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ABSTRACT 

In this study we study the new concept of asymptotically lacunary statistical convergent sequences in 
probabilistic normed spaces and prove some basic properties. 
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1. INTRODUCTION 

Marouf (1993) presented definitions for 
asymptotically equivalent sequences and asymptotic 
regular matrices. Patterson (2003), extended those 
concepts by presenting an asymptotically statistical 
equivalent analog of these definitions and natural 
regularity conditions for non-negative sum ability 
matrices. In Patterson and Savas (2006) extended the 
definitions presented in (Patterson, 2003) to lacunary 
sequences. This study extends the definitions 
presented in (Patterson and Savas, 2006) to lacunary 
sequences in probabilistic normed space.  

An interesting and important generalization of the 
notion of metric space was introduced by Menger 
(1942) under the name of statistical metric, which is 
now called probabilistic metric space. The notion of a 
probabilistic metric space corresponds to the 
situations when we do not know exactly the distance 
between two points; we know only probabilities of 
possible values of this distance. The theory of 
probabilistic metric space was developed by numerous 
authors, as it can be realized upon consulting the list 
of references in (Constantin and Istratescu, 1989), as 
well as those in (Schweizer and Sklar, 1960; 1983). 
Probabilistic normed spaces (briefly, PN-spaces) are 
linear spaces in which the norm of each vector is an 
appropriate probability distribution function rather 
than a number. Such spaces were introduced by 
Serstnev (1963). Alsina et al. (1993), gave a new 
definition of PN-spaces which includes Serstnev’s a 

special case and leads naturally to the identification of 
the principle class of PN-spaces, the Menger spaces. 
Important families of probabilistic metric spaces are 
probabilistic normed spaces. The theory of probabilistic 
normed spaces is important as a generalization of 
deterministic results of linear normed space.  

It seems therefore reasonable to think if the concept 
of statistical convergence can be extended to 
probabilistic normed spaces and in that case enquire how 
the basic properties are affected. But basic properties do 
not hold on probabilistic normed spaces. The problem is 
that the triangle functions in such spaces.  

In this study we study the concept of asymptotically 
lacunary statistical convergent sequences on probabilistic 
normed spaces. Since the study of convergence in PN-
spaces is fundamental to probabilistic functional analysis, 
we feel that the concept of symptotically lacunary 
statistical convergent sequences in a PN-space would 
provide a more general framework for the subject.  

1.1. Prelimiaries 

Now we recall some notations and definitions used 
in study. 

Definition 2.1  

Marouf (1993) two non-negative sequences x = (xk) 
and y = (yk) are said to be asymptotically equivalent if: 
 

k

xk
lim = 1, (denoted by x y)

yk
∼  
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Definition 2.2 

Freedmann et al. (1978) let K be a subset of ℕ ; the 
set of natural numbers. Then the asymptotic density of 
K, denoted by  δ (K), is defined as: 
 

{ }
n

1
(k) lim k n : k K

n
δ ≤ ∈  

 
where the vertical bars denote the cardinality of the 
enclosed set. 

Definition 2.3 

Fridy (1988) a number sequence x = (xk) is said to be 
statistically convergent to the number l if for each ε > 0, 
the set K (ε) = {k ≤ n:xk−l≥ε} has asymptotic density 
zero, i.e.: 
 

{ }kn

1
lim k n : x l 0

n
≤ − ≥ ε =  

 
In this case we write st−lim x = l.  
The next definition is natural combination of 

definitions 2.1 and 2.2. 

Definition 2.4 

Patterson (2003) two non-negative sequences x = (xk) 
and y = (yk) are said to be asymptotically statistical 
equivalent of multiple l provided that for every ε > 0: 
 

lk

n
k

1 x
lim k n : l 0,(denoted byxS y)

n y

  ≤ − ≥ ε = 
   ɶ

 

 
and simply asymptotically statistical equivalent if l = 
1. Let S denote all sequences x = (xk) and y = (yk) 
such that lxS y

ɶ
. 

By a lacunary sequence θ = (kr) r = 0, 1, 2,.., where ko 
= 0; we shall mean an increasing sequence of non-
negative integers with hr = kr −kr−1→∞ as r→∞. The 
intervals determined by θ will be denoted by Ir = (kr−1, 

kr] and the ratio r

r 1

k

k −

will be denoted by qr. 

Definition 2.5 

Patterson and Savas (2006) let θ = (kr) be a lacunary 
sequence, the two non-negative sequences x = (xk) and y 
= (yk) are said to be asymptotically lacunary statistical 
equivalent of multiple l provided that ε>0: 

l
rr

r

1 xk
lim k I : l 0,(denoted byxS y)

h yk θ

  ∈ − ≥ ε = 
   ɶ

 

 
and simply asymptotically lacunary statistical equivalent 
if l = 1. Let Sθ denote all sequences x = (xk) and y = (yk) 
such that lxS yθ

ɶ
. 

For the following concepts, we refer to Menger 
(1942) and Schweizer and Sklar (1960; 1983). 

Definition 2.6 

Menger (1942) a function of : +→ℝ ℝ  is called a 

distribution function if it is non-decreasing and left 
continuous with tinf f (t) 0∈ =

ℝ
 and tsup∈ℝ  f(t) = 1. We 

will denote the set of all distribution functions by D. 

Definition 2.7 

Menger (1942) a triangular norm, briefly t-norm, is a 
binary operation on [0, 1] which is continuous, 
commutative, associative, non-decreasing and has 1 as. 

Identity element, that is, it is the continuous mapping  
∗ : [0, 1]×[0, 1] → [0, 1] such that for all a, b, c ∈ [0, 1]: 

• a > 1 = a 
• a > b = b >a 
• c > d ≥ a >b if c ≥ a and d ≥ b  
• (a > b) > c = a > (b > c) 

Example 2.1 

The > operations a > b = max {a + b − 1, 0}, a > b = 
a.b and a > b = min {a, b} on [0, 1] are t-norms. 

Definition 2.8 

Schweizer and Sklar (1960; 1983) a triple (X, N, >) is 
called a probabilistic normed space or shortly PN-space 
if X is a real vector space, N is a mapping from X into D 
(for x∈X, the distribution function N(x) is denoted by Nx 
and Nx (t) is the value of Nx at t ∈ℝ ) and > is a t-norm 
satisfying the following conditions: 

• (PN-1) Nx (0) = 0 
• (PN-2) Nx (t) = 1 for all t > 0 if and only if x = 0 

• (PN-3)Nax (t) = Nx
t 

  α 

for all α∈R/{0} 

• (PN-4) Nx + y (s + t) ≥ Nx (s) > Ny (t) for all x, y ∈ X 
and s, t ∈ o

+
ℝ  

Example 2.2  

 Suppose that (X, ||.||) is a normed space  µ ∈ D with 
µ(0) = 0 and µ ≠ h, where: 
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0, t 0
h(t)

1, t 0

≤
=  >

 

 
Define: 
 

x

h (x ), x 0

N ( t) t
, x 0

x

=


 = µ ≠   
 

 

 
where, x ∈ X, t ∈ℝ . Then (X, N, >) is a PN-space. For 
example if we define the functions µ and ν on ℝ  by: 
 

0 x, 0 0,x 0
(x) , (x)x 1

,x 0 e ,x 0
1 x x

≤ ≤ 
 µ = ν − > > + 

 

 
Then we obtain the following well-known > norms: 

 

x x

h(t), x 0h(t), x 0

tN (x) , M (t)
, x 0 e , x 0

t x t

==
= =  − ∞ ≠ ≠  +  

 

 
We recall the concepts of convergence and Cauchy 

sequences in a probabilistic normed space. 

Definition 2.9 

Asadollah and Nourouzi (2008) let (X, N, >) is a PN-
space. Then a sequence x = (xk) is said to be convergent 
to l∈X with respect to the probabilistic norm N if, for 
every ε > 0 and θ ∈ (0, 1), there exists a positive integer 
ko such that Nxk−l (ε) > 1 − θ whenever k ≥ ko. It is 
denoted by N − lim x = L or N

kx L→ as k→∞. 

Definition 2.10 

Asadollah and Nourouzi (2008) let (X, N, >) is a PN-
space. Then a sequence x = (xk) is called a Cauchy 
sequence with respect to the probabilistic norm N if, for 
every ε>0 and θ∈(0, 1), there exists a positive integer ko 
such that Nxk−xl (ε) > 1−θ for all k, l ≥ ko. 

Definition 2.11 

Asadollah and Nourouzi (2008) let (X, N, >) is a PN-
space. Then a sequence x = (xk) is said to be bounded in 
X, if there is a r ∈ℝ  such that Nxk (r) > 1−θ, where θ ∈ 
(0, 1). We denote by Nl∞  the space of all bounded 
sequences in PN space. 

1.2. Asymptotically Lacunary Convergence on 
PN-Spaces 

The idea of statistical convergence was first 
introduced by Steinhaus (1951) and then studied by 

various authors, e.g., (Salat, 1980; Fridy, 1988; Connor, 
1988; Esi, 1996) and many others and in normed space 
by Kolk (1988). Recently Karakus (2007) has studied the 
concept of statistical convergence in probabilistic 
normed spaces. 

Definition 3.1 

Karakus (2007) let (X, N, >) is a PN-space. Then a 
sequence x = (xk) is said to be statistically convergent to 
l ∈ X with respect to the probabilistic norm N provided 
that for every ε > 0 and γ ∈ (0, 1): 
 

{ }( )xk lk : N ( ) 1 0−δ ∈ ε ≤ − γ =ℕ  
 

Or equivalently: 
 

{ }
n xk 1

1
lim k n : N ( ) 1 0

n −≤ ε ≤ − γ =  

 
In this case we write stN − lim x = l. We are now 

ready to obtain our main results. 

Definition 3.2  

Let (X, N, >) is a PN-space and θ = (kr) be a lacunary 
sequence. The two non-negative sequences x = (xk) and y 
= (yk) are said to be asymptotically lacunary statistical 
equivalent of multiple l in PN-space X if for every ε > 0 
and  γ∈ (0, 1) Equation 1: 
 

r k
l

yk

k I : N ( ) 1 0θ ∞ −

   
 δ ∈ ε ≤ − γ =     

 (1) 

 
Or equivalently: 

 

r
r

r
k

l
yk

1
lim k I : N ( ) 1 0

h ∞ −

  ∈ ε ≤ − γ = 
  

 

 
In this case we write xlS (PN)θ

ɶ
 y and simply 

asymptotically lacunary statistical equivalent if l = 1. 
Furthermore, let lS (PN)θ

ɶ
denote the set of all sequences x 

= (xk) and y = (yk) such that x lS (PN)θ
ɶ

 y. 

By using (3.1) and well-known density properties, we 
easily get the following lemma.  

Lemma 3.1 

Let (X, N, >) is a PN-space. Then, for every ε > 0 and  
2 (0, 1), the following statements are equivalent: 
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• r r
r

k
l

yk

1
lim k I : N ( ) 1 0

h ∞ −

  ∈ ε ≤ − γ = 
  

 

• r k
l

yk

k I : N ( ) 1 0θ ∞ −

   
 δ ∈ ε ≤ − γ =     

 

• r k
l

yk

k I : N ( ) 1 1θ ∞ −

   
 δ ∈ ε > − γ =     

 

• r r
r

k
l

yk

1
lim k I : N ( ) 1 1

h ∞ −

  ∈ ε > − γ = 
  

 

 
Theorem 3.2  

Let (X, N, >) is a PN-space. If two sequences x = (xk) 
and y = (yk) are asymptotically lacunary statistical 
equivalent of multiple l with respect to the probabilistic 
norm N, then l is unique. 

Proof 

Assume that x 1lS (PN)θ
ɶ

y and x 2lS (PN)θ
ɶ

y, (l1 6≠ l2). For 

a given  λ > 0 choose γ∈ (0, 1) such that (1−γ ) > (1−γ) > 
1−λ. Then, for any ε>0, define the following sets: 
 

1 r k
l1yk

K k I : N ( ) 1∞

  = ∈ ε ≤ − γ 
  

 

 
And: 
 

1 r k
l2yk

K k I : N ( ) 1∞

  = ∈ ε ≤ − γ 
  

 

 
 Then, clearly: 
 

1 2

r
r

K K
lim 1

h
=

∩
 

 

So K1 ∩ K2 is non-empty set. Since xl1S (PN)θ
ɶ

y,  δθ 

(K1) = 0 and x l2S (PN)θ
ɶ

y, δθ (K2) = 0 for all ε > 0. Now let 

K = K1∩K2. Then we observe that δθ (K) = 0 which 
implies δθ (ℕ − K) = 1. If k∈ ℕ − K; then we have: 
 

k k1 l l l l2 1 2 1yk yk

k
l2yk

Nl ( ) N ( ) N

N (1 ) (1 ) 1
2 2

∞ ∞− − − −

∞ −

ε = ε ≥

ε ε   > > − γ > − γ ≥ − λ   
   

 

Since λ > 0 was arbitrary, we get 
l l1 2

N − (ε) = 1 for all 

ε>0, which gives l1 = l2.This completes the proof. 

Theorem 3.3  

Let (X, N, >) is a PN-space. For any lacunary 
sequence θ = (kr), Sθ (PN)  ⊂ S if lim supr qr < ∞. 

Proof 

If lim supr qr < ∞ then there exists a B > 0 such that qr 

< B for all r ≥ 1. Let x l1S (PN)θ
ɶ

y and ε > 0. We are going 

to prove x lS
ɶ

y. Set: 
 

r r k
l

yk

K k I : N ( ) 1∞ −

 
= ∈ ε > − γ 
 
 

 

 
Then, by definition, for given ε > 0, there exists 

ro∈ℕ such that: 
 

r
o

r

K
for all r r

h 2B

ε< ≥  

 
Let M = max {Kr:  1 ≤ r ≤ ro} and let n be any integer 

with kr−1 < n ≤ kr.  
Then: 

 

{ }

r
r 1

1 2 ro r
r 1

o r o
r 1 r 1

k
l

yk

k
l

yk

1
k n : N ( ) 1

n

1
k k : N ( ) 1

k

1
K K ... K ... K

k

M M
r q r

k 2B k 2

−

−

− −

∞ −

∞ −

  ≤ ε > − γ 
  

  ≤ ≤ ε > − γ 
  

= + + + + +

ε ε≤ + ≤ +

 

 
and the result follows immediately. 

Theorem 3.4 

Let (X, N, >) is a PN-space. For any lacunary 
sequence θ = (kr), S ⊂ Sθ (PN) if lim infr qr > 1. 

Proof 

If lim inf r qr>1, then there exists a β>0 such that qr>1 
+β for sufficiently large r, which implies: 
 

r

r

h

k 1

β≥
+ β
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Let x lS
ɶ

y, then for every ε > 0 and for sufficiently 

large r, we have: 
 

r
r

r
r

r
r

k
l

yk

k
l

yk

k
l

yk

1
k k : N ( ) 1

k

1
k I : N ( ) 1

k

1
k I : N ( ) 1

1 h

∞ −

∞ −

∞ −

  ≤ ε > − γ 
  

  ≥ ∈ ε > − γ 
  

 β  ≥ ∈ ε > − γ + β   

 

 
Therefore x lS (PN)θ

ɶ
y. This completes the proof. 

Corollary 3.5 

Let (X, N, >) is a PN-space. For any lacunary 
sequence θ = (kr) with 1 < lim infr qr ≤ lim supr qr < ∞, 
then S = Sθ (PN). 

Proof 

The result clearly follows from Theorem 3.3 and 3.4. 

2. CONCLUSION 

The idea of probabilistic norm is very useful to deal 
with the convergence problems of sequences of real 
numbers. The main purpose of this study is to more 
generalize the results on statistical convergence proved 
by Karakus (2007). We have introduced a wider class of 
asymptotically lacunary statistically convergent 
sequences in a PN-space to deal with the sequences 
which are not covered in (Karakus, 2007). 
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