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Abstract: Problem statement: This study presents the numerical solution of two-dimensional 
European option pricing problem based on Quarter-Sweep Modified Gauss-Seidel (QSMGS) iterative 
method. In fact, the pricing of European option with two-underlying assets can be governed by two-
dimensional Black-Scholes Partial Differential Equation (PDE). Approach: The PDE needs to be 
discretized by using full-, half- and quarter-sweep second-order Crank-Nicolson schemes to generate a 
system of linear equations. Then, the Modified Gauss-Seidel, a preconditioned iterative method is 
applied to solve the generated linear system. Results: In order to examine the effectiveness of QSMGS 
method, several numerical experiments of Full-Sweep Gauss-Seidel (FSGS), Half-Sweep Gauss-Seidel 
(HSGS) and Quarter-Sweep Gauss-Seidel (QSGS) methods are also included for comparison purpose. 
Thus, the numerical experiments show that the QSMGS iterative method is the fastest in computing as 
well as having the least number of iterations. In the error analysis, QSMGS method shows good and 
consistent results. Conclusion: Finally, it can be concluded that QSMGS method is superior in 
increasing the convergence rate. 
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INTRODUCTION 
  
 Option is a financial derivative which gives the 
holder the right to trade the underlying asset by a 
certain date for a certain price. In trading the option, the 
right to buy is known as call option while the vice versa 
is put option. Black and Scholes (1973) and Merton 
(1973) derived the Black-Scholes Partial Differential 
Equation (PDE) for option pricing which earned them 
the 1997 Nobel Prize in Economics. In this study, we 
focus on a two-dimensional Black-Scholes PDE as 
follows Eq. 1 (Stulz, 1982; Jeong et al., 2009): 
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Where: 
v = Value of the option 
t = Time 

s1 = First asset’s prices 
s2 = Second asset’s price 
σ1 = Volatility of the first asset’s price 
σ2 = Volatility of the second asset’s price  
ρ = Correlation between the two assets’ price 
r = Risk free interest rate  
 
 A European call option on the maximum of two 
underlying assets is evaluated by solving the two-
dimensional Black-Scholes PDE. The final time 
condition for this problem is Eq. 2 (Stulz, 1982; Haug, 
2007): 
 

( ) ( )( )1 2 1 2v s ,s ,T max max s ,s K, 0= −   (2) 
 
Where:  
K = Exercise price  
T = Maturity time  

 
 Besides that, the boundary conditions are Eq. 3-6:  
 

( ) ( ) ( )rt
1 1 1 2v s ,0, t s N d Ke N d−= −   (3) 
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( ) ( ) ( )rt
2 2 1 2v 0,s , t s N d Ke N d−= −   (4) 
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Where: 
N = Cumulative normal distribution 
S1 = Maximum of s1 
S2 = Maximum of s2 
 
 Actually, the boundary conditions when one of 
the asset prices is zero as shown in 3,4 are obtained 
by using Black-Scholes formula (Black and Scholes, 
1973).  
  The main objective of this study is to introduce 
Quarter-Sweep Modified Gauss-Seidel (QSMGS) 
method in solving the two-dimensional Black-Scholes 
PDE in European option pricing. Previously, QSMGS 
method had been used to solve the one-dimensional 
Black-Scholes PDE in European (Koh and Sulaiman, 
2009) and American option pricing (Koh et al., 2010a). 
The results obtained have pointed out that QSMGS 
iterative method has a better convergence rate. For this 
manner, it is more motivating to study QSMGS in 
solving two-dimensional problem. Nevertheless, to 
discretize the PDE in Eq. 1, we will apply the quarter-
sweep Crank-Nicolson approach. The Crank-Nicolson 
discretization scheme has second order accuracy and 
stability plus it is very famous for numerical 
computations in finance (Tavella and Randall, 2000). 
After a linear system is generated from the 
discretization process, the iterative method is computed 
to solve the linear system. Then, several numerical 
experiments involving FSGS, HSGS, QSGS and 
QSMGS methods are executed to verify the 
effectiveness of QSMGS method. 

MATERIALS AND METHODS 
 
Quarter-sweep Crank-Nicolson discretization 
scheme: We describe the full-, half- and quarter-sweep 
Crank-Nicolson schemes in discretizing Eq. 1. Both the 
full and quarter-sweep Crank Nicolson approximation 
equations can be derived as Eq. 7:  
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Where: 

 

1x s=  

 

2y s=  

 
 As p = 1 or p = 2, it represents full- and quarter-
sweep schemes respectively. 
 Based on Eq. 7, the full-sweep Crank-Nicolson 
approximation equation is a nine-point finite difference 
scheme. Hence, to derive the half-sweep Crank-
Nicolson, we rotate the entire axis clockwise by 45o 
(Ali and Ling, 2008). As a result, a rotated nine-point 
approximation equation can be developed as Eq. 8: 
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 The nine-point approximation scheme for the full-, 
half- and quarter-sweep approaches can be illustrated in 
Fig. 1. According to Fig. 1, the implementations of 
FSGS, HSGS, QSGS and QSMGS iterative methods 
are performed onto the solid node points only until 
convergence criterion is met. Then, the remaining 
points are computed using direct method; see (Othman 
and Abdullah, 2000; Sulaiman et al., 2004a; 2004b; 
Koh and Sulaiman, 2009). Since half- and quarter-
sweep approaches compute only half and quarter of the 
entire node points, theoretically they are faster than the 
standard full-sweep approach. 
 
Modified Gauss-Seidel iterative methods: The 
approximations in Eq. 7 and 8 will generate large sparse 
linear system of form: 
 

~~
A v f=   (9) 

Where: 
A = Coefficient matrix  
f = Known column vector, computed from the 

previous time level  
v = Unknown column vector, values at the current 

time level 
 

 
(a) 
 

 
(b) 

 

 
(c) 
 

Fig. 1: Computational molecules of (a) full-sweep, (b) 
half-sweep and (c) quarter-sweep cases 
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 In general, the linear system in Eq. 9 can be solved 
by applying Algorithm 1 (GS method). 
 
Algorithm 1 (GS method): 
 
• Initializing all the parameters. Set k = 0 
• General iteration: 
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• Convergence test:  
 
 If the error tolerance is fulfilled, the value option at 

that time level is 
( )1k
iv +

 and the  algorithm stops. 
Else, set k = k+1 and go to step ii.  
 In addition, Gunawardena et al. (1991) proposed 
the Modified Gauss-Seidel (MGS) method which uses a 
preconditioned matrix. The matrix when multiplied 
with the coefficient matrix will be able to transform the 
upper codiagonal to zero (Gunawardena et al., 1991). 
Following to that, we apply the preconditioned matrix 
to Eq. 9 and get the subsequent preconditioned linear 
system Eq. 10:  
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A * v f *=   (10) 
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I = Identity matrix 
 
 Then, the algorithm of MGS method can be 
formulated as in Algorithm 2. 

Algorithm 2 (MGS method): 
 
• Initializing all the parameters. Set k = 0. 
• General iteration: 
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• Convergence test:  
 
 If the error tolerance is fulfilled, the value option at 

that time level is ( )k 1
iv +  and the algorithm stops.  

Else, set k = k+1 and go to step ii.  
 

RESULTS 
 
 Several numerical experiments are performed to test 
the effectiveness of FSGS, HSGS, QSGS and QSMGS 
iterative methods. And the exact solution for problem 1 
is given by Eq. 11 Haug (2007): 
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Table 1: Number of iterations, execution time and RMSE for FSGS, HSGS, QSGS and QSMGS methods 
 Method 
 -------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 FSGS   HSGS   QSGS   QMSGS 
 --------------------------------- ------------------------------------ ---------------------------------- ------------------------------------- 
Mesh size Iter. Time(s) RMSE Iter. Time(s) RMSE Iter. Time(s) RMSE Iter. Time(s) RMSE 
50 18 0.43 1.05e-02 14 0.25 1.29e-01 11 0.15 8.63e-02 10 0.14 8.63e-02 
100 41 3.23 2.47e-03 27 1.48 1.26e-01 18 0.53 2.37e-02 15 0.47 2.37e-02 
150 76 13.43 8.74e-04 46 5.35 1.21e-01 28 1.48 7.07e-03 21 1.23 7.07e-03 
200 124 48.91 6.48e-04 70 16.75 1.17e-01 41 3.67 5.74e-03 30 2.85 5.74e-03 
250 185 108.45 4.05e-04 102 38.98 1.14e-01 57 8.14 3.77e-03 41 6.08 3.77e-03 
300 259 220.49 2.21e-04 140 78.00 1.12e-01 76 15.91 1.78e-03 54 11.58 1.78e-03 
350 345 419.78 2.11e-04 184 139.42 1.11e-01 98 27.43 1.89e-03 69 19.70 1.89e-03 

 

 
 
Fig. 2: Number of iterations versus mesh sizes of 

FSGS, HSGS, QSGS and QSMGS methods 
 

 
 
Fig. 3: Execution time (s) versus mesh sizes of FSGS, 

HSGS, QSGS and QSMGS methods 
 

( )M a,b;ρ  Represents the cumulative bivariate normal 
distribution function; see (Drezner and Wesolowsky, 
1990; Haug, 2007).  
 The parameters considered are T = 0.1, K=100, r = 
0.03, σ1 = 0.5, σ2 = 0.5, ρ = 0.5, s1 = [0,300] and s2= 
[0,300] which are also used by Jeong et al. (2009). 

Nonetheless in this study, we have 100 time steps with 
the tested matrix sizes, 50, 100, 150, 200, 250, 300 and 
350. Furthermore, ET = 10-10 will be the error tolerance. 
In computational finance, Root Mean Squared Relative 
Error (RMSE) is widely used to assess the accuracy of 
the iterative solutions such as in Zhao et al. (2007), 
Jeong et al. (2009) and Koh et al. (2010a). The RMSE 
is defined by: 
 

( )( )
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ɶ

 

 
Where: 
vi,j = Exact value 
vi,j = Numerical value  
ε = Small positive number to avoid dividing by a too 

small number  
Nx = Mesh size for x  
Ny = Mesh size for y 
 
 These computational experiments are implemented 
in the Intel Core 2 Duo, 2.93GHz processor. The 
computational results for FSGS, HSGS, QSGS and 
QSMS are tabulated in Table 1 and graphically 
displayed in Fig. 2 and 3.  
 

DISCUSSION 
 
 The numerical experiments analyze FSGS, HSGS, 
QSGS and QSMGS from the aspects of number of 
iterations, execution time and RMSE. Based on the 
numerical results presented in Table 1 as well as Fig. 2 
and 3 they clearly show that QSMGS method has the 
least number of iterations and execution time among the 
tested iterative methods. The number of iterations for 
HSGS, QSGS and QSMGS methods reduces by 22.22-
44.67%, 38.89-71.59% and 44.44-80.00% respectively 
compared to FSGS method. In terms of execution time, 
HSGS, QSGS and QSMGS methods speed up 
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approximately 41.86-66.79%, 65.12-93.47% and 67.44-
95.31% respectively relative to FSGS method. On the 
other hand, the accuracies of the iterative methods are 
in good agreement except for HSGS which is not so 
fine.  
 

CONCLUSION 
  
 In this study, we examined the application of 
QSMGS iterative method in evaluating European 
option with two-underlying assets by solving the two-
dimensional Black-Scholes PDE. From the results 
presented, they can be observed that QSMGS iterative 
method converges faster than the other methods by 
having least number of iterations. Besides that, QSMGS 
manages to retain the accuracy of the standard Gauss-
Seidel iterative method. Thus, we can conclude that 
QSMGS method is a better method compared to HSGS 
or FSGS method in the sense of number of iterations 
and execution time.  
 For future works, other types of option pricing, for 
example American option with two underlying assets or 
even other exotic options can be explored through the 
applications of quarter-sweep approach. In the context 
of iterative method, we can improve the preconditioned 
iterative method by employing the Improving Modified 
Gauss-Seidel method, (Kohno et al., 1997) which had 
been applied in solving one-dimensional European 
option pricing (Koh et al., 2010b). Also, family of two-
stage iterative methods, for example AGE (Evans and 
Sahimi, 1988), IADE (Sahimi et al., 1993), HSIADE 
(Sulaiman et al., 2004a), QSIADE (Sulaiman et al., 
2004b), AM (Ruggiero and Galligani, 1990), HSAM 
(Sulaiman et al., 2004c) and QSAM (Muthuvalu and 
Sulaiman, 2010) can be considered with the 
preconditioned iteration concept.  
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