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Abstract: Problem statement: This study presents the numerical solution of twuaehsional
European option pricing problem based on QuartezeépnModified Gauss-Seidel (QSMGS) iterative
method. In fact, the pricing of European optionhatitvo-underlying assets can be governed by two-
dimensional Black-Scholes Partial Differential Etoia (PDE). Approach: The PDE needs to be
discretized by using full-, half- and quarter-sweegond-order Crank-Nicolson schemes to generate a
system of linear equations. Then, the Modified Gabsidel, a preconditioned iterative method is
applied to solve the generated linear systeesults: In order to examine the effectiveness of QSMGS
method, several numerical experiments of Full-Sweapss-Seidel (FSGS), Half-Sweep Gauss-Seidel
(HSGS) and Quarter-Sweep Gauss-Seidel (QSGS) netredalso included for comparison purpose.
Thus, the numerical experiments show that the QSN&S&tive method is the fastest in computing as
well as having the least number of iterations.He érror analysis, QSMGS method shows good and

consistent resultsConclusion: Finally, it can be concluded that QSMGS method upesior in
increasing the convergence rate.

Key words: Modified Gauss-Seidel, quarter-sweep iteration, -tivaensional Black-Scholes PDE,

Crank-Nicolson scheme

INTRODUCTION s, = First asset’s prices
s, = Second asset’s price
Option is a financial derivative which gives the o; = Volatility of the first asset’s price
holder the right to trade the underlying asset by a,= Volatility of the second asset’s price
certain date for a certain price. In trading théamp the p
right to buy is known as call option while the vioersa T
is put option. Black and Scholes (1973) and Merton

Risk free interest rate

Correlation between the two assets’ price

(1973) derived the Black-Scholes Partial Differahti A European call option on the maximum of two
Equation (PDE) for option pricing which earned themunderlying assets is evaluated by solving the two-
the 1997 Nobel Prize in Economics. In this studg, w dimensional Black-Scholes PDE. The final time
focus on a two-dimensional Black-Scholes PDE agondition for this problem is Eq. 2 (Stulz, 1982au4,

follows Eq. 1 (Stulz, 1982; Jeomtyal., 2009): 2007):
S, )= - K, 2
T ass Dz mat mats g ) ?
o 2 'taeg 2 *7as (1)  Where:
_ OV v v K = Exercise price
po'lczslszaslasz rs-a§ I'%a s n T = Maturity time

Where: Besides that, the boundary conditions are Eq. 3-6:
v = Value of the option
t = Time v(s.0.9=sN d)- Ke" N d) )
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v(0,5,.9=s N d)- Ke" N d) (4) MATERIALSAND METHODS
~ o kat Quarter-sweep  Crank-Nicolson  discretization
V(SLS? t) §- Ke ) scheme: We describe the full-, half- and quarter-sweep
Crank-Nicolson schemes in discretizing Eq. 1. Both
v(slsz,[): S- Ke" (6) full and quarter-sweep Crank Nicolson approximation
' equations can be derived as Eq. 7:
Where:
Vi = Vi —
s o At
In (E) +[I’ +2J(T _t) Vipik = 2Vi,j,k * Visp ik
d, = -
' oJT -t 02 (x, +ipx)?| piion = ZVigses T Vg s
4(pAx)
2
In[;)+(r—gj(T—t)
d, = =d,-oJT-t Vijok T2Vt ek
oVT -t +v =2V, tV
_Gzz(yo + ijy)Z i,j—p,k+1 i.j,k+21 i,j+p,k+1
4
Where: (R2)
N = Cumulative normal distribution
S, = Maximum of § -p0,0, (X, +ipAX)(y, + jpAy)
S, = Maximum of s Visp,jepk ¥ Vicpiopk ™ Vicpjrpk ™ Viep,i-pk
Vi, Lj+p k+ TV depkel Viepipk 1~ Viepip.
Actually, the boundary conditions when one of — ;k;g;)(m;)ﬂk - —
the asset prices is zero as shown in 3,4 are addain

by using Black-Scholes formula (Black and Scholes,

1973)_ —I’(XO +ipAX)[vi+p,j,k ~Vipik +Vi+p,j,k+1 _vi—p,j,k-v-l}
The main objective of this study is to introduce 4pAx

Quarter-Sweep Modified Gauss-Seidel (QSMGS) , Visok = Vijopk Vi jepker ~ Vi opie

method in solving the two-dimensional Black-Scholes —r(y0+JpAy)( 4pAX j

PDE in European option pricing. Previously, QSMGS —— 7)

method had been used to solve the one—dimensionaﬂ( L 5 "”M}

Black-Scholes PDE in European (Koh and Sulaiman,

2009) and American option pricing (Kahal., 2010a).

The results obtained have pointed out that QsmGdVhere:

iterative method has a better convergence ratetti®or

manner, it is more motivating to study QSMGS in X=5

solving two-dimensional problem. Nevertheless, to

discretize the PDE in Eq. 1, we will apply the dear y=s,

sweep Crank-Nicolson approach. The Crank-Nicolson

discretization scheme has second order accuracy and

stability plus it is very famous for numerical

computations in finance (Tavella and Randall, 2000) )

After a linear system is generated from the Based on Eg. 7, the full-sweep Crank-Nicolson

discretization process, the iterative method ispoied ~ @PProximation equation is a nine-point finite ditface

to solve the linear system. Then, several numerica$cheme. Hence, to derive the half-sweep Crank-

experiments involving FSGS, HSGS, QSGS and\icolson, we rotate the entire axis clockwise by 45

QSMGS methods are executed to verify the(Ali and Ling, 2008). As a result, a rotated niregst

effectiveness of QSMGS method. approximation equation can be developed as Eg. 8:
130
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Viiksa = Vijk _ Where:
At - A = Coefficient matrix
f = Known column vector, computed from the
vi—1,1+1k 2v|1k |+lj—1k . .
+V Cov vy previous time level
=0, (X o +iAX)?| ikt ZThiked | enpnker v = Unknown column vector, values at the current
4(ax)’ time level
vi+l,1+lk 2vljk —1 j-1k J+1 ‘ ' '
+V . -2V, +v
_Ozz(yo +jAy)2 i+1, j+1,k+1 (A|;/|)<+1 i-1,j-1,k+1
—p0,0, (X, +iX) (Y o +jly) ' * ‘
Viia,ik TV 2.5k ~ Vije2k T Vij-2.k
+V|+2 jk+1 +V| 2,j,k+1 V|,j+2,k+1_vi,j—2,k+1 \
16(axay) = ‘ ®
1-1 1 i+1
Vi -1k ~ Viewjs1k @
. TVisg ket ™ Viet jrike1
-r(x, +iAx) i NI i e .
Vis sk ~ Vicj-1k l+1 - . T . -
. Vi ket ™ Vicn ikt
(o + y)| R ®) @& @ U @

2

+r(vi,j,k +Vi,j.k+1] 1O . .

The nine-point approximation scheme for the full-, 12 11 1 1+l I+2

half- and quarter-sweep approaches can be illestriat

Fig. 1. According to Fig. 1, the implementations of

FSGS, HSGS, QSGS and QSMGS iterative methods i+’. . .
are performed onto the solid node points only until
convergence criterion is met. Then, the remaining
points are computed using direct method; see (Gthma
and Abdullah, 2000; Sulaimaet al., 2004a; 2004b; .
Koh and Sulaiman, 2009). Since half- and quarter- J . . \_/ .
sweep approaches compute only half and quartdreof t
entire node points, theoretically they are fadtantthe ) . .
standard full-sweep approach. - —

Modified Gauss-Seidel iterative methods. The ;.-2. w . .
approximations in Eq. 7 and 8 will generate langarse i-2 i-1 i i+1 i+2
linear system of form: (©)

Ay =f ) Fig. 1: Computational molecules of (a) full-swe¢ip)
- - half-sweep and (c) quarter-sweep cases
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In general, the linear system in Eq. 9 can beesblv Algorithm 2 (M GS method):
by applying Algorithm 1 (GS method).

_ e Initializing all the parameters. Set k = 0.
Algorithm 1 (GS method): +  General iteration:

 Initializing all the parameters. Setk =0 1 i i
« General iteration: VA :A*[f *, _;A* V=S Ax Ly i(k)]
ii 1=

j=iH

Vi(k+1) =1[fi —iz_l:Aijvj(“l)
A =

> AuVj(k)j + Convergence test:

j=i+l
If the error tolerance is fulfilled, the value mpt at
that time level isv** and the algorithm stops.
If the error tolerance is fulfilled, the value mpt at ~ Else, set k = k+1 and go to step ii.
(k+1)
that time level is"i and the algorithm stops.
Else, set k = k+1 and go to step ii. RESULTS
In addition, Gunawardenet al. (1991) proposed

the Modified Gauss-Seidel (MGS) method which uses a S¢veral numerical experiments are performed o tes
preconditioned matrix. The matrix when multiplied the effectiveness of FSGS, HSGS, QSGS and QSMGS

with the coefficient matrix will be able to transfo the  iterative methods. And the exact solution for pebl1
upper codiagonal to zero (Gunawardeal., 1991). IS given by Eq. 11 Haug (2007):

Following to that, we apply the preconditioned ratr

to Eq. 9 and get the subsequent preconditionedrine v(s,s. )= sMb, . dp,)+ s 1\4¢2,— doV Tp 2)

system Eq. 10: -Ke™ [1— M(—¢1+01\/?,—¢2+02\/'—|';P)}

* Convergence test:

(11)

A*v =f* (10)
Where:
Where:
2
A* =PA In(sl]+(0]T
g =2 1 2]
f* =pf l oJT
P=1+S 2
Q)
o, = K 2
0o -% o .. 0 ! oNT
a,
8y
0o o -= .. 0 2
8 In(ij— o, T
S= : : : . : ¢, = K 2
: 2 oNT
O 0 O —_ an—ln
101 5 3
0 o0 (O 0 0=40; +0,-2p00,

(nxr)
| = Identity matrix b, = 0, ~PY,
o

Then, the algorithm of MGS method can be
formulated as in Algorithm 2. p, = 0, ~ PG,
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Table 1: Number of iterations, execution time aMdiSE for FSGS, HSGS, QSGS and QSMGS methods

Method
FSGS HSGS QSGS QMSGS
Mesh size lter. Time(s) RMSE Iter. Time(s) RMSE rlte Time(s) RMSE Iter.  Time(s) RMSE
50 18 043  1.05e-02 14 025 129-01 11 0.15 @3e- 10 0.14 8.63e-02
100 41 323  247e03 27 148 1.26e-01 18 0.53 237e 15 0.47 2.37e-02
150 76 1343  8.74e-04 46 535 1.21e-01 28 148  emd7 21 1.23 7.07e-03
200 124 4891  6.48e-04 70 16.75 1.17e-01 41 3.67 74503 30 2.85 5.74e-03
250 185 10845  4.05e-04 102 38.98 1.14e-01 57 8.143.77e-03 41 6.08 3.77e-03
300 259 22049  2.21e-04 140 78.00 112e-01 76  15911.78¢-03 54  11.58 1.78e-03
350 345 419.78  2.11e-04 184 139.42 111e-01 98 327.4 1.89e-03 69  19.70 1.89e-03
e Nonetheless in this study, we have 100 time stefis w
- —+~F5GS . .
e A -.-H_“\GZ the tested matrix sizes, 50, 100, 150, 200, 250,31
5 300 o 350. Furthermore, ET = T8 will be the error tolerance.
= 0SGS . . .
5 250 Biis In computational finance, Root Mean Squared Redativ
o () S1IGE . .
Z 200 : Error (RMSE) is widely used to assess the accuddicy
Lé . the iterative solutions such as in Zhebal. (2007),
z Jeonget al. (2009) and Kotlet al. (2010a). The RMSE
109 is defined by:
50
G N N ~ — 2
50 100 150 200 250 300 350 RMSE = 1 zzy: Vig TV
Mesh sizes (Nx —:I.)(Ny - ) i=1 j=1 8+Vi1j

Fig. 2: Number of iterations versus mesh sizes ofVhere:
FSGS, HSGS, QSGS and QSMGS methods v Exact value
Vi Numerical value
Small positive number to avoid dividing by a too
small number
Mesh size for x
Mesh size for y

=
Ch
=
o™
1

These computational experiments are implemented
in the Intel Core 2 Duo, 2.93GHz processor. The
computational results for FSGS, HSGS, QSGS and
QSMS are tabulated in Table 1 and graphically
displayed in Fig. 2 and 3.

150

[ixeculion time ()
J
J
(=]

5 —k
50 100 l.SO 200 250 300 350 DISCUSSION

Mesh sizes

The numerical experiments analyze FSGS, HSGS,

Fig. 3: Execution time (s) versus mesh sizes of §SG QSGS and QSMGS from the aspects of number of

HSGS, QSGS and QSMGS methods iterations, execution time and RMSE. Based on the
numerical results presented in Table 1 as welligsF

M(a,b;p ) Represents the cumulative bivariate normaland 3 they clearly show that QSMGS method has the
(a, P ) P least number of iterations and execution time anthag

distribution function; see (Drezner and Wesolowsky,iesteq jterative methods. The number of iteratifors
1990; Haug, 2007). HSGS, QSGS and QSMGS methods reduces by 22.22
The parameters considered are T = 0.1, K=100, r 34.67%, 38.89-71.59% and 44.44-80.00% respectively
0.03,0, = 0.5,0, = 0.5,p = 0.5, $=[0,300] and & compared to FSGS method. In terms of execution,time
[0,300] which are also used by Jeodgal. (2009). HSGS, QSGS and QSMGS methods speed up
133
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approximately 41.86-66.79%, 65.12-93.47% and 67.44brezner, Z. and G.O. Wesolowsky, 1990. On the
95.31% respectively relative to FSGS method. On the  computational of the bivariate normal integral. J.

other hand, the accuracies of the iterative metfaods Stat. Comput. Simul.,, 35: 101-107. DOL:
in good agreement except for HSGS which is not so  10.1080/00949659008811236
fine. Evans, D.J. and M.S. Sahimi, 1988. The Alternating
Group Explicit (AGE) iterative method for solving
CONCLUSION parabolic equations 1: 2-dimensional problems. Int.

) ] o J. Comput. Math.,, 24: 311-341. DOI:
In this study, we examined the application of 10.1080/00207168808803651
QSMGS iterative method in evaluating Europeang,nawardena, A.D., S.K. Jain and L. Snyder, 1991.
option with two-underlying assets by solving theotw Modified iterative methods for consistent linear

dimensional Black-Scholes PDE. From the results : :
: . systems. Linear Algebra Appli., 154-156: 123-143.
presented, they can be observed that QSMGS iterativ DOI: 10.1016/0024-3795(91)90376-8

method converges faster than the other methods : :
having least number of iterations. Besides thalMiGS waug’riclizﬁg'F(Z)?r?lzia;-hgngoég?‘let?\m%ﬁfﬁ_;ﬁl (?\Ipéﬁn

manages to retain the accuracy of the standardssaus York, ISBN-10: 0071389970, pp: 536

Seidel iterative method. Thus, we can conclude tha eong, D., J. Kim and I.S. Wee, 2009. An accuratk a
QSMGS method is a better method compared to HSG efficient numerical method for Black-Scholes
or FSGS method in the sense of number of iterations equations. Commun. Korean Math. Sa4; 617-

and execution time. 628. DOI: 10.4134/CKMS.2009.24.4.617

exa?rlgu*r;eerivz:c;rlfsc’) ?itcr)]r?rwti)tlrﬁ)?\?voozr?gg?lninpngsns?errt; Koh, W.S. and J. Sulaiman, 2009. Quarter sweep
P P ying modified gauss-seidel method using Crank-Nicolson

even other exotic options can be explored throungh t approach for European put option pricing
applications of quarter-sweep approach. In theecdnt Proceedings of the 5th Asian Mathematica.l
of iterative method, we can improve the precondéit , )

terati thod b loving the | ina Modiifi Conference, (AMC’ 09), Kuala Lumpur, pp: 261-267.
erative method by employing fhe Improving Vioarie Koh, W.S., J. Sulaiman and R. Mail, 2010a. Quarter-

Gauss-Seidel method, (Kohrebal., 1997) which had sweep projected modified Gauss-Seidel algorithm

been applied in solving one-dimensional European applied to linear complementarity problem. Am. J
option pricing (Kohet al., 2010b). Also, family of two- Applied Sci 7 790-794 .DOI'. '

stage iterative methods, fo.r gxample AGE (Evans and 10.3844/ajassp.2010.790.794

Sahimi, 1988), IADE (Sahimét al., 1993), HSIADE ; .

(Sulaimanet al., 2004a), QSIADE (Sulaimaset al Koh, W.S., _J. Sule}lman anq R. Mail, ZOlpb. Quarter-
: ' N sweep improving modified Gauss-Seidel method

2004b), AM (Ruggiero and Galligani, 1990), HSAM . . .
(Sulaimanet al., 2004c) and QSAM (Muthuvalu and 1‘107r9p_);|§g1g European Option. MATEMATIKAZ6:

Sula|ma_n_, 2010) can be considered  with theKohno, T., H. Kotakemori, H. Niki and M. Usui, 1997
preconditioned iteration concept. Improving the modified gauss-seidel method Zer
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