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ABSTRACT 

The Generalized Linear Mixed Models (GLMMs) with spatial random effects for spatio-temporal data are 
proposed. A hierarchical Bayesian method is used for parameter estimation. The random effects are 
assumed to be normally distributed and the spatial random effects are assumed to be proper Conditional 
Autoregressive (CAR) models. The proposed models are applied to Dengue fever data in Northern 
Thailand, including climatic covariates, rainfall and temperature. The Dengue fever maps are constructed 
from the posterior mean of the mortality rates. 
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1. INTRODUCTION 

 Spatio-temporal data are data collected across both 
time and space. Thus the data analysis has to take into 
account the spatial correlation across the areas and 
temporal correlation within each area. In Thailand, there 
are annual data reports of common infectious diseases 
from the Ministry of Public Health (MOPH) of Thailand 
every year. In the reports, raw data are presented and 
descriptive statistics, such as rates, percentages and bar 
charts are usually used to describe the features of those 
data (MOPH, 2011). It will be more informative and 
easier for the readers to understand if those data are 
analyzed thoroughly and presented in maps which are so-
called disease maps (Lawson, 2008). Those data 
motivated us to investigate the models for the spatio-
temporal data for disease mapping. 
 The spatio-temporal models for disease mapping 
found in prominent papers (Bernardinelli et al., 1995; 
Waller et al., 1997; Xia and Calin, 1998; Sun et al., 2000; 
Knorr-Held and Besag 1998; Nobre et al., 2005; 

Martinez-Beneito et al., 2008) are based on linear 
predictors, which may have all terms or a subset of them, 
expressed as Equation (1): 

 
T

ijk ijk k i j ik jk ij ijk ijkη = X β + C + S + T + CS + CT + ST + CST +ε  (1) 

 
where, ηijk, i = 1,..,I; j = 1,…,J; k = 1,…,k are linear 
predictors and β is a p×1 vector of covariates Xijk. Ck, Si, Tj 
are additional risks of belonging to group k, living in area i 
and period j. CSik, CTik, STij and CSTijk are interaction 
terms. The εijk are error terms. The observed data, Yijk, 
typically, are assumed to be Poisson distributed. For 
example, assuming that Yijk are Poisson distributed, 
Waller et al. (1997) propose the linear predictors as ηijk = 
Ck+Si and Si are broken to be the sum of a heterogeneity, 
ui and a spatial effect, vi, i.e., Si = ui+vi. ui are assumed to 
be normal distributed and vi are assumed to be 
Conditional Autoregressive (CAR) models. 
 Generalized Linear Mixed Models (GLMMs) have 
grown in popularity due to their ability to model 
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different types of data including spatio-temporal data 
(Diggle et al., 2002; McCulloch et al., 2008). In 
GLMMs, specifically, let Yij, j = 1,…,ni be marginally 
correlated observations from area i = 1,…,m. The 
GLMMs assume that conditional on random effects bi, 
Y ij, j = 1m,…,ni, are independent and follow a 
distribution from the exponential family with density 
f(Y ij |ηij, ϕ) = exp {ϕ−1 [Y ijηij , -ψ(ηij)]+c(Yij, ϕ)} where 
ψ(.) and c(.) are known functions, ηij are natural 
parameters and ϕ is a scale parameter, E(Yij|bi) = uij = 
ψ`(ηij) and Var(Yij|bi) = ϕψ``(ηij) = ϕψ``(ψ`−1(µij)) = 
ϕv(µij); thus the variances are related to the means through 
the variance function v(.) = ψ``(ψ`−1(µij)). The conditional 
mean µij = E(Yij|bi) can be modeled as Equation (2): 
 
 T T

ij ij ij ig(µ ) = X β + Z b  (2) 

 
  With the canonical link function, Equation (2) can 
be written as Equation (3): 
 

T T
ij ij ij iη = X β + Z b  (3) 

 
where, β is a p×1 vector of fixed effects, for population, 
related to covariates Xij and bi is a q×1 vector of random 
effects, for each subject, related to covariates Zit. 

Typically, 
iid

i qb ~ N (0,D) is assumed.  

 The correlation of two observations related to time 
is expresses as Equation (4): 
  

ij ik
ij ik

ij ik

Cov(Y ,Y )
Corr(Y ,Y ) =

Var(Y ) + Var(Y )
 (4) 

 
where, Cov(Yij, Yik) = Cov (g−1(X ij 

Tβ+Zij 
Tbi), g−1(X ik 

Tβ+Zik 
Tbi)) and Var(Yij) = (g−1(X ij 

Tβ+Zij 
Tbi))+E(ϕv(g−1(X ik 

Tβ+Zik 
Tbi))). 

 The most common distributions from this family 
are Binomial, Poisson and Normal which are 
associated to logit, log and identity canonical link 
function respectively.  
 The spatial correlation in GLMMs can be accounted 
by modifying the random effect part to include the 
spatial random effects, vi, for area i, i = 1,…,m, in 
Equation (3). Thus the GLMMs with spatial random 
effects are expressed as Equation (5): 
  

T T
ij ij ij i iη = X β + Z b + v  (5) 

 The common way, in disease mapping, is to assign a 
Conditional Autoregressive (CAR) model first 
introduced by Besag (1974) to the spatial random effects 
which are not observed. The CAR model is defined by 
the conditional probability density function, 

v
i -i il l

l¹ii+ i+

1 τ
v | v , l¹i ~ car.normal w v ,

w w

 
 
 

∑ . Since the joint 

distribution of vi is improper, a remedy is to introduce 
a spatial parameter. A suitable constrained, this 
parameter ensures a proper joint distribution for the 
CAR model (Gelfand and Vounatsou, 2003). The 
modified version is so-called a proper CAR model and 

expressed as v
i -i il l

l¹ii+ i+

ρ τ
v | v , l¹i ~ car.proper w v ,

w w

 
 
 

∑ , 

where W is the adjacency matrix with entries wi1 = 1 if 
area i and 1 are neighbors and wi1 = 0 otherwise, with the 
diagonal entries wii  = 0 and i+ il

l

w = w∑ , τv is a 

conditional variance and its magnitude determine the 
amount of spatial variation and ρ is the spatial 
parameter. The most commonly used spatial effects is 
based on some form of a Conditional Autoregressive 
(CAR) structure (Clayton and Kaldor, 1987; Cressie 
and Chan, 1989; Besag et al., 1991; Bernardinelli et al., 
1995; Waller et al., 1997; Pascutto et al., 2000).  
There are several methods including a hierarchical 
Bayesian method used for parameter estimation in 
GLMMs. Moreover, a hierarchical Bayesian method 
has been extensively used for CAR models. Thus, in 
this study, the GLMMs, proper CAR models and 
hierarchical Bayesian method are adopted for 
modeling spatio-temporal data in order to construct 
disease maps.  
 As mentioned earlier, the infectious disease data 
motivated us to investigate the models for the spatio-
temporal data for disease mapping. Dengue fever, an 
infectious disease caused by a family of viruses that are 
transmitted by mosquitoes is chosen to study. It is one of 
major public health problems in Thailand. In 2011, a 
total of 69,800 cases and 63 fatalities were reported 
from all provinces. The morbidity rate was 111.10 per 
100,000 people. The Case Fatality Rate (CFR) was 
0.0903% (MOPH, 2011). The disease maps are needed 
as they are communication tools to the general public 
about which geographic areas and people are at high 
risk for the Dengue fever. 
 In this study, we propose GLMMs with proper CAR 
spatial random effects to analyze Dengue data associated 
with rainfall and temperature in order to construct 
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disease maps. The proposed models are specific cases of 
Equation (1). The random effects are assumed to be 
normally distributed and the spatial random effects are 
assumed to be proper CAR models. The observations are 
assumed to be Poisson distributed. The proposed models 
are applied to Dengue fever data in Northern Thailand. 
 The subsequent sections are as follows. Firstly, for 
materials and methods, GLMMs with proper CAR 
spatial random effects are described and an application to 
Dengue fever data is illustrated. Then the results of data 
analysis are presented. Finally, the discussion and 
conclusion are conducted respectively. 

2. MATERIALS AND METHODS 

 The observed data, Yij, the numbers of patients in 
area i, I = 1,…,m, at time j, j = 1,…,ni, are assumed to be 
Poisson distributed with a natural log link function. The 
proposed models based GLMMs and proper CAR 
models are expressed as Equation (6): 

 
T T

ij ij ij ij i iη = log(µ ) = X β + Z b + v  (6) 

 
 For each area, Equation (6) can be written as ηI = 
β+Zibi+1vi where µ = E(Yi|bi, vi). The sizes of vectors or 
matrices are: ηi (ni×1), Yi (ni×1), Xi (ni×p), β (p×1), Zi 
(ni×q), bi (q×1) and 1 (ni×1). For all areas, Equation (6) 
can be written as η = Xβ+Zb+Sv where µ = E(Y|b,v). 

Let 
m

i
i=1

n = n  ∑ . The sizes of vectors or matrices are: 

η(n×1), Y(n×1), X(n×1), β(p×1), Z(n×mq), b(mq×1), 
S(n×m) and v(m×1). b∼Nn(0,B) where Bn×n = 
diag[D,…,D]. V∼car.propr(µv,τv(Dw-ρW)−1) where DW = 
diag[wi+,…,wm+]. Without loss of generality, V can be 
reparameterized by including a sum to zero constraint on 
vi. Then we get V∼car.proper(0,τv(Dw-ρW)−1). Under a 
hierarchical Bayesian framework, the specification of 
prior distributions, in particular for variance components, 
is required. In the absence of subjective prior 
information, a prior on each βis assumed to be normally 
distributed with zero mean and large variance, uniform 
(0,1) for ρ and inverse Wishart for D. When D is 
univariate, the inverse Wishart reduces to inverse 
gamma. A posterior inference can be easily 
implemented using standard Gibbs sampling Markov 
Chain Monte Carlo (MCMC). 
 For an application, the Dengue data in 2011 
consisted of 68 observations from 17 provinces in 

Northern Thailand (MOPH, 2011). Each province 
contributed 4 quarterly observations over time. Let Yij, j 
= 1,…,4, i = 1,…,17 denote the numbers of Dengue fever 
patients in province i at quarter j. In stead of modeling 
counts, offset variables are used for modeling rates 
which are cases per population sizes. The model can be 
expressed as Equation (7): 

 

ij i 0 1 ij 2 ij i ilog(µ ) = log(pop ) +β +β rain +β temp + b + v  (7) 

 
where, log(popi) are offset variables, popi are the 
numbers of population, rainij are total rainfall, tempij are 
temperature bi are random intercepts capturing 
geographically unstructured heterogeneity among 
provinces and vi are proper CAR spatial random effects 
capturing spatial dependence among provinces. Bayesian 
inference is used to fit the model by assuming a N(0,τb) 
for bi, a proper CAR model for the joint distribution of 
vi, i.e., V∼car.proper(0,τv(Dw-ρW)−1) and a uniform (0,1) 
for ρ. We use independent N(0m,106) priors for all fixed 
effect parameters. τv∼invGamma (0.001,0.001) 
andτb∼invGamma (0.001,0.001) The MCMC Gibbs 
sampling was run via Open BUGS. The MCMC 
convergence is checked by the value of the potential 
scale reduction of Gelman and Rubin (1992) (Rhat) and 
visual examination of trace, autocorrelation, history and 
density plots. The Rhat values substantially closed to 1 
indicate convergence. 

3. RESULTS 

 The estimated regression coefficients and variance 
components are presented in Table 1, from MCMC runs 
of 30,000 iterations after discarding the initial 10,000 
iterations as burn-in. The value of Rhat closed to 1 for 
every parameter in Table 1 indicates that the MCMC is 
converged. The result shows that the morbidity risk or 
Relative Risk (RR) of Dengue fever will be increased 
when the amount of rainfall increases and also will be 
increased when the temperature increases. Since the 
spatial parameter ρ is not closed to zero, there is a spatial 
association among provinces. However, according to τv, 
the variation among areas is quite small. The high risk 
provinces and Quarters (Q) are shown in Table 2.  
 The Dengue fever maps for Q1 to Q4 of the 
provinces in Northern Thailand constructed from the 
posterior mean of the morbidity rates are shown in Fig. 
1-4. It is clearly seen that the highest risk are in Q3. 
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Fig. 1. Dengue fever in Q1 

 

 
 

Fig. 2. Dengue fever in Q2 
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Fig. 3. Dengue fever in Q3 

 

 
 

Fig. 4. Dengue fever in Q4 
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Table 1. Parameter estimate for dengue fever in northern 
Thailand 

Parameter Post Mean 95% CI*** RR** Rhat* 
Intercept -0.8423 (-1.5130, 0.1301) 0.4307 1.0446 
Rain 0.0105 (0.0063, 0.0147) 1.0106 1.0446 
Temperature 0.0783 (0.0663, 0.0902) 1.0814 1.0012 
ρ 0.524 (0.0280, 0.9759) - 1.0010 
τb 0.0041 (0.0001, 1.9716) - 1.0023 
τv 0.0015 (0.0002, 7.0472) - 1.0059 
 
Table 2. Province and Quarter (Q) at high morbidity rate (per 

100,000) 
Province and quarter Post mean of rate 95% CI 
Chiang Mai, Q3 2983 (2885, 3084) 
Chiang Rai, Q3 1192 (1128, 1259) 
Lampang, Q3 550.1 (517.1, 584.5) 
Tak, Q3 505.1 (473.9, 537.1) 
Chiang Mai, Q2 451.2 (425.7, 477.6) 
Phetchabun, Q3 425.9 (395.6, 457.0) 
Lamphun, Q3 405.2 (369.6, 442.2) 
Phayao, Q3 309.1 (377.6, 431.8) 
Mae Hong Son, Q3 309.1 (279.7, 339.8) 
Phitsanulok, Q3 297.6 (271.7, 324.6) 
Lampang, Q2 283.3 (264.1, 303.0) 
Chiang Mai, Q4 281.0 (264.6, 298.1) 
Phayao, Q2 270.9 (251.7, 291.2) 
Tak, Q2 248.9 (231.3, 267.2) 

4. DISCUSSION 

 The proposed models are based on GLMMs and 
proper CAR models. A hierarchical Bayesian method is 
used for parameter estimation. They are different from 
the model of Waller et al. (1997) in the way that the 
proper CAR models are adopted, instead of improper 
CAR models. Moreover, the proposed models allow 
random factors to be included and inverse Wishart would 
be applied for their variance component. The results of 
the analysis confirm that the Dengue fever in Northern 
Thailand were significantly associated with the rain and 
temperature. The Dengue fever maps clearly show which 
areas are at high risk in each quarter. They are valuable 
public health tools to identify the areas where an 
intervention is required for the Dengue fever control.  

5. CONCLUSION 

 The GLMMs with proper CAR spatial random 
effects under a hierarchical Bayesian framework for 
spatio-temporal data are proposed. The proposed models 
are applied to Dengue fever data in Northern Thailand. 
The covariates considered are rain and temperature. The 
Dengue fever maps which are important tools for 

Dengue fever control are produced using the posterior 
mean of the mortality rates. 
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