proposed by Elmenal. (2006)
points problems. Again, we replace the Schu@nd this approach for approximating the Schur
complement by the identity matrix. complement operator is only applicable when the
discretization is uniformly stable (which is thesea
SIMPLE preconditioner: The SIMPLE scheme with MAC), (Elmanet al., 2006) and (Elmaret al.,

(Semi-Implicit Method for Pressure Linked Equatipns 2005)- We refer to this type of preconditioner s t
is very popular in computational fluid dynamics. l€ast-squares commutator preconditioner. In conteas
Consider the block preconditioner as follows: what is done for the pressure convection-diffusion

preconditioner, this methodology does not require t
ot explicit construction of the matrix /A Implementing
p :(A 0 ](' DB ] this preconditioner, we need one solve for A, two
> (-B BD'B")(0 [ solves for two discrete Poisson-type matrices 'BaBd
matrix-vector products with the matrices B} 8nd A.
where, D is the main diagonal of A. This scheme wag heé main advantage of the least-square approabitis
originally developed by Patankar and Spalding init is fully automated, that is, it is defined inries of
(Paige and Saunders, 1975; Patankar, 1980) and thematrices that are available in the statement of the
are many variants of this approach since then.chis¢  problem and it does not require the constructiothef
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auxiliary operators Athat are needed for the pressurepreconditioners. We found that this scaling is ooly
convection-diffusion preconditioner. However, thestt  beneficial to convergence, but also it makes figdin
of the least-squares commutator preconditioner is énearly) optimal values of the shifteasier. Of course,
little higher. It needs one more solve for the dise  the right-hand side and the solution vector weadest
Poisson matrix. accordingly. We used right preconditioning in akes.

Her mitian and Skew-Hermitian (HS9) The stokes type flow: Here we consider the
preconditioner:  The  Hermitian/Skew-Hermitian generalized Stokes problem on the unit square. The
splitting (HSS) preconditioner is based on Herianiti right-hand side is given by f(x,y)= (sim{)sin(ry),0).

and skew-Hermitian splitting of the coefficient mwat ~ The computational domain is the unit square for two
dimensional problems. The equations were discietize
with the MAC scheme with a uniform mesh size h. The
following splitting of A into its symmetric and ske ~ outer iteration (full GMRES) was stopped when
symmetric parts:

Letting H:%(A +A",K :%(A -A) we have the

I
M <10®, where g denotes the residual vector at step

(A BTJ H 0) (K BT Il . _
A= =[ ]*{ ]=H +K k. For the results presented in this section, the
-B C 0 C -B 0 . . >
symmetric positive definite systems were solved
‘exactly’ by means of the sparse Cholesky factdigra
Note that H, the symmetric part of A, is symmetricavailable in MATLAB, in combination with an
positive semidefinite since H and C are. K is awske approximate minimum degree ordering to reducerfill-
symmetric matrix. Letp>0 be a parameter, the HSS For the sparse, nonsymmetric Schur complement
preconditioner is defined as follows: system we used the sparse LU solver available in
MATLAB with the original (lexicographic) ordering.
P i(H+pI JK+pl ) We fpund this to be faster than a minimur_n degree
"2 m N m ordering, probably because the need for pivotingara
the fill-reducing ordering ineffective or even hduh
Figure 1 and 2 are obtained using the
Incompressible Flow Iterative Solution Software
(IFISS) by Elman and co-workers. These figures show
he computed solutions of the Navier--Stokes pnwoble
igure 1 shows the solution of the Stokes problenaf
leaky driven cavity problem; while Fig. 2 is thdwg@mn
of a (regularized) driven cavity problem on a sguar
domain, which is a fast-flowing analogue of thekét®
How in a cavity. The solution shown in Fig. 2
corresponds to a viscosity of 0.001. Note the
recirculation at the bottom corners.

where, }.n is the identity matrix of size m+n. To Solve
this preconditioner, it requires solving a shifted
Hermitian system and a shifted Skew Hermitian sgyste
This preconditioner was first proposed by Benzi an
Golub (2004). Then it is used as a preconditionettfe
Oseen problem in rotation form by Benzi and LiuQ2pD
This preconditioner also has a good performancéhior
Stokes problem and the Oseen problem in convectio
form (which is the case we discuss).

RESULTSAND DISCUSSION

Streamlines: Selected Ptessueeincld

In this section, we will show the numerical 7 ‘
experimental results for the Navier-Stokes problems a ) 280, |
with different preconditioned GMRES methods. All 4 260{
results were computed in MATLAB 7.1.0 on one N 240}
processor of an AMD Opteron with 32 GB of memory. || 2204
Numerical experiments are presented for the fartidus
driven cavity problems in two dimensions. We have |\\ ™~ s \\ o
tested for both constant wind function and variable N — 2, 0 !
constant function. The linear iteration was stopped e
when the residual of the linear system satisfied.

Again in all experiments, symmetric diagonal Fig. 1: The solution of the Stokes problem for akie
scalings was applied before forming the driven cavity problem
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NS P Uzawa preconditioner is quite close to the block

9/ ' . A triangular preconditioner, which is the reason vihg
' -y behaviors of the block triangular preconditioned an

3 Uzawa preconditioner are similar. Unfortunatelye th
behavior of SIMPLE is not competitive since the
iteration count is strongly mesh size dependent.cdére
see that from the table that as the mesh size dsuthle
iteration counts of the SIMPLE preconditioner irage
by 50%.

For the unsteady Stokes problem, these

Fig. 2: The solution of a (regularized) driven dgvi preconditioners have similar behaviors. Howevergesi

[SCRE IS S N A ]
Gyt v

problem on a square domain in this case A is a discrete shifted Poisson operéte

Schur complement S=BMB" is not close to the

Table 1: Iteration number of the Stokes problem identity unless a is small. Experimental resultsvsh

Grid size Diagonal Triangular Uzawa HSS simple that for the unsteady problem, the block triangular

8by8 15 10 12 22 18 preconditioner, Uzawa preconditioner and HSS

16 by 16 17 11 13 29 28 preconditioners are the best. Iteration counts of

32 by 32 1 12 14 38 45 GMRES with the block triangular preconditioner bet

64 by 64 19 13 15 51 71 c. TS

128 by 128 21 13 15 76 109 Uzawa preconditioner, (in this case, b@s0.90or 1) are

independent of mesh size. Iteration counts of GMRES
Table 2: Iteration number of the unsteady Stokeblpm with time  also independent of the mesh size and time stefts wi

step 1/20 the HSS preconditioner. The results in Table 2 and
Grid size Diagonal  Triangular Uzawa HSS Simple show the behaviors of the different block
8hy8 25 13 13 9 16 o . . .
16 by 16 29 15 15 10 27 preconditioning. Table 2 is .the_lterat|on counts tlee
32 by 32 29 15 15 11 42 unsteady Stokes problem with time step a=20 andeTab
64 by 64 31 16 16 13 53 3 is the iteration counts for the unsteady Stokes
128 by 128 33 17 17 17 67

problem with the time step a = 100. Both tableswsho
Table 3: Iteration number of the unsteady Stokeblpm with time that, for  the HSS and block trlangmar

step 1/100 preconditioners, iteration counts are bounded as th
Grid size Diagonal ~ Triangular Uzawa HSS Simple mesh size grows or time steps changes. For thé&bloc
8by8 31 16 16 12 13 diagonal preconditioner, even though the iteration
16 by 16 35 18 18 13 2 counts are bounded with respect to the time step an
32 by 32 38 19 19 13 38 . . . .
64 by 64 39 20 20 13 39 mesh size, the iteration number is larger than the
128 by 128 39 20 20 15 41 block triangular or HSS preconditioners. We also ca

see that the SIMPLE preconditioner is not
It is well know that for the Stokes problem (both recommended. We can see that iteration count
steady and unsteady), there exist many optimatlepends on the mesh size. Although it is robush wit
solvers. As is clearly shown in Table 1, the blockrespect to the time step. As time steps become
diagonal preconditioner, the block triangular smaller, iteration counts decrease; however, itemat
preconditioner and the Uzawa preconditioner are altounts still increase as mesh size goes to zerdoren
ideal preconditioners for the steady-state Stokeshe smallest time step parameter a=0.
problem when we approximate the Schur complement
by I. The reason is that, as already mentionedtffer The Oseen flow: Here we consider linear systems
Stokes problem, | turns out to be a goodarising from the discretization of the Oseen protde
approximation of the Schur complement S. EspeciallyAgain the computational domain is the unit squane f
for the block triangular preconditioner and the Waa two dimensional problems. We used Dririchelet
preconditioner, the iteration counts are indepehdén boundary conditions. For the wind function, we cé®o
the mesh size. For the block diagonal preconditione the constant wind and variable wind. Since the
there is a very tiny increase for grid sizes 64 agf. performances of those two situation are quite simil
Notice that the optimal parametes in the Uzawa we only introduce the results for constant wind
preconditioner is always around 0.9-1.0. Thereforefunctions here.
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Table 4: Iteration number of the steady-state Osaeblem with
viscosity v =0.1

Convection Lest

Grid size  Diagonal Triangular Uzawa Simple HSS fediibn  square
8by8 67 34 21 22 19 9 27
16 by 16 77 39 23 31 25 9 39
32by32 85 43 25 48 34 13 59
64 by 64 91 46 27 75 51 17 85
128 by 128 95 48 29 116 72 18 91

Table 5: lteration number of the steady-state @gs®blem with
viscosity v = 0.01

Convection Lest
Grid size  Diagonal Triangular Uzawa Simple HSS fediion square
8by8 127 71 64 59 15 27 22
16 by 16 459 270 178 78 19 24 31
32by32 459 334 187 54 25 25 43
64 by 64 685 343 189 66 36 29 55
128 by 128 >1000 356 190 107 57 30 63

Table 6: Iteration number of the steady-state Ogeeflem with
viscosity v = 0.001

ConvectionLest
Grid size  Diagonal Triangular Uzawa Simple HSS fegiion square
8hby8 127 127 70 63 14 54 44
16 by 16 479 507 260 120 14 93 24
32by32 479 >1000 822 208 17 74 34
64 by 64 >1000 >1000 >1000 172 23 72 51
128 by 128 >1000 >1000 >1000 130 32 72 51

Table 7: lIteration counts of simple preconditiof@MIRES for the
unsteady-state Oseen problem with viscosity v =0.1

Grid size a=1 a=10 a=20 a=50 a=100
8 by 8 22 17 14 11 8
16 by 16 30 26 23 17 13
32 by 32 a7 42 38 29 22
64 by 64 74 69 63 51 38
128 by 128 115 109 103 94 72

Table 8: Iteration counts of SIMPLE preconditio®MRES for the
unsteady-state Oseen problem with viscosity v £D.0

Grid size a=1 a0=10 a=20 a=50 a=100
8by8 57 27 17 10 7
16 by 16 93 39 24 13 9
32 by 32 52 40 32 20 12
64 by 64 65 55 46 31 20
128 by 128 106 92 80 56 38

Table 9: lteration counts of HSS preconditioned RE& for the
unsteady-state Oseen problem with viscosity v = 0.1

Grid size a=1 a=10 a=20 a=50 a =100
8 by 8 18 15 13 13 14
16 by 16 25 22 19 16 15
32 by 32 34 31 29 23 19
64 by 64 60 44 41 37 49
128 by 128 72 53 52 44 51

Table 9: lteration counts of HSS preconditioned GARfor the
unsteady-state Oseen problem with viscosity v £D.0

Grid size a=1 a=10 a=20 ao=50 a=100
8 by 8 10 10 11 13 15
16 by 16 12 10 12 14 15
32 by 32 16 11 11 14 16
64 by 64 22 16 13 14 16
128 by 128 27 17 13 16 16
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Table 4-6 show the results of the iteration counts
for convergence of the preconditioned GMRES solver
on the steady-state Oseen problem with viscosit) /=
to v=0.001. The results show that the block diagona
block triangular, Uzawa and SIMPLE preconditioners
should not be considered as the preconditionershtor
Oseen problem. The number of the iterations stsongl
depends on the mesh size. For the relative large
viscosity cases, the pressure convection diffusion
preconditioners wins and for the smaller viscosity
cases, the HSS preconditioner works better. Thst lea
square preconditoner is also a good choice. Even
though the number of the iterations is higher than

other two preconditioners, the cost of this
preconditioner is the lowest.
For the unsteady oseen problem, numerical

experiments show the block diagonal, block triangul
or Uzawa preconditioners are the ones we shoul@avo
For the SIMPLE preconditioner, it works well foreth
smaller time steps. Those results can be explaiyed
the construction of the preconditioners. For the
unsteady Oseen or steady state Oseen problem, the
Schur complement is given by S=BB'. Here A is
not an identity matrix. Therefore, it is not a good
approximation of the Schur complement if we repl8ce
by I in the (2,1) block of the preconditioner. Hoxge,

for the unsteady Oseen problem with the SIMPLE
preconditioner, diag(A) can be a good approximdte o
the matrix A once the step time is small (which nmea

is large). For the pressure convection diffusion
preconditioner or the least square communicator
preconditioner, the y only works well for the large
viscosity. Among all the preconditioners we have
introduced, HSS preconditioner will be the “best”
choice for the unsteady Oseen problem.

Table 7 and Table 8 show iteration counts for the
SIMPLE preconditioned GMRES methods of the
unsteady Oseen problem with viscosity 0.1 or 0.001.
From the both tables, we observe that the SIMPLE
preconditioner has a better performance when the ti
steps get smaller.

Table 8 and Table 9 are the experimental resoits f
the iteration counts of HSS preconditioned GMRES fo
the unsteady Oseen problem with viscosity 0.1 and
0.01. We can see that the HSS preconditioner works
even better for the smaller viscosity. The numidehe
iterations is bounded by 20 for most of the casesia
is independent of the mesh size, viscosity and §tap.

CONCLUSION

The purpose of this study was to explore the
properties of the preconditioned Krylov subspace
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