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Abstract: Problem statement: In this study, we study the analytical construction of some exact 
solutions of a system of coupled physical differential equations, namely, the Complex Ginzburg-
Landau Equations (CGLEs). CGLEs are intensively studied models of pattern formation in nonlinear 
dissipative media, with applications to biology, hydrodynamics, nonlinear optics, plasma physics, 
reaction-diffusion systems and many other fields. Approach: A system of two coupled CGLEs 
modeling the propagation of pulses under the combined influence of dispersion, self and cross phase 
modulations, linear and nonlinear gain and loss will be discussed. A Solitary Pulse (SP) is a localized 
wave form and a front (also termed as shock) refers to a transition connecting two constant, but 
unequal, asymptotic states. A SP-front pair solution can be analytically obtained by the modified 
Hirota bilinear method. Results: These wave solutions are deduced by a system of six nonlinear 
algebraic equations, allowing the amplitudes, wave-numbers, frequency and velocities to be 
determined. Conclusion: The final exact solution can then be computed by applying the Groebner 
basis method with a large amount of algebraic simplifications done by the computer software Maple. 
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INTRODUCTION 

 
 The Complex Ginzburg-Landau Equations 
(CGLEs) govern the dynamics of patterns in nonlinear 
dissipative media and arise in many disciplines, e.g., 
biology, chemical reactions, diffusion, hydrodynamics, 
optics, plasma physics and many other fields. The 
dynamics and propagation of the pulses are governed 
by the combined influence of dispersion, self and cross 
phase modulations, linear and nonlinear gain/loss. 
Many varieties of modes have been established, with 
the well known examples being (a) bright (or localized) 
solitary pulses, (b) dark pulses with minimum in intensity 
or holes, (c) kinks (also termed shocks or wave front 
solutions), transitions joining two constant, but unequal, 
asymptotic states. Comprehensive reviews have been 
given (Cross and Hohenberg, 1993; Arecchi et al., 1999; 
Ipsen et al., 2000; Aranson and Kramer, 2002).  
 The primary focus in the study is a system of two 
waveguides governed by two coupled CGLEs. 
Conditions for the presence of a shock/wave front in 
one channel and a bright Solitary Pulse (SP) in the 
other, will be elucidated. The words ‘bright SP’/‘dark 
SP’ are borrowed from optics and refer to a ‘localized 
pulse’/‘localized minimum in a constant intensity 
background’ respectively. Most works in the existing 
literature focus either on the ‘bright-bright SPs’ situation 

or a ‘bright-dark SPs’ pair. Hence the present 
configuration of ‘bright SP-shock’ in the two waveguides 
would be novel.   
 A brief review will provide additional motivation 
for the present work. CGLEs where the carrier wave 
packets possess a difference in group velocities can be 
discussed in the terminology of sources and sinks and 
may help in the understanding of spatiotemporal chaos 
(Hecke et al., 1999; Riecke and Kramer, 2000). Front 
solutions are also termed ‘domain walls’ in the 
literature. CGLEs with spatially dependent coupling 
coefficients will be relevant to rotating fluid flow in 
narrow annulus, or large aspect ratio system with poor 
heat conduction coefficients (Hecke and Malomed, 
1997). In modeling convection and liquid crystals, 
fronts in CGLEs with resonant temporal forcing can 
result in ‘tunable’ mechanism for stabilizing these wave 
pulses (Crawford and Riecke, 2002).   
 Considerable analytical progress can be made if 
one of the two coupled CGLEs exhibits substantial 
simplifications, e.g., consisting of linear damping alone 
or displaying an absence of dispersion (Atai and 
Malomed, 1998). In the optical context, one such 
system of CGLEs models the ‘nonreturn-to-zero’ pulses 
by a superposition of two shock solutions. This 
dynamics is relevant to dual-core, erbium-doped, 
amplifier-supported fiber system. In contrast, we shall 
study two nonlinearly coupled CGLEs in this study.  
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 Besides the search for analytical expressions for 
solitary waves, a crucial problem to address is the 
stability of the background. For an isolated CGLE, 
generalization of such modulation instability has been 
considered in recent reviews (Lega, 2001). For coupled 
CGLEs, where one component is linear and dissipative, 
precise stability boundaries have been mapped out. For 
linearly coupled CGLEs with fifth order (quintic) 
nonlinearities, doubly asymmetric solitary pulses and 
breathers are possible (Hong, 2008).  
 The structure of this study can now be explained. 
Solitons and fronts in isolated or uncoupled CGLE 
can be calculated by a modified Hirota bilinear 
operator. Another critical feature is that the 
conventional bilinear equations must be replaced by 
‘trilinear equations’ to compute specialized exact 
solutions. This can be illustrated by a simple case 
where damping and gain are absent, i.e., CGLEs are 
reduced to the integrable, nonlinear Schrödinger 
(Manakov) equations. The nonlinearly coupled 
Ginzburg-Landau model is then introduced and the 
exact ‘bright-front’ pair is formulated. Finally,  
special exact solutions are presented. 
 

METERIALS AND METHODS 
 
 The method involving the use of Hirota bilinear 
operator has been well established in finding solitary 
and periodic pulses of nonlinear systems. Several 
modifications and improvements are at times necessary 
to obtain an even larger class of nonlinear waves. In the 
following an illustrative example will be given, namely, 
the modified Hirota operator by (Nozaki and Bekki,  
1984) will first be introduced and the evolution equations 
recast as ‘trilinear’ forms will also be displayed.  
 The modified Hirota derivative (Nozaki and Bekki,  
1984) is defined as Eq. 1: 
 

 ( ) ( ) ( )
M

M
,x

x x

D G f G x f x
x xµ

′=

∂ ∂  ′⋅ = − µ ⋅ ′∂ ∂ 
 (1)  

 
where, M is a positive integer and µ can be complex.  
 The ‘bright soliton-front’ pair of CGLEs can be 
obtained by rewriting the partial differential equations 
as ‘trilinear’ forms with the Bekki-Nozaki modified 
Hirota operator. A concrete example is given in the 
following to illustrate the main idea. This is a simplified 
case where gain/loss are absent, i.e., CGLEs reduce to 
the coupled nonlinear Schrödinger equations.   
 The Manakov system is the special, integrable set 
of coupled nonlinear Schrodinger Eq. 2: 

2
* *

2

2
* *

2

A A
i (AA BB )A 0

t x

B B
i (AA BB )B 0

t x

∂ ∂+ ± + =
∂ ∂
∂ ∂+ ± + =
∂ ∂

 (2) 

 
 And one set of exact periodic solutions in terms of 
Jacobi elliptic functions is known Eq. 3: 
 

 
2
0 1

0 2

A 6 r k sn(rx)cn(rx)exp( i t)

B 6 r k cn(rx)dn(rx)exp( i t)

= − Ω

= − Ω
  (3) 

 
where, Ω1, Ω2 are appropriate angular frequencies and 
k0 is the modulus of the Jacobi elliptic functions. The 
long wave limits of (3) are the (double humped for 
waveguide A) solutions: 
 

2

2 2

A 6 r(tanh rxsech rx)exp(ir t)

B 6 r(sech rx)exp(4ir t)

=

=
 

 
 To derive (3) from (2) by the Hirota method, the 
folloing trilinear formulations must be used Eq. 4-5b:  
 

G H
A , B

F F
= =  (4) 

 
2 * * 2

t x xF{(iD D )G F} G{GG HH D F F} 0+ ⋅ + + − ⋅ =  (5a) 

 
2 * * 2

t x xF{(iD D )H F} H{GG HH D F F} 0+ ⋅ + + − ⋅ =  (5b) 

 
 The bilinear decomposition, e.g. setting the second 
bracket to be zero in (5a and b), cannot be taken. 
However, for an uncoupled CGLE (p, q complex), we 
can still apply the trilinear form to obtain the 
shock/front solutions which are in agreement with 
formulas obtained earlier in the literature (Nozaki and 
Bekki, 1984). 
 

RESULTS 
 
 We are ready to present our major results, namely, 
the analytical construction of some exact solutions of 
the nonlinearly coupled complex Ginzburg-Landau 
model. We employ the terminologies of nonlinear 
optics for discussion. Slowly varying amplitudes of the 
electric fields A and B will typically be governed by the 
nonlinearly coupled CGLEs Eq. 6: 
 

2 2

t 1 xx 1 2 1iA p A (q A q B )A i A+ + + = γ  (6) 
 

2 2

t 2 xx 1 2 2iB p B (q B q A )B i B+ + + = γ  (7) 
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 The interpretations and physical significance of the 
various terms can now be explained. The real parts of 
the coefficients p1 and p2 denote the group velocity 
dispersion and the imaginary parts, if any, are 
associated with the physical effects of ‘bandwidth 
limited amplification’. The real parts of the complex 
coefficients q1 and q2 account for the self- and cross-
phase modulations respectively, while the imaginary 
parts measure the nonlinear gain/loss. The linear 
gain/loss of the optical waveguides is given by the real 
coefficients γ1, γ2.  
 To rewrite (6, 7) in terms of the operator (1), we 
take Eq. 8: 
 

m n

G exp[i x i t]H
A , B

f f

ξ − Ω= =  (8) 

 
where, G and H are complex-valued functions, but f is 
real-valued, while m and n are complex numbers of the 
specific form  (in which α and β are real) Eq. 9: 
 
 m = 1+iα, n = 1+iβ (9) 
 
 Using the modified Hirota’s bilinear operator (1), 
the two trilinear reductions of (6, 7) are determined as 
follows Eq. 10 and 11: 
 

2
m,t 1 m,x 1

2
* * 1 x

1 2

f{iD p D i )G f}

m(m 1)p D f f
G q GG q HH 0

2

+ − γ ⋅

 + ⋅+ + − = 
 

 (10) 

 
2 2

n,t 2 n,x 2 n,x 2 2

2
* * 2 x

1 2

f{iD p D 2p i D p i )H f}

n(n 1)p D f f
H q HH q GG 0

2

+ + ξ + Ω − ξ − γ ⋅

 + ⋅+ + − = 
 

 (11) 

 
 The ‘Dx’ (without the first subscript) refers to the 
ordinary Hirota derivative, or µ = 1 in (1). We shall 
search for localized modes in A and shock/front in B. 
Next we assume expressions of the forms (in which k 
and ω are complex) Eq. 12-14: 
 
G gexp[kx t]= − ω  (12) 

 
* *H h exp[(k k )x ( )t]= + − ω + ω  (13) 

 
* *f 1 exp[(k k )x ( )t]= + + − ω + ω  (14) 

 
 Then by equating the proper powers of the 
exponentials, we finally obtain the target system of six 
nonlinear Eq. 15-20: 

* * * 2
2 1 1q hh q gg m(m 1)p (k k )= − + +  (15) 

 
2

1 1i p k iω = − γ  (16) 

 
*

* 2 * *2 2
1 1 1 1

q hh
p (m 1)(k k ) (p p )k 2i 0

m
− + + − − γ + =  (17) 

 
* * * 2

1 2 2q hh q gg n(n 1)p (k k )= − + +  (18) 

 
* * 2

2

* 2
2 2 2

i( ) p (k k )

2p i (k k ) p i 0

− ω + ω + +

+ ξ + + Ω − ξ − γ =
 (19) 

 
* * 2

2

*
* 1

2

i( ) p (k k ) (n 2)

q hh
2p i (k k ) 0

n

ω + ω + + −

− ξ + + =
 (20) 

 
 We can regard (15-20) as six complex algebraic 
equations for the unknowns ξ (real), Ω (real), α (real, or 
m defined by (9)), β (real, or n defined by (9)), gg* 
(real), hh* (real), k (complex), ω (complex), whereas 
the parameters p1, p2 (complex, dispersion and 
bandwidth limited amplification), q1, q2 (complex, 
self/cross phase modulation and nonlinear gain/loss), γ1, 
γ2 (real, linear gain/loss) are the six coefficients given 
by the original equations of (6, 7). In principle, g and h 
can be complex, but the system (6, 7) is invariant up to 
a complex phase factor and thus effectively only gg*, 
hh* matter in the final solutions. Generally speaking, 
locating all families of solutions for (15-20) is a huge 
undertaking. Specifically if we impose special 
conditions on p1, p2, q1, q2, this certainly permits 
significant analytical progress. In terms of physical 
meanings we are going to investigate the solitary pulse 
and kink pair solution. Finding such exact solutions for a 
solitary pulse-kink pair will be our goal in the following. 
 

DISCUSSION 
 
 Separating the real and imaginary parts the six 
complex equations of (15-20) gives rise to a system of 
12 nonlinear real equations for the real unknowns (kr, 
ki, ωr, ωi, gg*, hh*, α, β, ξ, Ω, γ1, γ2). We remark that γ1 

and γ2 are treated with purpose as unknowns for the 
system and we define k: = kr + i ki, ω: = ωr +i ωi to 
simplify the writing further.  Not surprisingly, the 
above system is still too complicated and we need to do 
some algebraic simplifications before we plug this into 
the software Maple and try to find any possible exact 
solutions symbolically. Before we get into the details of 
the simplifications, we may observe that the simplest 
solution can easily be found by choosing that q2 = q1 
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and p2 = p1. From (15, 18) and the requirement that m, 
n be complex numbers with real part unity, the 
implication is m = n, or equivalently α = β. 
Unfortunately, this parameter regime only gives a plane 
wave in x and does not yield a spatially localized 
solution. In order to locate the non-degenerate case 
where α ≠ β we thoroughly investigated the 12 real 
equations and eventually made the following 
assumptions in order to make the algebra tractable. 
Now we confine our attention to Eq. 21: 
 
q1 = –q2 = qr + iqi,  p2/s = p1 = pr + ipi,  pi ≠ 0  (21) 
 
where, s is real. 
 Equations (15) and (18) imply that Eq. 22: 
 
αβ = –2 and s = α2/2 > 0 (22) 
 
 This means that p1 and p2 must be related to each 
other by a real, positive multiple. By writing the real 
and imaginary parts of (18) explicitly, we have a 
homogeneous system of two unknowns (hh*-gg*) and 

2
rk . In order to have nontrivial solutions, we deduce the 

condition Eq. 23: 
  

2
r r i i r i i r3 (p q p q ) (2 )(p q p q ) 0α + − − α − =  (23) 

 
 This condition determines the possible values of α 
whenever pr, pi, qr, qi are given. Note that the product of 
roots is -2, being consistent with (22).  
 Elimination of the angular frequency parameters 
yields the system of four real equations with six real 
unknowns (kr, ki, hh*, ξ, α, γ1) Eq. 24-27: 
 

 
* 2 2

r i r i r

2
i r

(αq 2q )hh 2(αp 2p )(4 α )k

2αp (4 α )k ξ 0

− − − +

+ + =
 (24) 

 
* 2 2 2

i i i r r r i

r i r 1

q hh 2p (k (3 α )k ) 4p k k

2α(αp 2p )k ξ 2γ 0

− + + +
− + − =

 (25) 

 
* 2

r r i r i r i

2
i i 1

q hh 2α(2αp 3p )k 4p k k

2αp k 2αγ 0

− − + +

+ + =
 (26) 

 
* 2 2

i i r r i

2
r i r 1

q hh 2p (k (αk k ) )

2α(2p αp )k 2γ 0

− + − −

+ − − =
 (27) 

 
 We note that solving the nonlinear system of (24-
27) by employing suitable computer software is our 
next primary goal. In fact we may solve this system by 
using the Groebner basis method in the software Maple. 

The software will output several sets of common zeros 
of Groebner basis. Each set of common zeros of the 
Groebner basis is equivalent to the set of common zeros 
of the original set of polynomials. After some 
simplifications, the final result is (γ1 being arbitrary) 
Eq. 28-33: 
 

2 2 2
r r i i

r i i r

(2 3 ) 9 8 , : p q p q ,

: p q p q

λα + µ = µ + λ µ = +
λ = −

 (28) 

 
2

2 2 4 21 i
r

4 p d
k , d : (4 2 ) (2 )

γ= = µ + α + α + λα − α
Θ

 (29) 

 
2 2 2 2 2

2 1 i r i r i
i

i

[2p d (4 )(q q )(p p )]
k

p

γ α + α + α + α +=
Θ

 (30) 

 
2 2 2

1 i r i

2 2 2
2 r r i

2
i

4 (4 ) [2p (p p )

q (p p )]

p

γ + α µ − α + α λ

− α +ξ =
α Θ

                     (31) 

 
2 2 2 2 2

* 1 r i i8 (1 )(4 )(p p )p d
hh

γ α + α + α +=
Θ

 (32) 

 
10

j
r i r i j r i r i

j 0

( ;p ,p ,q ,q ) (p ,p ,q ,q )
=

Θ = Θ α ≡ φ α∑  (33) 

 
where, Θ is an auxiliary polynomial. The coefficients φj 

are given in terms of lengthy expressions listed in the 
Appendix in (Yee and Chow, 2010).  
 Some remarks for the exact solution given by 
(28-33) are listed in the following six items: 
 
• pi is not zero. In the intermediate calculations the 

factor pi appears in the denominator and thus pi 

bounded away from zero becomes critical 
• Each of α, kr, ki, ξ may assume two possible values, 

one positive and one negative. We will use the 
notations: α+, α-, kr

+, ki
-, ξ+, ξ- depending on 

whether they are positive or negative 
• Recall the explicitly written six unknowns in the 

solution (28-33), the other six unknowns (ωr, ωi, 
gg*, β, Ω, γ2) can then be computed accordingly. In 
fact, the other six unknowns are determined by 
solving the respective equation. The details are as 
follows: 

 
β  is determined by (22), 
γ2 is determined by Eq. 34: 
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* 2 2 2
i i r r 2

1
q hh p (16k 8αk ξ α ξ ) γ 0

2
− + + − =  (34) 

 
ωr is determined by Eq. 35: 

 

2 2 2 2 2
i r r r i 2 r

1
2α p k 2α p k ξ α p ξ γ 2ω 0

2
+ − − − =  (35) 

 
ωi is determined by Eq. 36: 

  
2 2

r i r i r i ip (k k ) 2p k k ω 0− + − =  (36) 

 
gg* is determined by Eq. 37: 

 
* * 2 2

r r i rq (hh gg ) 4((2 α )p 3αp )k 0− + + − − =  (37) 

 
Ω is determined by Eq. 38: 

  

2 2 2 2 2
r r i r r

1
2α p k 2α p k ξ α p ξ Ω 0

2
− − + =  (38) 

 
 The computations show that ωr, ωi, γ2 and Ω may 
have two different expressions. They are denoted by 

(1) (2) (1) (2) (1) (2) (1) (2)
r r i i 2 2ω ,ω ,ω ,ω ,γ ,γ ,Ω ,Ω : 

 
• Given the values of pr, pi, qr, qi, we find that only 

one member of the family of solutions 
(1,2) (1,2) * * (1,2) (1,2)

r i r i 1 2(k ,k ,ω ,ω ,gg ,hh ,α ,β ,ξ ,Ω ,γ ,γ )± ± ± ± ± , where 

γ1 is arbitrary, will satisfy the original equations 
• Given the values of pr, pi, qr, qi, the positiveness of 

gg*, hh*, 2
rk , 2

ik ,ξ2 will determine the sign of α and 

the sign of γ1 in the exact solution. Note that 
although the sign of γ1 is restricted, this does not 
affect the arbitrariness of γ1 (it is still a free 
parameter in the exact solution) 

• The exact solution can finally be deduced by 
verifying the family of solutions with the original 
equations 

 
 As an illustrative example and with the 
assumptions made in (21) we have q2 = –q1 and p2 = sp1 

= (α2/2) p1, where Eq. 39: 

 
p1 = –2 + i, q1 = –1 + i (39) 

 
 It is shown that an exact solution with a linear gain 
(γ1>0) can be chosen Eq. 40: 

1

1
2

1

1

2
1

1

89 9 89 9
α , β ,

2 2
γ 0 (arbitrary),

22γ (3179005 89 29990673)
γ ,

q

q : 76393585 89 720695637,

γ (7217 765 89)
k 18

q

89 9 γ (7032969 745493 89)
i ,

2 q

90γ ( 89 9) (83 89 783)
ω

q

2γ (59121955 8
i

− += − =

>

−= −

= −

 −
 = ± +
 
 

 − −
 
 
 

 − −= +  
 

∓

1

2
1

1
2

1

9 557755407)
,

q

1080γ (191907 89 1810447)
gg* ,

q

270γ (7217 765 89)( 89 9)
hh* ,

q

γ (3890169 412357 89)
ξ 4 ,

( 89 9) q

4γ (17697425 89 166957173)
Ω

q



























  −     
 −=


 − −=



− = ±
 −

 −= −


   (40) 

 
 The above numerically represented exact solution 
is given by: 
 

( ) ( )

( ) ( )

1

2 1

1 1

1 1

1

1

1

1

α 0.21699,β 9.21699,γ 0 (arbitrary),

γ 1.66057γ ,

k 0.75805 γ i 0.19906 γ ,

ω 0.13855γ i 0.8γ ,

gg* 7.3440γ ,

hh* 0.09018γ ,

ξ 5.34903 γ ,

Ω 0.8γ .

≈ − ≈ >


 ≈ −


 ≈ ± +


 ≈ +


 ≈


 ≈


 ≈ ±


 ≈ −


∓
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 For γ1<0, similar analysis can be performed and the 
corresponding analytical solutions can also be 
computed, but details will not be pursued here. 
 

CONCLUSION 
 
 A two-waveguide system including the gain/loss is 
governed by the coupled CGLEs and one model of 
nonlinear coupling is investigated in this study. A 
combination of phase locked ‘localized pulse/front’ 
solution has been investigated and such a pair is 
presented here via the use of trilinear equations with the 
Bekki-Nozaki modified Hirota operator (Nozaki and 
Bekki, 1984). Sets of algebraic equations defining the 
amplitude, phase, wave number and frequency of the 
bright (localized) soliton/kink pair are established, in 
conjunction with the basic properties of the nonlinear 
dissipative media, i.e., coefficients of the coupled 
CGLEs. The closed-form representations of the exact 
solutions, for the case where the dispersion coefficients 
are of same signs, are obtained analytically. Further sets 
of exact solutions, for the case where the dispersion 
coefficients are of different signs, can also be found.  
 Besides the search for analytical expressions for 
solitary waves, another crucial problem is the stability 
of the background. The stability of wave profiles is of 
crucial importance, since it determines if such patterns 
can be observed in an experiment. The stability of the 
theoretical solutions found will be studied by numerical 
simulations of perturbed wave profiles. To verify the 
numerical simulations, as well as to provide a deeper 
insight of the underlying physics, an order-of-
magnitude balance will be examined too. The 
simulations will hopefully provide a reasonable 
description of the nonlinear dynamics and simple 
scenarios for stability and instability of the pulse-front 
and front-front solutions will be studied. Future works 
along this approach will definitely be fruitful.   
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