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Abstract: Problem statement: In this study, we study the analytical constructmnsome exact
solutions of a system of coupled physical diffeil@nequations, namely, the Complex Ginzburg-
Landau Equations (CGLEs). CGLEs are intensivelgistll models of pattern formation in nonlinear
dissipative media, with applications to biology,dhydynamics, nonlinear optics, plasma physics,
reaction-diffusion systems and many other fieldgpproach: A system of two coupled CGLEs
modeling the propagation of pulses under the coetbinfluence of dispersion, self and cross phase
modulations, linear and nonlinear gain and los$ valdiscussed. A Solitary Pulse (SP) is a locdlize
wave form and a front (also termed as shock) refiera transition connecting two constant, but
unequal, asymptotic states. A SP-front pair sofuttan be analytically obtained by the modified
Hirota bilinear methodResults: These wave solutions are deduced by a systemxohailinear
algebraic equations, allowing the amplitudes, waumbers, frequency and velocities to be
determined.Conclusion: The final exact solution can then be computed [yyilyang the Groebner
basis method with a large amount of algebraic sfioations done by the computer software Maple.
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INTRODUCTION or a ‘bright-dark SPs’ pair. Hence the present
configuration of ‘bright SP-shock’ in the two wavedes
The Complex Ginzburg-Landau Equationswould be novel.

(CGLEs) govern the dynamics of patterns in nonlinea A brief review will provide additional motivation
dissipative media and arise in many disciplines,,e. for the present work. CGLEs where the carrier wave
biology, chemical reactions, diffusion, hydrodynasji packets possess a difference in group velocitiesbea
optics, plasma physics and many other fields. Th@iscussed.in the terminolog_y of sources and simkbk a
dynamics and propagation of the pulses are governd@ay help in the under_standmg of spatiotemporabsha
by the combined influence of dispersion, self arass ~ (Heckeet al., 1999; Riecke an‘d Kramer, 200,0); Front
phase modulations, linear and nonlinear gain/losssolutions are also termed ‘domain walls’ in the
Many varieties of modes have been established, Withera_tu_re. CG.LES with spatially dependent coqpllng
the well known examples being (a) bright (or lozat) coefficients will be relevant to rotating fluid floin
solitary pulses, (b) dark pulses with minimum iteirsity Earrow ar:j“”"%s’ or Iarfgfg_e_ aspect ratll? systsm Wlli'brp q
or holes, (c) kinks (also termed shocks or wavetfro eat conduction coefiicients (Hecke and Malomed,

) . . 1997). In modeling convection and liquid crystals,
solutions), transitions joining two constant, buequal, fronts in CGLEs with resonant temporal forcing can

asymptotic states. Comprehensive reviews have beqRgt in ‘tunable’ mechanism for stabilizing thesave
given (Cross and Hohenberg, 1993; Arecsthal., 1999; pulses (Crawford and Riecke, 2002).
Ipsenet al., 2000; Aranson and Kramer, 2002). Considerable analytical progress can be made if

The primary focus in the study is a system of tWogne of the two coupled CGLEs exhibits substantial
waveguides governed by two coupled CGLEs.simplifications, e.g., consisting of linear dampiaigne
Conditions for the presence of a shock/wave front i or displaying an absence of dispersion (Atai and
one channel and a bright Solitary Pulse (SP) in the/alomed, 1998). In the optical context, one such
other, will be elucidated. The words ‘bright SPatt  system of CGLEs models the ‘nonreturn-to-zero’ esils
SP’ are borrowed from optics and refer to a ‘lamedi by a superposition of two shock solutions. This
pulse’/localized minimum in a constant intensity dynamics is relevant to dual-core, erbium-doped,
background’ respectively. Most works in the exigtin amplifier-supported fiber system. In contrast, valks
literature focus either on the ‘bright-bright SBiuation  study two nonlinearly coupled CGLEs in this study.
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Besides the search for analytical expressions f

solitary waves, a crucial problem to address is the'ﬁ
stability of the background. For an isolated CGLE, 35 4%B

generalization of such modulation instability hasib
considered in recent reviews (Lega, 2001). For =mlip
CGLEs, where one component is linear disgsipative,
precise stability boundaries have been mapped-out.
linearly coupled CGLEs with fifth order (quintic)
nonlinearities, doubly asymmetric solitary pulsexi a
breathers are possible (Hong, 2008).
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or 2 . .
| 9A +a—A21(AA +BB)A =0
1) 4 (2)
i—+——*(AA" +BB")B =0
ot  0x

And one set of exact periodic solutions in terrhs o
Jacobi elliptic functions is known Eq. 3:

A =+/6rkZsn(rx)cn(rx)expt @, t) 3)

The structure of this study can now be explained. B =8 rk; cn(n dn(rx)expt @, 1)

Solitons and fronts in isolated or uncoupled CGLE

can be calculated by a modified Hirota bilinear Where, ., Q, are appropriate angular frequencies and
operator. Another critical feature is that the ko is the modulus of the Jacobi elliptic function$ieT

conventional bilinear equations must be replaced byPnd wave limits of (3) are the (double humped for

‘trilinear equations’ to compute specialized exact aveguide A) solutions:
solutions. This can be illustrated by a simple case
where damping and gain are absent, i.e., CGLEs are
reduced to the integrable, nonlinear Schrodinger
(Manakov) equations. The nonlinearlgoupled
Ginzburg-Landau model is then introduced and the
exact ‘bright-front’ pair is formulated. Finally,
special exact solutions are presented.

A =6 r(tanh rxsech rx) exp(fr t
B =+/6r(sech rx)exp(4fr t)

To derive (3) from (2) by the Hirota method, the
folloing trilinear formulations must be used Eqbl:-

_G _H
METERIALSAND METHODS A=g B=% 4)
The method involving the use of Hirota bilinear F(p +D?G I} +G{GG " +HH" -D*F (F} =0 (5a)
operator has been well established in finding aglit
and periodic pulses of nonlinear systems. Severa,:{(iD +DIH (B} +H(GG ' +HH " -DF F} =0 (5b)
t X

modifications and improvements are at times necgssa
to obtain an even larger class of nonlinear wakethe
following an illustrative example will be given, maly,
the modified Hirota operator by (Nozaki and Bekki
1984) will first be introduced and the evolutioruations
recast as ‘trilinear’ forms will also be displayed.

The modified Hirota derivative (Nozaki and Bekki,
1984) is defined as Eq. 1:

The bilinear decomposition, e.g. setting the sdcon
bracket to be zero in (5a and b), cannot be taken.
' However, for an uncoupled CGLE (p, g complex), we
can still apply the trilinear form to obtain the
shock/front solutions which are in agreement with
formulas obtained earlier in the literature (Nozakd
Bekki, 1984).

i—u
ox

0
ox’'

RESULTS

o (6m)=( 2w | &)1 (x) @

x=x'

We are ready to present our major results, namely,
the analytical construction of some exact solutiohs
the nonlinearly coupled complex Ginzburg-Landau
model. We employ the terminologies of nonlinear
optics for discussion. Slowly varying amplitudestioé
electric fields A and B will typically be governéy the

enonlinearly coupled CGLEs Eq. 6:

where, M is a positive integer apdcan be complex.
The ‘bright soliton-front’ pair of CGLEs can be
obtained by rewriting the partial differential etjoas
as ‘trilinear’ forms with the Bekki-Nozaki modified
Hirota operator. A concrete example is given in th
following to illustrate the main idea. This is allified

case where gain/loss are absent, i.e., CGLEs reuce A, +pA L, +(@ A +a,JBIA =ivA (©6)
the coupled nonlinear Schrédinger equations.

The Manakov system is the special, integrable set ) ) _
of coupled nonlinear Schrodinger Eq. 2: B, +p,B, + (B +0,|A)B=iyB (7)
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The interpretations and physical significancehaf t
various terms can now be explained. The real parts
the coefficients pand p denote the group velocity
dispersion and the imaginary parts,
associated with the physical effects of ‘bandwidth
limited amplification’. The real parts of the corapl
coefficients g and g account for the self- and cross-

if any, are

phase modulations respectively, while the imaginary

parts measure the nonlinear gain/loss. The lineaghh = g,gg - n(n p (& k3

gain/loss of the optical waveguides is given by ribel
coefficientsyy, y,.

To rewrite (6, 7) in terms of the operator (1), we
take Eq. 8:

-6
fo

_ exp[iEx - iQt]H
f n

A B

(8)

where, G and H are complex-valued functions, bist f
real-valued, while m and n are complex numbersef t
specific form (in whichu andp are real) Eq. 9:
m = 1+, N = 1+P 9)

Using the modified Hirota’'s bilinear operator (1),

the two trilinear reductions of (6, 7) are deteredras
follows Eq. 10 and 11:

D, +pP 7, -1VIG 0}

10

+G{%GG+OQHH —m(m”;'qum}: 0 (10)
f{iD, . +p P2, +2pi® ,,+Q-p £ -iy)H [}

n(n+1)p, O fLF (11)

+H{quH* +0,GG - >

f=o

The ‘D, (without the first subscript) refers to the
ordinary Hirota derivative, opp = 1 in (1). We shall
search for localized modes in A and shock/fronBin

Next we assume expressions of the forms (in which k

ando are complex) Eq. 12-14:

G = gexp[kx— wt] (12)
H =hexp[(k+ K )x— @+ w )t] (13)
f =1+exp[(k+ K )x— (@+w )] (14)

Then by equating the proper powers of the
exponentials, we finally obtain the target systensin
nonlinear Eq. 15-20:

415

g,hh = qgg - m(m- Dp (k %) (15)
iw=pk*-iy, (16)
p(m= Dk K+ (- )R - 21+ 8= ¢ a7)
(18)
—i(ooJ.roo)+E)2(k+k) | (19)
+2p2 'E(k"' K )+Q— pZEZ -,= 0
i(0+w) +p,(k+K Y (n-2)
(20)

~2p, gk + K )+ B
n

0

We can regard (15-20) as six complex algebraic
equations for the unknowiis(real),Q (real),a (real, or
m defined by (9)) (real, or n defined by (9)), gg*
(real), hh* (real), k (complex)p (complex), whereas
the parameters p p, (complex, dispersion and
bandwidth limited amplification), ¢ @ (complex,
self/cross phase modulation and nonlinear gain/legs
v2 (real, linear gain/loss) are the six coefficientgeg
by the original equations of (6, 7). In principéeand h
can be complex, but the system (6, 7) is invanigmto
a complex phase factor and thus effectively only, gg
hh* matter in the final solutions. Generally speaki
locating all families of solutions for (15-20) ishage
undertaking. Specifically if we impose special
conditions on p p, G, O, this certainly permits
significant analytical progress. In terms of phgsic
meanings we are going to investigate the solitarlgep
and kink pair solution. Finding such exact soluidor a
solitary pulse-kink pair will be our goal in thdlawing.

DISCUSSION

Separating the real and imaginary parts the six
complex equations of (15-20) gives rise to a systém
12 nonlinear real equations for the real unknowqas (
ki, or, ®;, 9g*, hh*,a, B, &, Q, v1, v2). We remark that,

and y, are treated with purpose as unknowns for the
system and we define k: 5 k i k, ©: = o, +i o; t0
simplify the writing further. Not surprisingly, ¢h
above system is still too complicated and we needbt
some algebraic simplifications before we plug thi®

the software Maple and try to find any possiblectxa
solutions symbolically. Before we get into the dstaf

the simplifications, we may observe that the sirsple
solution can easily be found by choosing that gy
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and p = p.. From (15, 18) and the requirement that m,The software will output several sets of commoroger

n be complex numbers with real part unity, theof Groebner basis. Each set of common zeros of the
implication is m = n, or equivalentlyn = B. Groebner basis is equivalent to the set of comnesosz
Unfortunately, this parameter regime only givedame  of the original set of polynomials. After some
wave in x and does not yield a spatially localizedsimplifications, the final result isy{ being arbitrary)
solution. In order to locate the non-degeneratee caskq. 28-33:

where a # B we thoroughly investigated the 12 real

equations and eventually made the following (Aa+3Y =9+ 8\’

assumptions in order to make the algebra tractable. L;\z_ pqt P (28)
Now we confine our attention to Eq. 21: =Pa-RY
le_(b:(:’r""qia pZ/S=Q.=Q'+Ipi1 p?ﬁo (21) kr2=4ng|d2, d::u(4+ 212+a4)+)\a(2_02) (29)
where, s is real.
Equations (15) and (18) imply that Eq. 22:
q (15) and (18) imply that £q (o - VoI2pd+a(4+a®)(q +aq )+ B (30)
ap = -2 ands=a%2 > 0 (22) e

This means that;pand p must be related to each dy,(4+ o’ P[2pu-a2(n +ap
other by a real, positive multiple. By writing theal

_ 2 2
and imaginary parts of (18) explicitly, we have a &’= 5 ag, (P + /)] (31)
homogeneous system of two unknowns (hh*-gg*) and poe
k>. In order to have nontrivial solutions, we dedtiue
condition Eq. 23: i = 8y,0* (1+a’)(4+a®)(p' + FF)pd (32)

©
3(pg+Rq)- (a*)(pa- paF | (23)
10 _
This condition determines the possible values of ©=0(aip.n.4.9 )Ej;(pl (®.p.a .99’ (33)
whenever p p, ¢, g are given. Note that the product of

roots is -2, being consistent with (22). . - . -
Elimination of the angular frequency parametersWhere’G) is an auxiliary polynomial. The coefficienfs

ields the system of four real equations with salr 2'¢ give_n _in terms of lengthy expressions listednin
ﬁnknowns (Izlq hh*, &, o, v1) Eq. 2‘1_27: Appendix in (Yee and Chow, 2010). _ _
' T Some remarks for the exact solution given by

(aq, — 29 )hR = 26p, - 2P )(4+ @)k} (28-33) are listed in the following six items:

(24)
+20p, (4+ 0k £ =0 e p is not zero. In the intermediate calculations the
factor p appears in the denominator and thys p
ghh - 2p (R + (3+ra®)k?) +4pk k (25) bounded away from zero becomes critical
-2a(ap, +2p)kE-2y, =0 » Each ofo, ki, k, & may assume two possible values,
one positive and one negative. We will use the
R notations: o’, o, k', k, &, & depending on
QN = 2(2ap, +3p)K + 4Rk l,<2 (26) whether they are positive or negative
+20p k" + 20, =0 « Recall the explicitly written six unknowns in the
solution (28-33), the other six unknowns, (wj,
—ghh + 2p (K - 6k, —k)?) @7) gg*, B, Q, v,) can then be computed accordingly. In
+20(2p, —ap;)k? =2y, =0 fact, the other six unknowns are determined by
solving the respective equation. The details are as
follows:

We note that solving the nonlinear system of (24-
27) by employing suitable computer software is our
next primary goal. In fact we may solve this systeyn B is determined by (22),
using the Groebner basis method in the softwarelélap 7 is determined by Eq. 34:
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ghhi —% D (168 + 8k &+0%E%) —y, =0 (34)
wy is determined by Eq. 35:

20°p,k? + 207p, k. & —%azpléz—yz -2, =0 (35)
w; is determined by Eq. 36:

Pk -k)+2nkk -q =0 (36)
0g* is determined by Eq. 37:

—-q,(hh' + gg }+ 4((2-o®)p, —3op )k =0 (37)
Q is determined by Eq. 38:

20%p k? - 20°p, kri—%azp,§2+s2:0 (38)

The computations show that i, v, andQ may
have two different expressions. They are denoted b

M 1@ o® 1@ 4D 5@ QM@
O, 07,077,017, 7,7, 7,52 QT

Given the values of,pp, g, g, we find that only
one member of the family of
(< 002 07,9 i 0* B £ 02y, %), where
v, is arbitrary, will satisfy the original equations
Given the values of,pp, ¢, g, the positiveness of
gg*, hh*, k2, k2 & will determine the sign of and
the sign ofy; in the exact solution. Note that
although the sign of; is restricted, this does not
affect the arbitrariness of; (it is still a free
parameter in the exact solution)

The exact solution can finally be deduced by
verifying the family of solutions with the original
equations

As an llustrative example and with the
assumptions made in (21) we haye=g-q, and p = sp.
= (a%/2) py, where Eq. 39:
pi=-2+i,g=-1+i (39)
It is shown that an exact solution with a lineamg

(y2>0) can be chosen Eq. 40:
417

solutions ~

_ J89-9 _J89+ 9
T P

9}

(40)

v, >0 (arbitrary),
2 q
q:= 76393585 89 720695637,
i _/89-9 [y,(7032969- 745493 8
M
. _[90%/@ - 9Y (83/89- 78
q
7j
. ,
oy 1080y,(191907/ 89- 1810447)
_270y,(7217- 765/ 89)/ 89 9)
; ,
£= ¢4\/ :
(v/89- 9% q
_ 4y,(17697425 89- 166957173)

__22y,(3179005/ 89- 29990673)
« | 41g [1a(7217- 765/ 89) |
q
q
Sj
+
i [2y1(59121955/_9 - 55775540
q
hh*
v,(3890169- 412357 89)
q

Q=

The above numerically represented exact solution
is given by:

a=-0.216998 =9.21699,y, >0 (arbitrary),
v, = -1.6605%,,

k = (£0.75808/y, ) +i(70.19908/r, ),
»=(0.1385%,) +i(0.8y,),

0g*=7.3440,,

hh*=0.09018,,

& =£5.34903/y,,

Q=-0.8,
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Forvy,<0, similar analysis can be performed and theAtai, J. and B.A. Malomed, 1998. Bound states of

corresponding analytical solutions can also be

computed, but details will not be pursued here.

CONCLUSION

A two-waveguide system including the gain/loss is

solitary pulses in linearly coupled Ginzburg-
Landau equations. Phys. Lett. A., 244: 551-556.
DOI: 10.1016/S0375-9601(98)00308-9

Crawford, C. and H. Riecke, 2002. Tunable front

interaction and localization of periodically forced
waves. Phys. Rev., 65: 066307-066307.

governed by the coupled CGLEs and one model o€ross, M.C. and P.C. Hohenberg, 1993. Pattern

nonlinear coupling is investigated in this study. A
combination of phase locked ‘localized pulse/front’

formation outside of equilibrium. Rev. Mod. Phys.,
65: 851-1112.

solution has been investigated and such a pair islecke, M.V. and B.A. Malomed, 1997. A domain wall

presented here via the use of trilinear equatiaitts tive

Bekki-Nozaki modified Hirota operator (Nozaki and

Bekki, 1984). Sets of algebraic equations defirtime

amplitude, phase, wave number and frequency of the
Hecke, M.V., C. Storm and W.V. Saarloos, 1999.

bright (localized) soliton/kink pair are establighé&n
conjunction with the basic properties of the nosdin

dissipative media, i.e., coefficients of the codple
CGLEs. The closed-form representations of the exact

solutions, for the case where the dispersion azieffts
are of same signs, are obtained analytically. leursets

between single-mode and bimodal states and its
transition to dynamical behavior in inhomogeneous
systems. Physica D: Nonlinear Phenomena, 101:
131-156. DOI: 10.1016/S0167-2789(96)00211-4

Sources, sinks and wavenumber selection in
coupled CGL equations and experimental
implications  for  counter-propagating  wave
systems. Physica D: Nonlinear Phenomena, 134: 1-
47. DOI: 10.1016/S0167-2789(99)00068-8

of exact solutions, for the case where the dispersi Hong, W.P., 2008. On generation of coherent strestu

coefficients are of different signs, can also hafh

Besides the search for analytical expressions for

solitary waves, another crucial problem is the ifitgb
of the background. The stability of wave profilssof
crucial importance, since it determines if suchiqras
can be observed in an experiment. The stabilitthef
theoretical solutions found will be studied by nuice

simulations of perturbed wave profiles. To verifjet

induced by modulational instability in linearly
coupled cubic quintic Ginzburg-Landau equations.
Opt. Commun., 281. 6112-6119. DOI.
10.1016/j.0ptcom.2008.10.034

Ipsen, M., L. Kramer and P.G. Sorensen, 2000.

Amplitude equations for description of chemical
reaction-diffusion systems. Phys. Rep., 337: 193-
235. DOI: 10.1016/S0370-1573(00)00062-4

numerical simulations, as well as to provide a éeep Lega, J., 2001. Traveling hole solutions of the ptax

insight of the underlying physics, an order-of-
magnitude balance will be examined too. The
simulations will hopefully provide a reasonable

Ginzburg-Landau equation:; A review. Physica D:
Nonlinear Phenomena, 152: 269-287. DOI:
10.1016/S0167-2789(01)00174-9

description of the nonlinear dynamics and simpleNozaki, K. and N. Bekki, 1984. Exact solutions bét

scenarios for stability and instability of the pasont
and front-front solutions will be studied. Futurenks
along this approach will definitely be fruitful.
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