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ABSTRACT

The Generalized Linear Mixed Models (GLMMs) withasipl random effects for spatio-temporal data are
proposed. A hierarchical Bayesian method is usedpfirameter estimation. The random effects are
assumed to be normally distributed and the spadiadlom effects are assumed to be proper Conditional
Autoregressive (CAR) models. The proposed modets agplied to Dengue fever data in Northern

Thailand, including climatic covariates, rainfalichtemperature. The Dengue fever maps are corstruct

from the posterior mean of the mortality rates.
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1. INTRODUCTION Martinez-Beneitoet al., 2008) are based on linear
predictors, which may have all terms or a subsdher,
Spatio-temporal data are data collected acrods botexpressed as Equation (1):
time and space. Thus the data analysis has toimédke
account the spatial correlation across the areab an N, =X, B+G, +S +T +CS +CT +ST +CST 4 (1)
temporal correlation within each area. In Thailatiere
are annual data reports of common infectious déseas ) ) ]
from the Ministry of Public Health (MOPH) of Thaild ~ Where, i, i = 1.1, j = 1,...,J; k = 1,...k are linear
every year. In the reports, raw data are preseatetl Predictors ang is a pcl vector of covariatesiX G, S, Tj.
descriptive statistics, such as rates, percentagdsbar ~ are additional risks of belonging to group k, liyim area i
charts are usually used to describe the featurébose ~ and period j. G CTy, ST; and CS§ are interaction
data (MOPH, 2011). It will be more informative and terms. Theey are error terms. The observed datg, Y
easier for the readers to understand if those deta typically, are assumed to be Poisson distributeor F
analyzed thoroughly and presented in maps whicls@re €xample, assuming that Y are Poisson distributed,
called disease maps (Lawson, 2008). Those datdValleretal. (1997) propose the linear predictorgigs=
motivated us to investigate the models for theispat Ck+S and Sare broken to be the sum of a heterogeneity,
temporal data for disease mapping. u; and a spatial effect;,v.e., $= y+v;. 4 are assumed to
The spatio-temporal models for disease mappingbe normal distributed and; vare assumed to be
found in prominent papers (Bernardinedi al., 1995; Conditional Autoregressive (CAR) models.
Waller et al., 1997; Xia and Calin, 1998; Sehal., 2000; Generalized Linear Mixed Models (GLMMs) have
Knorr-Held and Besag 1998; Nobret al., 2005; grown in popularity due to their ability to model
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different types of data including spatio-temporatad
(Diggle et al., 2002; McCullochet al., 2008). In
GLMMs, specifically, let Y, j = 1,...,n be marginally
correlated observations from area i
GLMMs assume that conditional on random effegts b
Yij, J = 1m,..n are independent and follow a
distribution from the exponential family with detysi
f(Y i, ®) = exp 7 [Yini, -wni)l+c(Yi, ¢)} where
P(.) and c(.) are known functionsy); are natural
parameters ang is a scale parameter, E() = y; =
y(ny) and Var(¥lb) = ¢u (ng) = oUW (W) =
¢v(u;); thus the variances are related to the meanadhro
the variance function v(.) q;“(qf'l(uij)). The conditional
meany; = E(Y;[b) can be modeled as Equation (2):

9y = XijTB tZ h 2)

With the canonical link function, Equation (2)nca
be written as Equation (3):

ny = XijTB +7 h 3)

where, is a p<1 vector of fixed effects, for population,
related to covariatesp@and his a a1 vector of random
effects, for each subject, related to covariatgs Z

Typically, b, 2 N, (0,D)is assumed.

The correlation of two observations related toetim
is expresses as Equation (4):

)= Cov(Y;. Yy )
- Var(Y,) + Var(Y, )

Corr(Y;, Y, (4)

where, COV(YJ', Yik) = Cov (g'l(Xij TB"‘Zij Tbi), g'l(Xik
B+Z b)) and Var(¥) @'X;  "B+Z;
To))+E@V(G (X B+Zi b))

The most common distributions from this family
are Binomial, Poisson and Normal which are
associated to logit, log and identity canonicalklin
function respectively.

The spatial correlation in GLMMs can be accounted
by modifying the random effect part to include the
spatial random effects,;,vfor area i, i = 1,...,m, in
Equation (3). Thus the GLMMs with spatial random
effects are expressed as Equation (5):

My =XijTB+Zij +y (5)
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The common way, in disease mapping, is to assign a
Conditional  Autoregressive (CAR) model first
introduced by Besag (1974) to the spatial randdectf

1,....,m. Thewhich are not observed. The CAR model is defined by

the conditional probability density  function,
v, | v, , It ~ car.normd| 1 > vy J Since the joint
Wi+ 1t Wi+

distribution of y is improper, a remedy is to introduce
a spatial parameter. A suitable constrained, this
parameter ensures a proper joint distribution toe t
CAR model (Gelfand and Vounatsou, 2003). The
modified version is so-called a proper CAR moddal an

DSy ]

Wi+ 8]
where W is the adjacency matrix with entries w1 if
area i and 1 are neighbors angd w0 otherwise, with the
diagonal entries w = 0 andv,=>w,, T, iS a
|

Ty
0
Wi+

expressed as | v;, It ~ car.proper

conditional variance and its magnitude determine th
amount of spatial variation ang is the spatial
parameter. The most commonly used spatial effects i
based on some form of a Conditional Autoregressive
(CAR) structure (Clayton and Kaldor, 1987; Cressie
and Chan, 1989; Besafjal., 1991; Bernardinellet al.,
1995; Waller et al., 1997; Pascutteet al., 2000).
There are several methods including a hierarchical
Bayesian method used for parameter estimation in
GLMMs. Moreover, a hierarchical Bayesian method
has been extensively used for CAR models. Thus, in
this study, the GLMMs, proper CAR models and
hierarchical Bayesian method are adopted for
modeling spatio-temporal data in order to construct
disease maps.

As mentioned earlier, the infectious disease data
motivated us to investigate the models for the ispat
temporal data for disease mapping. Dengue fever, an
infectious disease caused &yamily of viruses that are
transmitted by mosquitoes is chosen to study. dhis of
major public health problems in Thailand. In 20H1,
total of 69,800 cases and 63 fatalities were regbrt
from all provinces. The morbidity rate was 111.1¥ p
100,000 people. The Case Fatality Rate (CFR) was
0.0903% (MOPH, 2011). The disease maps are needed
as they are communication tools to the generalipubl
about which geographic areas and people are at high
risk for the Dengue fever.

In this study, we propose GLMMs with proper CAR
spatial random effects to analyze Dengue data ededc
with rainfall and temperature in order to construct
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disease maps. The proposed models are specifis oise Northern Thailand (MOPH, 2011). Each province

Equation (1). The random effects are assumed to beontributed 4 quarterly observations over time. ¥gtj

normally distributed and the spatial random effemts = 1,...,4,1=1,...,17 denote the numbers of Dengverfe

assumed to be proper CAR models. The observatiens a Patients in province i at quarter j. In stead ofdeiing

assumed to be Poisson distributed. The proposeelsod counts, offset variables are used for modeling srate

are applied to Dengue fever data in Northern Thadlila which are cases per population sizes. The modebean
The subsequent sections are as follows. Firstly, f €XPressed as Equation (7):

materials and methods, GLMMs with proper CAR

spatial random effects are described and an apiplicto log(w;) =log(pop ) +f, +pyrain; +p,tempy +b +y (7)

Dengue fever data is illustrated. Then the resfltdata

analysis are presented. Finally, the discussion anthere,

, ) log(pop are offset variables, re the
conclusion are conducted respectively. 9(pop bopa

numbers of population, rajrare total rainfall, tempare
2 MATERIALSAND METHODS temperatqre b are random intercepts _ capturing
geographically unstructured heterogeneity among
n Provinces andvare proper CAR spatial random effects
capturing spatial dependence among provinces. Bayes
inference is used to fit the model by assuming @,
Rrfor b, a proper CAR model for the joint distribution of
v;, i.e., VLkar.proper(a,(D,-pW) ™) and a uniform (0,1)
for p. We use independent N(Om?)@riors for all fixed
~ o : effect  parameters. t,00nvGamma  (0.001,0.001)
n; =logly) =X 'B+Z"h +y (6)  and,finvGamma (0.001,0.001) The MCMC Gibbs
sampling was run via Open BUGS. The MCMC
For each area, Equation (6) can be writtemas convergence is checked by the value of the polentia
B+Zib+1v wherep = E(Yi|b, vi). The sizes of vectors or Scale reduction of Gelman and Rubin (1992) (Rhat) a
matrices aren; (nx1), Y; (nx1), X (nxp), B (px1), Z visua_l examination of trace, autocorrelation, higtand
(nxq), b (gx1) and 1 (x1). For all areasEquation (6)  density plots. The Rhat values substantially closed

The observed data,;Ythe numbers of patients i
areai, | =1,..m, attimej,j=1,... pare assumed to be
Poisson distributed with a natural log link functiorhe
proposed models based GLMMs and proper CA
models are expressed as Equation (6):

can be written a§ = Xp+Zb+Sv wherep = E(Y|b,v).  indicate convergence.
Let n=zm:ni . The sizes of vectors or matrices are: 3.RESULTS

=
n(nx1), Y(nx1), X(nx1), B(px1), Z(r<mq), b(mal), The estimated regression coefficients and variance
S(xm) and v(mx1). bINy(0,B) V\i\ere Ban =  components are presentedTiable 1, from MCMC runs
diag[D,...,D]. VIkar.proprf,t(Dw-pW) ") where Qy = of 30,000 iterations after discarding the initiéd,d00

diag[W.,...,Wm.]. Without loss of generality, V can be jierations as burn-in. The value of Rhat closed. tfor
reparameterized by including a sum to Z8ro COMEUWA  oyery parameter iable 1 indicates that the MCMC is
vi. Then we get Vcar.proper(G(Dy-pW) 7). Under @ cqnyerged. The result shows that the morbidity sk

h|_erarc_h|c_al I_3ayes_|an fr_amework, the specification Relative Risk (RR) of Dengue fever will be incredse
prior distributions, in particular for variance cpoments, . . :
: . L . when the amount of rainfall increases and also hbéll
is required. In the absence of subjective prior.

. . . : increased when the temperature increases. Since the
information, a prior on eadBis assumed to be normally ial ey i t closed t there | tial
distributed with zero mean and large variance, arnif spatial parametgy IS not closed 1o zero, there IS a spatia

(0,1) for p and inverse Wishart for D. When D is association among provinces. However, according,to
univariate, the inverse Wishart reduces to inverselN® variation among areas is quite small. The higk
gamma. A posterior inference can be easily Provinces and Quarters (Q) are showi able 2.

implemented using standard Gibbs sampling Markov ~ The Dengue fever maps for Q1 to Q4 of the
Chain Monte Carlo (MCMC). provinces in Northern Thailand constructed from the

For an application, the Dengue data in 2011 posterior mean of the morbidity rates are showfim
consisted of 68 observations from 17 provinces in1-4. Itis clearly seen that the highest risk are 81 Q
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Fig. 2. Dengue fever in Q2
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Fig. 4. Dengue fever in Q4
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Table 1. Parameter estimate for dengue fever in northern Dengue fever control are produced using the pasteri

Thailand mean of the mortality rates.
Parameter  Post Mean 95% C|*** RR**  Rhat*
Intercept -0.8423 (-1.5130, 0.1301) 0.4307 1.0446 6. ACKNOWLEDGEMENT
Rain 0.0105 (0.0063, 0.0147) 1.0106 1.0446
Temperature 0.0783  (0.0663, 0.0902) 1.0814 1.0012 We gratefully thank Assoc. Prof. Dr. Yisheng Li fo
P 0.524 (0.0280, 0.9759) - 1.0010  hjs valuable advice and Mr. Allen Doyle for his din
Tp 0.0041 (0.0001, 1.9716) - 1.0023

proofreading. We also thank the Department of Sies
and the Faculty of Science of Kasetsart Univer§ity
technical support.

Ty 0.0015 (0.0002, 7.0472) - 1.0059

Table 2. Province and Quarter (Q) at high morbidity rater (pe

100,000)

Province and quarter Post mean of rate 95% ClI 7. REFERENCES

Chiang Mai, Q3 2983 (2885,3084)  garnardinelli, L., D. Clayton, C. Pascutto, C. Momili

Chiang Rai, Q3 1192 (1128, 1259) . . - .

Lampang, O3 5501 (517.1, 584.5) and M..Gh|slar?d§t al._, 1995. Bay_eS|an analysis of

Tak, Q3 505.1 (473.9, 537.1) space-time variation in disease risk. Stat. Med:, 1

Chiang Mai, Q2 451.2 (425.7, 477.6) 2433-2443. PMID8711279

Phetchabun, Q3 425.9 (395.6,457.0) Besag, J., 1974. Spatial interaction and the ttatis

Lamphun, Q3 405.2 (369.6, 442.2) analysis of lattice systems. J. Royal Stat. SodeSe

maeyﬁ%ngi*é on. Q3 309 ((?é777967 ‘;%88)) B-Statistical Methodol., 36: 192-236.

Phitsanulok, Qé 297 6 (271.7,’324.6) Besag, J., J York gnd A. Mollie, 199_1. Baygsmnagm

Lampang, Q2 283.3 (264.1, 303.0) restoration, with two applications in spatial

Chiang Mai, Q4 281.0 (264.6, 298.1) statistics. Annals Instit. Stat. Math., 43: 1-200ID

Phayao, Q2 270.9 (251.7, 291.2) 10.1007/BF00116466

Tak, Q2 248.9 (231.3,267.2) Clayton, D. and J. Kaldor, 1987. Empirical bayes

estimates of age-standardized relative risks for

4. DISCUSSION use in disease mapping. Biometrics, 43: 671-681.

PMID: 3663823
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’ 2002. Analysis of Longitudinal Data. 2nd Edn.,

CAR models. Moreover, the proposed models allow ; . :
random factors to be included and inverse Wisharlg/ Oxford University Press, New York, ISBN-10:
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be applied for their variance component. The resoit
the analysis confirm that the Dengue fever in Nemh ~ Gelfand, A.E. and P. Vounatsou, 2003. Proper
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The covariates considered are rain and temperafime. Edn., Taylor and Francis, Boca Raton, FIESBN-
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///// Science Publications 142 JMSS



Krisada Lekdee and Lily Ingsrisawang / Journal @ftiematics and Statistics 9 (2): 137-143, 2013

Martinez-Beneito, M.A., A. Lopez-Quilez and P. Sun, D., R.K. Tsutakawa, H. Kim and Z. He, 2000.
Botella-Rocamora,  2008. ~An  autoregressive Spatio-temporal interaction with disease mapping.
approach to spatio-temporal disease mapping. Stat.  stat. Med., 19: 2015-2035. DOI: 10.1002/1097-

'V'ﬁ’d-vh”: 2874-2889. P'\I’”mg79141 A 0258(20000815)19:15<2015::AlD-
McCulloch, C.E., S.R. Searle and J.M. Neuhaus, 2008 SIM422>3.0.CO:2-E

Generalized, Linear and Mixed Models. 2nd Edn., ) .
John Wiley and Sons, Inc., New Jersey, ISBN-lO:Wa"er’ L.A., B.P. Carlin, H. Xia and A.E. Gelfand,

0470073713, pp: 384 1997. Hierarchical spatio-temporal mapping of
MOPH, 2011. AESR Annual Epidemiological Surveillanc disease rates. J. Am. Stat. Assoc., 92: 607-61T: DO
Report 2011. 10.1080/01621459.1997.10474012

Nobre, A.A., AM. Schmidt and H.F. Lopes, 2005. Xia, H. and B.P. Calin, 1998. Spatial-temporal niede
Spatio-temporal models for mapping the incidence with errors in covariates: Mapping Ohio lung cancer
of malaria in Para. Environmetrics, 16: 291-304. mortality. Stat. Med., 17: 2025-2043.

DOI: 10.1002/env.704 DOI: 10.1002/(SICI)1097-
Pascutto, C., J.C. Wakefield, N.G. Best, S. Ricband 0258(19980930)17:18<2025::AlD-

and L. Bernardinellet al., 2000. Statistical issues in SIM865>3.0.CO-2-M

the analysis of disease mapping data. Stat. M&d., 1 ’

2493-2519. DOI: 10.1002/1097-

0258(20000915/30)19:17/18<2493::AlID-
SIM584>3.0.CO;2-D

///// Science Publications 143 JMSS



