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ABSTRACT 

The determination of Sample-Size is often an important step in planning a statistical study and it is usually a 

difficult task. Among the important hurdles to be surpassed, one must obtain an estimate of one or more error 

variances and specify an effective sample size of importance. The study was carried out to check for the 

estimation of parameter and sample sizes in logistic regression, although, there is the temptation to take some 

shortcuts. We to looked at two methods of obtaining sample sizes having obtain the parameter estimates by 

varying the response probability. The results from the real life data showed that when the response probabilities 

are small, an approximation of corrected term Equation 12 performs better than the approximation Equation 8, 

but it highly over estimates when the response probabilities are large. 
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1. INTRODUCTION 

Logistic regression is a type of regression used when 
the dependent variables are categorical Adeleke and 
Adepoju  (2010). The dependent variable may have two 
categories (e.g., alive/dead; male/female; 
Republican/Democrat) or more than two categories. If it 
has more than two categories they may be ordered or 
unordered. However, a lot of statistics is concerned with 
predicting the value of a continuous variable like Blood 
pressure, intelligence, oxygen levels, wealth and so on. 
But this kind of statistics dominates when your response 
variable is binary. It is highly robust and the independent 
variables do not have to be normally distributed, or have 
equal variance in each group. Logistic regression is 
useful in some situations when assumptions of linear 
regression fail. It requires a different type of data and its 
coefficient have different interpretations. Like linear 
regression, logistic regression allows results to be 
graphed with regression lines and prediction to be made 
given a set of conditions. In this study, our interest 
focuses on the determination and parameter estimation of 
sample size using logistic regression analysis. Literature 
reviews have shown many studies aimed at determining 
whether a particular variable has an effect on a binary 

response. Agresti (2007) argued that the study design 
should determine the sample size needed to provide a 
good chance of detecting an effect of a given size. He 
used simple logistic regression as a case study. His 
study did not provide much result for the multiple 
logistic regressions. This study therefore considers a 
thorough analysis on the multiple cases that enhances 
better approach to sample size determination. We 
begin by given background information on the related 
terms like power analysis. 

Power analysis can optimize the resource usage and 
design of a study, improving chances of conclusive 
results with maximum efficiency. Power analysis is the 
most effective when performed at the study planning 
stage and as such it encourages early collaboration 
between researcher and statistician. Muller and Benignus 
(1992); O’Brien and Muller (1993) and Russell (2001), 
provide cogent discussions of these and related concepts. 

Power analysis is often problematic in practice, being 
performed infrequently or improperly. There are several 
reasons for this: it is technically complicated, usually 
under-represented in statistical curricula and often not 
perform early enough to be effective. Good software 
tools for power analysis can alleviate these difficulties 
and help you to benefit from these techniques. 
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We propose to develop sample size calculation 
methods within the proportional odds model structure. 
Such a sample size is needed to construct a test of 
hypothesis in Ordinal Logistic Regression (OLR) having 
desired power. The use of logistic regression has widely 
been accepted in scientific fields (biostatistics, 
epidemiology, engineering). This is because it is a simple 
and effective method to describe the effect of some 
explanatory variables on a categorical response variable.  

Studies on parameter estimation in logistic regression 
revealed that the power and sample size estimation of 
different statistical approach within logistic regression 
model. Whittemore (1989) considered a test for a single 
parameter with other parameters treated as nuisance 
parameters.  Much literature exists on approximations to 
the power and sample size of different statistical tests 
within logistic regression model (Mehta and Tsiatis, 
1984; Hilton and Mehta 1993; Lui, 1993). Whittemore 
(1989) considered sample size approximations in the 
case of standard logistic regression with small response 
probability. At present, sample size issues in ordinal 
logistic regression setting do not appear to have been 
studied in depth in the literature. Sample size 
determination in multilevel designs requires attention to 
the fact that statistical power depends on the total sample 
sizes for each level. It is usually desirable to have as many 
units as possible at the top level of the multilevel hierarchy 
(Snijders, 2005). Russell (2001) offers some suggestions 
for successful and meaningful sample-size determination 
and also discussed is the possibility that sample size may 
not be the main issue; that the real goal is to design a high-
quality study.  Lin et al. (2010) discussed some crucial 
issues in the problem formulation, parameter 
specifications and approaches that are commonly 
proposed for sample size estimation in microarray 
experiments. Roy et al. (2007) consider the problem of 
sample size determination for three-level mixed-effects 
linear regression models for the analysis of clustered 
longitudinal data. Three-level designs are used in many 
areas, but in particular, multicenter randomized longitudinal 
clinical trials in medical or health-related research.   

Power analysis most effective when performed at the 
study planning stage and as such it encourages early 
collaboration between researcher and statistician. It also 
focuses attention on effect sizes and variability in the 
underlying scientific process, concept that both researcher 
and statistician should consider carefully at this stage. 
Muller and Benignus (1992) and O’Brien and Muller 
(1993) provide cogent discussions of these and related 
concepts. These references also provide a good general 
introduction to power analysis. Our focuses in this study is 
therefore to fit a suitable model and check the reliability of 
the model using logistic regression and to suggest sample 
size and power calculation methods for ordinal logistic 
regression to test statistical hypothesis.   

2. MATERIALS AND METHODS 

We deal with studies in which a random samples is 

drawn from the joint distribution of (Y, X) where Y is an 

ordinal response and X= (x1, x2, x3,…, xp) is a vector of 

covariates Equation 1: 
 

1 2 3 kLet (x '), (x '), (x '),..., (x ')

to thepredictor X '

  ∏ ∏ ∏ ∏ ∏
 (1) 

 
Since our response categories have a natural ordering, 

we use the proportional odds model that is Equation 2: 
 

r jlogit[P (Y j / X)] a 'X ' j 1,2,...k 1≤ = + γ = −    (2) 

 

where, a is a vector of the intercept parameters and γ’ = 

(γ1, γ2,…, γp) is the slope parameter vector without 

intercept term. If aj < aj+1 holds this model fits a common 

slope cumulative model based on cumulative 

probabilities of the response categories Equation 3 and 4: 
 

j 1 2 kLet (X ') (X ') (x ') ... (x ')ϕ = + + +∏ ∏ ∏  (3) 
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 The OLR follows that Equation 5 and 6: 
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Where:  
 

j

j

j 1 2

a

3 k a '

(X ') (X ') (X ')

e 'X '
(X ') ... (X ')

1 e X'

+ γ

+γ

ϕ = + +

+ + =
+

∏ ∏

∏ ∏
   (6) 

 
This model is known as Proportional odds Model 

because, the odds ratio of the event (Y≤ j) is independent 

of category indication. 

2.1. Maximum Likelihood Function  

When more observation on Y occurs at a fixed X
t
 

value, it is sufficient to record the number of 

observations t

jn  and the number of j outcome, for j = 

1,…, k. 

Thus we let Y
t
,
 

t=1,…, n,  be an independent 

multinomial random (response) variable, then Y
t
 is  ~ 

multinomial t t

1 kn ,...,n  with t t t

j jE(Y ) n (X )= ϕ Where 

Equation 7: 
 

t t

1 kn ... n 1+ + =  

 
We define: 
 

t t
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Since we are dealing with cumulative probabilities, in 

term of the parameters of the cumulative 

transformations, the likelihood can be written as the 

product of k-1 quantities. The joint probability mass 

function of (Y1,…Yn) is proportional to the product of 

multinomial functions.  

For a given sample size n, the likelihood of the 

observations y
t
, x

t
, t = 1,2,…, n is: 
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where, F(x)is a joint p.d. of x. it is assumed that f (x) 

does note depend on unknown parameters ( )a ', 'γ . 

The validity of this model shows that MLE 

ˆ(a ', ')γ
)

satisfy approximately 1ˆ ˆ(a ', ) ~ N[(a ', '), I (a ', ')]
−γ γ γ% % . 

 2.2. Sample Size Estimation 

One of the main objectives of this write up is 

estimation of sample size and this is achieved by obtain a 

sample size that is just sufficiently large enough to be 

confidence of being able to achieve an inference with 

required precision. It is directly related to the cost and 

time involved in a survey or data collection.  

Let us test the null hypothesis: 
 

0 aH : 0 Vs H :γ = γ = γ%  

 

At a level with power ≥1-β  when the distribution of  

γ̂  is treated as normal with mean γ and variance σ2
, the 
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where, Za is 100(1-a)% of the standard normal 

distribution. The sample size n will be found so that the 

test has a specified power (1-β) at the alternative 

aH : γ = γ% , the sample size n is thus chosen so that: 
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 If  0γ >%  and an appropriate n, a solution of the 

above formula satisfies: 
 

o
a

aa

Z Z

n

β

σ γ
− =

σσ

%
 

 

 Otherwise if 0γ <% : 

0
a

aa

Z Z

n

β

σ γ
− − =

σσ

%
 

 
Hence: 
 

a o a

2

z z
n

βσ + σ
=

γ%
 (8) 

 
For both cases 0 and 0γ > γ <% %   

For model of the form in Equation (2), (5) and (6) 

with one predictor i.e.: 
 

1logit ( ) a Xπ = + γ  

 
Hsieh (1989) uses an approximate sample size 

formula to obtain the sample size needed for testing H0: γ 

= 0. Here we need to guess the probability of success π  

at the mean of x. the size of this effect is the odds ratio θ 

comparing π  to the probability of success one standard 

deviation above the mean of x. Let k = log(θ) An 

approximate sample size is Equation 9: 
 

2
2

k

4 2

a

2 2

n Z Z e (1 2 ) / ( k )

 
  
 

β

 
 ≈ + + πδ π
 
 

 (9) 

 
Where Equation 10: 
 

2

2

sk

42 ( k / 4)1 (1 k ) e / [1 e ]

 
   − 

 
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 
 

 (10) 

 
In the case of Proportional Odds Model (POM), 

estimation of sample size with general response 

probabilities where we have more than two categories 

which can either small or large, then: 
 

i 1 i
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And is simply approximated in Equation 6 by: 
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where, e
aj
 is small when aj + γ’X’≤0 (or e

-aj 
 is small 

when aj +γ’X’≥0).  

We now prove for response variable with three 

categories with ordered probabilities.  i.e.: 
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Therefore variance is Equation 11: 
 

 
2a

II I
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 If X’~N (0, 1) then Var
2

2

1

a

e
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ne
−

− γ
γ =  and Equation 12: 

 

1

2
2

1
a o

a

2

1

z z e
4

n e

β

 γ
σ + − 

 ≥
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 (12) 

 

Equation 11 discovered method of obtaining σa used 

in (3.0) which is Var( ')γ  obtained in Equation 11 

above. Hence, we can generalize it to multiple 

parameters, where we test the hypothesis of: 
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And let: 

 
' '

1 2 s 1 2' ( , ,..., ) ( , )γ = γ γ γ = γ γ  

 
Where: 
   

'

1 1 2 p( , ,..., )γ = γ γ γ  

 
And: 
 

'

2 p 1 p 2 s( , ,..., )+ +γ = γ γ γ   

3. RESULTS 

We illustrate by using the data on diabetics patients 
from a University College Hospital Ibadan.  The data 
covers 10678 reported cases of patients with diabetes.  

3.1. Table 1a. Logit Diabetes versus Smoking 

 Logistic regression: 

Number of obs = 10678 

LR chi2 (1) = 2.52 

Prob > chi2 = 0.1126 

Log likelihood = 7330.5489 

Pseudo R
2
 = 0.0002 

Estimation of sample size using the method proposed 

by Hsieh (1989) in Equation 9. 

Assume 0.817013π =  if we go by the hypothesis that 

H0: γ1 = 0 against the alternative H0: γ1 ≠ 0 from Table 

1a then: 
 

a

2 2

2

a 0.05 and 0.10, Z 1.96 and Z 1.64

k log (odds ratio) log (0.93955205) 0.02709and

k 0.0007

1.0009 and n 56,946

β= β = = =

= = = −

=

δ = ≅
 

 

If we now consider the effects of smoking and 
drinking of alcohol on induced diabetes patients i.e., 2 
predictors, then the above can be seen in output of Table 
1b above where both the coefficients having negative 
effect on induced diabetics patients. Although the Log-
likelihood ratio for model selection support the full 
model of two  (full model) predictors with 2.54 > 0.2803 
value of chi

2 
 with 1 df.  

Since the pseudo R
2
 is 0.0002 which implies that 

there is hardly multiple correlation between the 

predictors and th response variable, the odds ratio in 

Table (1a and 1b) shows that for a smoker, there is 

approximate value of 6% less times of having diabetis 

when compared with those who are not smoking, given 

that all other variable remain constant. The odds of 

having diabetes for an individual addicted to alcohol  is 

just 0.6% less times those who are not drinking alcohol. 

Although this results look somehow, but the p-values for 

smokers (0.113) and individual adicted to alcohol 

(0.872) are not significant meaning that both factors 

considered are not really contributing to diabetes  

problem. These surport the result obtained in R
2. 

 
we compute: 

  

1
2 2

n
n

1 R
=

−
 

 
where, n1 is the n obtained when we have one predictor 

Hence: 

 

2n 56,946≅  

 

Therefore, we require almost 57000 samples for 

testing H0: γ1 = 0. 
 Using the above information we have the following 
result from our simulation of sample size for both 
Equation 8 and 12 respectively. Monte Carlo method for 
selected values of α = 0.05, β = 0.1 and e

α1
 = 0.05 as well 

as the value of γ>0 & k = 2 when the explanatory variable 
has the standard normal distribution. The results in Table 
1 below show us that the approximation (3.0) is suitable 
when the response probabilities are small but it always 
under estimates. 

4. DISCUSSION 

 Acording to the results of this study, the estimates of 
the parameters and sample sizes are obtained from both 
real life data of diabetes and simulation study, Table 1 
and 2. Sample size obtained when the predictor is one is 
approximately the same when the the predictors are two 
using a real life data. The approximation with corrected 
term (3.4) performs better than the approximation (3.0) 
when the response probabilities are small, but it highly 
over estimates when the response probabilities are large. 
Also, the graphical representation of the sample sizes for 
the simulation is given in Fig. 1-3. Since the sample 
sizes depend on the two parameters, γ and α1, 
simultaneously, we fixed one parameter to obtain the 
other. If we change the two parameters simultaneously, 
the estimated sample sizes fluctuated too much.
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Fig. 1. The gaph of sample size fixed for k = 2, exp (α1) = 0.05 

 

Table 1a. Logistic regression: Diabetes vs Smoking 

Diabetes Coef. Odds ratio Std. Err.            z    P>|z| 

Smoking -0.0624 0.9395 0.0393 -1.59     0.113 
Cons -0.2021  0.0258 -7.81 0.000 
LR = 2.52, Prob> (chi)2

 
= 0.2803 

 

Table 1b. Logistic regression: Diabetes versus Smoking and Alcohol 

Diabetes Coef Odds Ratio Std. Error Z P</z/ 

Smoking -0.0624 -0.0062 -0.2021 0.9395 0.9937 
Alcohol 0.0393 0.0389 0.0258 -1.59 -0.16 
Cons -7.81  0.113  0.872 0.00 

LR=2.54, Prob>(chi)2

 
= 0.2803 

 

Table 2. (Estimates of sample sizes for both equations (3.0) and (3.4)) 

  (k = 2, eα1 = 0.05)  (k = 2, eα1 = 0.25)  (k = 2, eα1 = 0.5) 

---------------------------------------------- -------------------------------------- ---------------------------------------------------------- 

 γ N1 (3.4) N2 (3.0)  γ N1 (3.4) N2 (3.0)  γ N1 (3.4) N2 (3.0) 

0.05 52911.34 49377.2 0.05 15064.14 9827.57 0.05 10848.02 4933.84 

0.11 10663.52 10135.88 0.11 3089.78 1977.30 0.11 2226.890 1009.71 

0.17 4267.03 4195.42 0.17 1276.89 789.21 0.17 921.7000 415.67 

0.2 2176.76 2254.37 0.20 684.48 401.00 0.20 495.1900 221.56 

0.27 1243.02 1387.31 0.27 419.84 227.59 0.27 304.6300 134.86 

0.35 746.88 926.55 0.35 279.21 135.44 0.35 203.3400 88.78 

0.41 452.27 652.89 0.41 195.69 80.71 0.41 143.1600 61.41 

0.47 263.27 477.25 0.47 142.09 45.58 0.47 104.5000 43.85 

0.53 134.93 357.88 0.53 105.66 21.70 0.53 78.21000 31.91 

0.59 120.99 273.12 0.59 79.79 4.75 0.59 59.51000 23.44 

0.65 54.15 210.80  0.65 60.77 0.00 0.65 45.74000 17.20 

0.71 3.70 163.68  0.71 46.38 0.00 0.71 35.31000 12.49
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Fig. 2. The gaph of sample size fixed for k = 2, exp (α1) = 0.25 

 

 
 

Fig. 3. The gaph of sample size fixed for k = 2, exp (α1) = 0.5 

 

5. CONCLUSION 

This study has developed a methodological 

framework to estimate the parameters of logistic 

regression and obtain sample sizes at different level of a 

and β. We have also proposed sample size calculation 

methods for logistic regression to tests for statistical 

hypotheses. We have also considered testing the multiple 
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parameters. We gave a simple closed-form formula for 

approximated sample sizes when the probabilities of the 

response categories are small. The results showed that an 

approximation of corrected term Equation 12 performs 

better than the approximation Equation 8 when the 

response probabilities are small, but it highly over 

estimates when the response probabilities are large.  
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