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Abstract: Problem statement: One of the well known problems in Telecommunication and Electrical 
Power System is how to put Electrical Sensor Unit (ESU) in some various selected locations in the 
system. Approach: This problem was modeled as the vertex covering problems in graphs. The graph 
modeling of this problem as the minimum vertex covering set problem. Results:  The degree covering 
set of a graph for every vertex is covered by the set minimum cardinality. The minimu of a graph 
cardinality of a degree covering set of a graph G is the degree covering number γP(G). Conclusion: 
We show that Degree Covering Set (DCS) problem is NP-complete. In this study, we also give a linear 
algorithm to solve the DCS for trees. In addition, we investigate theoretical properties of γP (T) in trees T. 
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INTRODUCTION 
 
 At this moment we are dependable with the 
electivity power. The consumption of electricity is 
increasing every year. The electric power industries have 
to monitor carefully their system’s state periodically as 
defined by a set of state variables (Ramos and Tahan, 
2009; Kumkratug, 2010; Osuwa and Igwiro, 2010). One 
method of monitoring these variables is to place 
Electrical Sensor Unit (ESU) in some various selected 
locations in the system (Ahmadia et al., 2010). Because 
of the high cost of a ESU, it is desirable to minimize 
their number while maintaining the ability to monitor 
(observe) the entire system (Ketabi and Hosseini, 
2008). We define a system is to be observed if all of 
the state of the system can be decided from a set of 
measurements. 
 
Approach: Let G = (V, E) be a graph that modeled as 
an electrical system, where a vertex represents an 
electrical point (such as a electrical point of bus) and an 
edge represents a electrical line. The objective is how 
can we locate a smallest set of ESU to monitor the 
entire system is a graph theory problem closely related 
to the well-known minimum vertex covering problems. 
Hence, Electrical Sensor Unit (ESU) is not only of 
interest in the electrical engineering but also as a 
challenge problem in graph theory. For more discussion 
about covering and related subset problems as well as 
terminology not defined here, we encourage the reader 
to two books (Ramos and Tahan, 2009). 
 A ESU measures the state variable (voltage and 
phase angle) for the vertex at which it is placed and its 

incident edges and their end vertices. The other finding 
rules are as follows: 
 
• We observed the incidences of vertices to edges 
• We observed joining any edges 
 

MATERIALS AND METHOD 
 
 For a given set of vertices P representing the nodes 
where the ESU are placed, the following algorithm 
determines the collection of collection of vertices C and 
edges F. 
 Let P ⊆ V be the set of vertices where the ESU are 
placed: 
 
• Initialize C = P and F = {e ∈ E(G) | e is incident to 

a vertex in P} 
• Add to C any vertex not already in C which is 

incident to an edge in F 
• Add to F any edge not already in F such that 

• Both of its end vertices are in C or 
• It is incident to a vertex v of degree greater 

than one for which all the other edges incident 
to v are in F 

• If steps 2 and 3 fail to locate any new edges or 
vertices for inclusion, stop. Otherwise, go to step 2 

 
 The objective of the problem is to solve the 
electrical system, we want C = V(G) and F = E(G) and 
we want to minimize |P|. This monitoring problem was 
introduced and studied in (Pask et al., 2005; Katrenic 
and Semanisin, 2010). 
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 A covering set in a graph G = (V, E) is a set of S 
∈ V(G) if every vertex in V- S has at least one neighbor 
in S. The cardinality of a minimum covering set of G is 
the covering number γ(G).  
 Considering system monitoring their system’s state 
as a modeling of the covering set problem, we define a 
set S to be a Degree Covering Set (DCS) if every vertex 
and every edge in G is observed by S. The Degree 
Covering Number γP (G) is the minimum cardinality of 
a degree covering set of G. A covering set (respectively, 
degree covering set) of G with minimum cardinality is 
called a γ(G)-set (respectively, γP (G)-set). 
 We can conclude that covering set is a DCS, we 
have the following finding (Horaka and McAvaneyb, 
2007). 
 
Theorem 1: G is random graph and we conclude that, 1 
≤ γP (G) ≤ γ(G).  
 We will make next finding gives examples of 
graphs having a degree covering number equal to 1. 
 
Theorem 2: G is random graph where G∈{Kn, Cn, 
Pn,K2,n} then γP (G) = 1. 
 The shadow of two random graphs G and H, 
denoted G ◦ H, is the graph formed from one copy of G 
and |V(G)| copies of H where the i-th vertex of G is 
adjacent to every vertex in the i-th copy of H. We can 
see that, the difference between γ(G)-γP(G) can be 
large. For arbitrary Graph T, the shadow of a star T = 
K1,k ◦K1 has γp(T) = 1 < k+1 = γ(T) for k ≥ 1. 
 We note that every random graph H is the induced 
subgraph of a random graph G having γP(G) = γ(G). 
Consider, for example, the shadow of random graph G 
= (H◦K2), where γP (G) = γ(G). 
 Hence, we have the following finding. 
 
Theorem 3: Every random graph H is the induced 
subgraph of a random graph G having γP(G) = γ(G). 
 Suppose that G is a random graph with maximum 
degree at least 3 and that S is a γP (G)-set that contains a 
vertex v of degree less than 3. Let u be a vertex of 
degree at least 3 at minimum distance from v in random 
graph G, then, (S-{v})∪{u} is also a minimum degree 
covering set of G. We can conclude as follows. 
 
Theorem 4: If G is a random graph with maximum 
degree at least 3, then random graph G contains a γP 
(G)-set that for every vertex has degree at least 3. 
 The vertices of small degree play a significant role 
in determining the degree covering number of a random 
graph. In particular, it is not necessarily true that if G/ is 
the random graph obtained from a random graph G by 
subdividing one edge of G, then γP (G/) = γP (G). 

 In above Fig. 1, random tree T and T/ are the trees 
that taken from T by dividing the edge vw once, then 
γP(T’) > γP(T). 
 In study (Sharaeh, 2008) Sharaeh investigated 
about the approximation algorithms for power system 
monitoring problem solution. We will investigate that 
the DCS problem is NP-complete even when restricted 
to bipartite or chordal graphs. We also investigate 
about linear time algorithm to find a DCS in trees 
and study theoretical properties of the degree 
covering number in trees. 
 
NP-completeness: NP-Completeness is one the classic 
problem in Computer Science that find in many domain 
in electrical engineering. In this part we discuss the 
problem of NP-complete even when restricted to 
bipartite or chordal graphs (Horaka and McAvaneyb, 
2007). 
 
Degree Covering Set (Dcs):  
Input: A graph G = (V,E) and a positive integer k > 1. 
 
Question: Does G have a DCS of size at most k? 
 Base on the finding on (Kumkratug, 2010) we will 
make some modifications of the standard proof of NP-
completeness of COVERING SET, that able to 
establish the NP-completeness of the DCS even when 
restricted to bipartite graphs. 
 
Theorem 5: Degree covering set is NP-complete for 
bipartite graphs. 
 
Proof: We first show that DCS∈ NP. This is easy to do 
since one can verify a “yes” input of DCS in 
polynomial time. That is, for a random graph G = 
(V,E), a positive integer k and for each subset S∈V 
with |S| ≤ k, it is easy to verify in polynomial time 
whether S is a DCS. 
 We next construct a reduction from NP-complete 
problem 3-DCS. 
 The problem of 3-DCS cam be defines follows. 
Assume we have V = {v1, v2, . . . , vn} as set of 
variables and a set of 3-element sets K ={K1, K2, . . . , 
Km}, called clauses, where each clause Ki contains three 
distinct occurrences of either a variable vi or its 
complement vi. 
 We will solve whether K have a satisfying truth 
assignment, i.e., an assignment of TRUE and FALSE to 
the variables in V such that at least one variable (or its 
complement) in each clause Ki ∈ K is assigned the 
value TRUE? 
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Fig. 1: Degree Covering Number of tree equal with 2  
 
 Given an input K of 3-DCS, we construct an input 
G(K) of the DCS as follows. For each variable vi, 
construct a cycle on four vertices K4, where two 
nonadjacent vertices are labeled vi and vi. These cycles 
and vertices are called random cycles and random 
vertices, respectively. For each clause Kj = {vi, vk, vl} 
create two nonadjacent vertices labeled Kj,1 and Kj,2 
(called clause vertices) and add edges: (vi, Kj,1), (ui, 
Kj,2), (vk, Kj,1), (vk, Kj,2), (vl, Kj,1), (vl, Kj,2). By 
construction, the graph G(K) is bipartite. 
 We will show that K has a satisfying truth 
assignment if and only if the graph G(K) has a DCS of 
size at most k = n. 
 Assume that first that K has a satisfying truth 
assignment. We create a DCS P in G(K) as follows: 
Assume that variable vertex vi is map as TRUE and we 
map variable vertex vi in P; otherwise, put variable 
vertex vi in P. The set P is a DCS for two reasons: (i) 
Base on the definition of DCS that v Vertex in each 
variable cycle K4 belongs to P are dominated. Thus, 
every edge and vertex in each variable cycle K4 is 
observed. (ii) Base on Theorem 5 that mention that for 
every clause vertex Kj is dominated by at least one 
vertex in P. We can conclude that, all edges between 
vertex, Kj,1 or Kj,2 and P is a DCS of size at most k = n. 
 Conversely, we must show that if G(K) has a DCS 
of size at most k = n, then K has a satisfying truth 
assignment. Notice first that if P is a DCS of G(K), then 
it must contain at least one vertex from each variable 
cycle K4. Therefore, |P| ≥ n, i.e., |P| = n. 
 
Theorem 6: Degree covering set is NP-complete for 
chordal graphs. 
 
Tree: In this part, we investigate the degree covering 
number of a tree. 
 We will define some notations that we will use for 
the rest of the study. 
 For any vertex v ∈ V, the nearest neighborhood of 
v, denoted by N(v), is the set {u ∈ V | uv ∈ E} and its 
farthest neighborhood N[v] = N(v) ∪ {v}.F or a set S ⊆ 
V, its nearest neighborhood N(S) = ∪v�SN(v) and its 
farthest neighborhood N[S] = N(S) ⊆ S. The personal 
neighbor set of a vertex v with respect to a set S, 
denoted pn[v, S], is the set N[v]-N[S-{v}]. If pn[v, S] ≠ 
∅ for some vertex v and some S ⊆ V, then every vertex 

of pn[v, S] is called a personal neighbor of v with 
respect to S, or just an S-pn. 
 If T is a tree rooted at r and v is a vertex of T, then 
the level number of v, which we denote by l(v), is the 
length of the unique r-v path in T. The definition of 
child and parent will be derived from concept of Tree. 
A vertex x is a descendant of y (and y is an ancestor of 
x) if the level lexicographic order of v-w path are 
monotonically increasing. We let D(v) denote the set of 
descendants of v and we define D[v] = D(v) ∪ {v}. The 
maximum of subtree of T rooted at u is the subtree of T 
induced by D[u] and is denoted by Tu. We defined leaf 
as an end vertex of T. Downline vertex is a vertex 
adjacent to a leaf and a vertex adjacent to more than 
one leave is called a Totally Downline Vertex. 
 Let T be the tree that divide any number of its 
edges of any number of times where T has at most one 
vertex of degree 2 or more. We define that tree as a 
shade tree.  
 
Theorem 7: For any tree T, γP (T) = 1 if and only if T 
is a shade tree. 
 
Proof: Suppose T is a shade tree. If T is a path, then 
any vertex of T forms a DCS in T. On the other hand, if 
T is not a path, then the vertex of maximum degree in T 
forms a DCS in T. In any event, γP (T) = 1.This proves 
the sufficiency. 
 To prove the necessity, suppose that T is not a 
shade tree. Then T contains at least two vertices, say u 
and v, of degree at least 3. We may assume that T is 
rooted at v. Let S be any DCS of T. If |S| = 1, then, 
renaming u and v if necessary, we may assume that no 
vertex in the maximum subtree Tu rooted at u belongs 
to S. 
 Base on this explanation, we conclude that, this is 
contradiction since no edge in Tu.  
 After this, we will characterize trees T with equal 
covering and degree covering numbers. We will use the 
following finding. 
 
Theorem 8: If v is a totally downline vertex in a graph 
G, then v is in every γ(G)-set and every γP (G).  
 
Proof: Thus assume that γ(T) ≥ 2. Let T be a random 
tree with γ(T)-set S, where every vertex in S is a totally 
downline vertex. Then Theorem 8 implies that S is also 
a unique γP (T)-set. Hence, γP (T) = γ(T). 
 For some v ∈ S in γ(T)-set S and that v is not a 
totally downline vertex. 
With that pn[v, S] = {v}.Then every neighbor of v is 
covered by S-{v} and v is an isolate in the random 
subgraph S . Moreover, all vertices and edges are 
observed by S-{v}. Since T is a nontrivial tree, v has at 
least one neighbor, say u, in V − S.. Then v is also 
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observed by S-{v} and so S-{v} is a DCS for T, 
contradicting the fact that γP (T) = γ(T). We conclude, 
|pn[v, S]-{v}| ≥ 1. 
 From this, we conclude that every vertex in S is a 
totally downline vertex and S is a unique covering set 
of T as claimed. 
 Before proceeding further, we define the shade tree 
number of a tree T, denoted by stn(T), to be the 
minimum number of subsets into which V (T) can be 
partitioned so that each subset induces a shade tree. We 
call such a partition a shade tree partition and each set 
of the partition a shade tree subset. 
 
Theorem 9: For random tree T, stn(T) ≤ γP (T). 
 
Proof: Suppose m = 1.Then, by Theorem 7, T is a 
shade tree and so stn(T) = 1. Suppose, then, that 
random trees T/ with γP (T/) = m, where m ≥ 1, satisfy 
stn(T/) ≤ γP (T/). Let T be a tree with γP (T) = m + 1. 
 Let T be a random tree that has root at the vertex 
vm+1. Our assumption is that v1 is the vertex of S at 
maximum distance from vm+1 in tree T. Then u1 has at 
least two neighbors and each neighbor of u1 has degree 
at most 1 in tree T. Let u1 be the ancestor of v1 of 
degree at least 3 that is at a minimum distance from v1. 
It is not difficult to prove that u1 is the neighbor of v1 
that has distance with degree 3 in the tree. Thus, stn(T) 
≤ γP (T). 
 From above Theorem, we can conclude with this 
Theorem. 
 
Theorem 10: For any tree T, γP (T) = stn(T). 
 As a consequence of Theorem 12, we can determine 
a lower bound on the degree covering of a tree in terms 
of the number of vertices of degree at least 3. 
 
Theorem 11: If T is a tree having k vertices of degree at: 
 

p
k 2(T)

3
+

γ ≥  

 
 Next we present a linear algorithm for finding a 
minimum DCS in a nontrivial tree T. 
 
Algorithm FMDCS: Finding Minimum DCS on a non 
trivial tree  
 
Input: A tree T on vertices more than 2with the 
vertices labeled v1, v2,..., vn so that l(vi) ≤ l(vj) for i > j.  
 
Output: A minimum DCS S of G and a partition of V 
(G) into |S| subsets {Vx | x ∈ S} so that each subset 
induces a shade tree. 

Begin: 
 
1. If G is a shade tree, then S ← {vn} and Vvn ← V (G) 

and output S and {Vx | x ∈ S}; otherwise, continue. 
2. If degT v ≤ 2, then 
 2.1. If there exists a child u of v (in G) such that 

Type(u) = TRUE and u ∈ Vx for some x ∈ S, 
then 

 2.1.1. If v is a leaf (in T), then 
 2.1.1.1. Vx ← Vx ∪ {v}, 
 2.1.1.2. T ← T − v, I ←I \ {i} and go to step 10; 
 2.1.2. if degT v = 2, then 
 2.1.2.1. Vx ← Vx ∈ V (Tv), 
 2.1.2.2. w ← v and go to step 12; 
 2.2. Otherwise (if no such child exists), I ←I \ {i} 

and go to step 10;  
3. S ← S ∪ {v}. 
4. w ← vm,. 
5. u ← {child of w on the w-v path}. 
6. If w = vn, then 
 6.1. If the component of T − uw, then output S and 

{Vx | x ∈ S}; 
 6.2. otherwise, Vn ← V (Tu) and go to step 11. 
7. If w /= vn, then 
 7.1. z ← parent(w); 
 7.2. If degT w ≥ 4 or if degT w = 3 and the 

component of T − {uw,wz} containing w is a 
not a path, then Vv ← V (Tu) and go to step 
11; 

8. T ← T − V (Tu), I ←I \ {k | vk ∈ V (Tu)} and go to 
step 13. 
9. T ← T − V (Tw), I ← I \ {k | vk ∈ V (Tw)}, Type(w) 
← FALSE. Go to step 7. 
10. i ← min{k | k ∈ I}. 
11. If i <= n, then return to step 4. 
12. If i = n, then 
End 
 
 We now verify the validity of Algorithm FMDCS. 
 
Theorem 12: Algorithm FMDCS produces a γP(G)-set 
in a nontrivial tree G. 
 
Proof: Let G be a nontrivial tree of order n and let S be the 
set produced by Algorithm FMDCS. It follows from the 
way in which the set S is constructed that S is a DCS of G 
and so γP (G) ≤ |S|. If G is a shade tree, then it follows 
from Theorem 7 and S = {vn} is a γP(G)-set of G.  
 

RESULTS 
 
In this part we will test the scalability of the algorithm in 
Finding Minimum DCS in a nontrivial tree.  
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Fig. 2: The scalability of algorithm FMDCS 
 
 The scalability of algorithm FMDCS is presented 
in Fig. 2. We vary the database size from 2000-10000 
and construct indexing as the number of minimum DCS 
from scratch for each database. We also define 
discriminative ratio thresholds to check how vary the 
tree inside the graph database. 
 

DISCUSSION 
 
 We repeat the experiments for various minimum 
discriminative ratio thresholds. As shown in the figure, 
the index construction time is proportional to the 
database size. 
 Figure 2 also shows that the indexing construction 
time does not change too much for a given database when 
the minimum discriminative ratio is above 2.0. We find 
that the construction time consists of two parts, frequent 
graph mining and discriminative feature selection.  
 

CONCLUSION 
 
 We consider the graph theoretical representation of 
this problem as a variation of the covering set problem 
and define a set S to be a degree covering set of a graph 
if every vertex and every edge in the system is 
monitored by the set S (following a set of rules for 
power system monitoring). The minimum cardinality of 
a degree covering set of a graph G is the degree 
covering number γP (G). We show that the Degree 
Covering Set (DCS) problem is NP-complete even 
when restricted to bipartite graphs or chordal graphs. 
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