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Abstract: Problem statements: Anthropometry measures used to measure physical children 
growth are not onlyweight but also height and head circumference. In this study we develop the 
estimation of multi-response localpolynomial regression and apply it to design growth chart for 
children up to five years old based on three responsevariables i.e., weight, height and head 
circumference. Approach: Based on local polynomial estimator, wedescribe the estimation of 
multi-response nonparametric regression model by using weighted least squared. Themodel is 
applied to design health card of children up to five years old by using children data in Surabaya, 
Indonesia. Generalized Cross Validation (GCV) method is used to determine the order of local 
polynomial fit and the bandwidthfor each response variable. Results: We formulate the multi-
response local polynomial modeling  and give a design of health card of children up to five years 
old in Surabayacity, Indonesia. Conclusion: The child growth chart based on multi-response local 
polynomial modeling showsincreasing of children nutrition in Surabaya 2010.Because of the strong 
correlations among all three response variables,the simultaneosly approach for model estimationis 
better than partly single response approach. The result of simultaneosly model estimation based on 
multi-response local polynomial modeling satisfies goodness of fit criterion i.e., mean squared error 
value tend to zero and determination coefficient value tend to one. 
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INTRODUCTION 

 
 There are many cases that involve the 
regressionmodel has more than one response variables 
thatcorrelate each others. In that case, the multi-
responsenonparametric regression model provides 
powerfultools to model the functions which draw 
association ofthese variables. Local polynomial 
estimation is widelyused for estimating regression 
function because it issimple and easy to understand. 
Localpolynomial estimator is obtained by locally 
fitting a dth degree polynomial to data by weighted 
least squares. The local polynomial estimator depends 
on twoparameters, which must be specified i.e., the 
order oflocal polynomial fit (d) and the smoothing 
parameternamed bandwidth (h). These two parameters 
have asimilar effect, in that a higher order fit or 
smallerbandwidth reduces bias but increases variance; 
while alower order or larger bandwidth increases 
biasbut reduces variance. 

 Many authors studied multi-responsenonparametric 
regression model. Wang et al. (2000) proposed spline 
smoothing for estimatingnonparametric functions from 
bivariate data with thesame variances of errors for each 
same response (i.e.,2j , j 1,2σ = ) and applied it to 

hormone data. Welsh and Yee (2006) considered bi-
response local linearregression and applied to blood 
pressure data which hasresponse variables i.e., systolic 
and diastolic andpredictor variable i.e., Body Mass 
Index (BMI). Lestari et al. (2010) studied the 
estimating of multi-responsenonparametric regression 
based on spline estimator. In case of heteroscedasticity, 
Chamidah (2012) studied estimation of biresponses 
local polynomialregression model and applied the 
model to estimategrowth curve of children up to 5 years 
of age basedon their weight and height. 
 According to pediatrician Roumeliotis (2012) the 
growthof  childrenduring the first 18 months  grows 
rapidly andthen it decreases parallel with increasing of 
age. It means locally model approach moreappropriate 
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to this data.  Also, Roumeliotis (2012) stated 
anthropometrymeasures which is used to measure 
physical child growth are weight,height and head 
circumference of children. It meansthat physical child 
growth is more realistic if it ismodeled by multi-
response nonparametricregression approach. 
 In this study, we discuss the estimation ofmulti-
response local polynomial modeling whichhas 
bandwidth and polynomial degree of eachresponse must 
not be equal. For determining thesesmoothing 
parameters, we use GCV method andthen apply the 
model to children growth data inSurabaya, Indonesia 
2010. It is necessary fordesigning health card that in 
Indonesia is called as KartuMenuju Sehat (KMS) based 
on children condition inIndonesia. Currently, the KMS 
is used formonitoring health and growth children in 
Indonesiabased on National Center Health Statistics 
(NCHS)chart, USA. The chart may not appropriate to 
thecondition of Indonesian children. 
 

MATERIALS AND METHODS 
 
 Given multi-response nonparametric regressionas 
follows Eq. 1: 
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 We can write the multi-response 
nonparametricregression model (1) into vector 
expression as follows Eq. 2: 
 
Y f= + ε
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 (2) 

 
where: 
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 By expression (2), of course, we can take variance 
oferrors vector ε

ɶ
easily: 
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 Matrix V is used to obtain weighted matrix 
forestimating. 
 In the local polynomial regression, there are 
twoparameters, i.e., the bandwidth (h) and the order of 
localpolynomial fit (d) that control the smoothness of 
thefit and also affect the bias-variance trade-off. Weuse 
generalized cross-validation method forchoosing 
optimal h and d of each response. 
 Estimation of the function j if̂ (t ) for each 

responseis: 
 

( j)
j i jf̂ (t ) A(h )y , j 1,2,..., r= =

ɶ

 

 

where,A (hj)represents matrix as follows: 
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 To obtain optimal hjand djbased on GCVmethod 
given by Wu and Zhang (2006), we minimize: 
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RESULTS  

 
 From model (1), we estimate every element 
of T

1 rf (t) (f (t),..., f (t))=
ɶ

by local polynomial fitting which 
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uses Taylor expansion approach.By Taylor expansion, 
for t in a neighborhood of t0,we have Eq. 3: 
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 In terms of statistical modeling locally around 
t0,we model (3) as follows Eq. 4: 
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definedas follows: 
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where K(.) is a Kernel function, h > 0: 
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and V−1 is invert of variance-covariance matrix of 
errorswhich is estimated from sample data. The solution 
of Eq. 5 is: 
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Fig. 1: Percentiles of weight children plot 
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Fig. 2: Percentiles of height children plot 
 

 
 

Fig. 3: Percentiles of head circumference childrenplot 
 

 
 

Fig. 4: Design of KMS for children in Surabaya 
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 (a) 

 

 
 (b) 
 

 
 (c) 
 

 
 (d) 
 
Fig. 5: Plots the 50thpercentiles estimation of weight, 

height and head circumferenceversus age 
 
So, from Eq. 6 we get the local polynomialestimator of 

if (t )
ɶ

 Eq. 7: 

 

i i i

T T 1 1 T 1
i h i h it t t

f̂ (t ) e (X V K (t )X ) X V K (t )Y− − −=
ɶ ɶ

 (7) 

Table 1: Optimal bandwidth, polynomial order and GCV value 
  Optimal Optimal GCV 
Percentil Response order bandwidth value 
5 (y1) 3 2.64 0.049270 
 (y2) 1 0.13 0.042860 
 (y3) 2 4.70 4.279840 
15 (y1) 2 1.77 0.025560 
 (y2) 2 2.46 0.072490 
 (y3) 3 8.35 2.643760 
25 (y1) 1 0.63 0.114120 
 (y2) 1 1.12 0.045420 
 (y3) 3 7.83 2.214360 
50 (y1) 3 2.72 0.212460 
 (y2) 3 2.02 0.028280 
 (y3) 3 1.06 0.152698 
75 (y1) 2 2.83 0.252890 
 (y2)  2 2.96 0.113100 
 (y3) 2 3.57 2.535190 
85 (y1) 1 0.87 0.238570 
 (y2) 2 2.83 0.068760 
 (y3) 2 3.70 2.972110 
95 (y1) 2 0.67 0.103140 
 (y2) 3 1.32 0.034180 
 (y3) 1 2.63 2.770170 

 

where ( )
1 1 2 1 2 r 1

TT
1 d 2 d d 3 d d ... d re e ,0,...,e ,0,...,e ,0,...,e

−+ + + + + + += is 

vector whichhas elements 

1 1 2 1 2 r 11 d 2 d d 3 d d ... d re 1,e 1,e 1,....,e 1
−+ + + + + + += = = = and 0 

elsewhere. 
 The data used for applying the modelcontainsof 
1700 children obtained from community healthcenter 
in Surabaya 2010. The data that describes 
childrengrowth in Surabaya consists of 3 response 
variables.These are y1: weight (kg), y2: height (cm) 
and  y3:head circumference. (cm). While a predictor 
variable isage (month). In every month of children  age 
i.e., from 0 until 60, we determine 5th percentile, 15th 
percentile, 25th percentile, 50th percentile, 75th percentile, 
85th percentile and 95th percentile. 
 Plotting of percentiles of weight, height and 
headcircumference versus age are shown in Fig. 1-3, 
respectively. 
 Based on GCV method, we create R-code 
forchoosing bandwidth and optimal order of polynomial 
for each response. These results are given in Table 1. 
 These results given in Table 1 are used for designing 
child growth chart in KMS based on the three responses 
local polynomial estimation. The chart  is shown in Fig. 
4 as follows. Based on Table 1, the results of the 50th 

percentiles estimation of weight, height and head 
circumference versus age give the mean squared 
error value 0.0514 and coefficient determination 
99%. Plots the estimation of  50th percentiles of 
weight, height and head circumference versus age are 
shown in Fig. 5. 



J. Math. & Stat., 8 (3): 342-347, 2012 
 

347 

DISCUSSION 
 
 In Fig. 4, green area indicates good health, lower 
yellow area indicates warning for underweight and 
upper yellow area indicates warning for overweight. 
Lower red area indicates underweight and upper red 
area indicates overweight. Based on correlation Pearson 
formula, we get correlation coefficient between weight 
and height of children 0.996; correlation coefficient 
between weight and head circumference of children 
0.953; and correlation between height and 
circumferenceof children 0.946. It means that there are 
strong correlations among all three response variables. 
Design of the KMS of child growth in Surabaya 2010 
as given in Fig. 4 is quite higher than that currently 
used to control children health in Surabaya. The 
simultaneously estimationgives mean squared errorvalue 
tend to zeroand determinationcoefficient value tend to 
one. These facts mean that the simultaneously model has 
satisfied goodness of fit criterion. 
 

CONCLUSION 
 
 Designing of child growth chart based on multi-
responselocal polynomial modeling shows increasingof 
children nutrition in Surabaya 2010. Because of the 
strongcorrelationsamong all three response variables, the 
simultaneosly three responses model estimationis better 
than partly single response model estimation.The result 
of simultaneosly model estimation based on multi-
response local polynomial modeling satisfies goodness 
of fit criterion. 
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