
Journal of Mathematics and Statistics, 9 (1): 65-71, 2013 
ISSN 1549-3644 
© 2013 Science Publications 
doi:10.3844/jmssp.2013.65.71 Published Online 9 (1) 2013 (http://www.thescipub.com/jmss.toc) 

 
65 Science Publications

 
JMSS 

FORECASTING THE FINANCIAL RETURNS 
FOR USING MULTIPLE REGRESSION 

BASED ON PRINCIPAL COMPONENT ANALYSIS 

Nop Sopipan 

 
Program of Mathematics and Applied Statistics, Faculty of Science and Technology,

 

Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand 

 
Received 2012-08-30, Revised 2013-01-11; Accepted 2013-04-17 

ABSTRACT 

The aim of this study was to forecast the returns for the Stock Exchange of Thailand (SET) Index by adding 
some explanatory variables and stationary Autoregressive order p (AR (p)) in the mean equation of returns. 
In addition, we used Principal Component Analysis (PCA) to remove possible complications caused by 
multicollinearity. Results showed that the multiple regressions based on PCA, has the best performance. 
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1. INTRODUCTION 

 In order to forecast the return rt for specific purposes, 
many researchers have made different assumptions for µt as 
appears in Equation (2). Kyimaz and Berument (2001) 
assume µt to be a regression model with a one-week delay; 
Supoj (2003) assumes µt to be an autoregressive 
process; Ozturk (2008) assumes µt to be a constant 
and Sattayatham et al. (2012) assume µt to be an ARMA 
process with a one-week delay.  
 The financial returns rt ( t t t -1r = 100× ln(P / P )for t = 
1,2,…,T-1, Pt denoting the financial price at time t 
depend concurrently and dynamically on many economic 
and financial variables. Since the returns have a 
statistically significant autocorrelation themselves, 
lagged returns might be useful in predicting future 
returns.  In order to model these financial returns ssumes 
that rt follows a simple time series model such as a 
stationary AR (p) model with some explanatory variables 
X it. In other words, rt satisfies the following Equation 1: 
 

t t t

pn

t 0 i it j t - j
i=1 j=1

r = µ + ε , 

ε = µ + α X + β r ,∑ ∑
 (1) 

Where Equation 2: 
 

it
it

i( t 1)

P
X 100 ln( )

P −

= ⋅  (2) 

 
 Here Pit denotes the financial price asset i for i = 
1,2,…,n at time t, rt-j, j = 1,2,….,p

 
is the returns at lag j-th, εt 

represents errors assumed to be a white noise series with an 
i.i.d. mean of zero and a constant variance 2

εσ , µ0,αi and βj
 

are constants and n, p are positive integers. 
 Note that the variance of errors εt in the model (2) is 
assumed to be a constant; some authors use this 
assumption in the modeling of ground-level ozone 
(Agirre-Basurko et al., 2006; Pires et al., 2008).  
 The objective of this study is to forecast returns 
for the SET Index by using model (1). We vary the 
process µt using four different types and compare the 
performance of the different types.  
 In the next section, we present the basics of 
principal component analysis to remove possible 
complications caused by the multicollinearity of 
explanatory variables.  The empirical study and 
methodology is discussed in section 3.  Forecasting the 
returns is described in section 4 and the conclusions are 
presented in section 5. 
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2. PRINCIPAL COMPONENT ANALYSIS 

 An important topic in multivariate time series 
analysis is the study of the covariance (or correlation) 
structure of the series. For example, the covariance 
structure of a vector return series plays an important role 
in portfolio selection. In what follows, we discuss some 
statistical methods useful in studying the covariance 
structure of a vector time series. 

Given a m-dimensional random variable 

t 1t 2t nt t-1 t-pR = (X ,X ,...,X ,r ,...,r )' with covariance matrix R∑ , 

a Principal Component Analysis (PCA) is concerned with 
using a few linear combinations of Rt to explain the 
structure of ΣR. If Rf denotes the monthly log returns of m 
assets, then PCA can be used to study the source of 
variations of these m asset returns. Here the keyword is few so 
that simplification can be achieved in multivariate analysis. 
 PCA applies to either the covariance matrix ΣR 

R∑  or the correlation matrix (ρR) of Rf. Since the 

correlation matrix is the covariance matrix of the 
standardized random vector* -1

t tR = S R , where S is the 

diagonal matrix of standard deviations of the 
components of Rt, we use covariance matrix in our 

theoretical discussion. Let 
 
δ

i
= (δ

i1
,...,δ

im
) ' be a m-

dimensional vector, where I = l,…m.  

 Then 
 
Z

it
= δ

i
' R = δ

ij
j=1

m

∑ R
jt  is a linear combination of 

the random vector Rt. If Rt consists of the simple returns 
of m stocks, then Zit is the return of a portfolio that 
assigns weight δij to the jth stock. Since multiplying a 
constant to δi does not affect the proportion of allocation 
assigned to the jth stock, we standardize the vector δi so 

that
m

' 2
i i ij

j=1

δ δ = δ =1∑ . Using properties of a linear 

combination of random variables, we have 

 
Var(Zit ) = δ i

' ΣRδi ,   
Cov(Z

it
,Z

jt
) = δ

i
'
∑

R
δ

j
, for i,j = 

1,2,…,m. 
 The idea of PCA is to find linear combinations δi such 
that Zit and Zjt are uncorrelated for i≠j and the variances of 
Zit are as large as possible. More specifically: 
 
• The first principal component of Rt is the linear 

combination 
 
Z1t = δ1

' Rt  that maximizes 1tVar(Z )  

subject to the constraint'1 1δ δ = 1 . 

• The second principal component of R is the linear 
combination '

2t 2 tZ = δ R  that maximizes 2tVar(Z )  

subject to the constraints '
2 2δ δ =1  and 

 
Cov(Z1t ,Z2t ) = 0. 

• The ith principal component of R is the linear 

combination 
 
Zit =δ i

'Rt  that maximizes itVar(Z )  

subject to the constraints 'i i it jtδ δ = 1  and  Cov(Z ,Z ) = 0 

for  j =1,...,i -1 
 
 Since the covariance matrix ΣR is non-negative 
definite, it has a spectral decomposition. Let 

1 1 m m(λ ,e ),...,(λ ,e )  be the eigenvalue-eigenvector pairs of 

ΣR, where 1 2 mλ ³ λ ³ ... ³λ ³ 0 . We have the following 

statistical result as follow: The ith principal component 

of r is 
 
Z

it
= e

i
' R

t
= e

ij
j=1

m

∑ R
jt  for i = l,…,m Moreover: 

 
'

it i R i i

'
it jt i R i

Var(Z ) = e e = ,   i =1,...,m,  

Cov(Z ,Z ) = e e = 0,  i j

∑

∑ ≠

λ
 

 
 If some eigenvalues λi are equal, the choices of the 
corresponding eigenvectors ei and hence Zit are not 
unique. In addition, we have 

 
Var(R

it
)

i=1

m

∑ = tr(∑
R

) = λ
i

i=1

m

∑ = Var(Z
it
)

i=1

m

∑ . 

 The result says that: 
 

it i
m

1 miti=1

Var(Z ) λ
=
λ + ... +λVar(Z )∑

 

 
 Consequently, the proportion of total variance in Rt 
explained by the ith principal component is simply the 
ratio between the ith eigenvalue and the sum of all 
eigenvalues of ΣR. One can also compute the cumulative 
proportion of total variance explained by the first i 

principal components (i.e.,
 

λ
jj=1

i

∑ / λ
jj=1

m

∑ ). In practice, 

one selects a small i such that the prior cumulative 
proportion is large. 
 In order to cope with the problem of 
multicollinearity, we transform the explanatory variables 
in model (1) into the principal components. Then the 
new model for forecasting rt is Equation 3: 
 

m

t 0 i it t
i=1

r = µ + α Z + ε ,∑  (3)  

 
where, Zit , i = 1,2,…,m are i-th principal components of 
explanatory variables at time t. 
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 We follow Tsay (2005) by assuming that the asset 
return series rt is a weekly stationary process. 

3. EMPIRICAL STUDIES AND 
METHODOLOGY 

 Naturally, the Thai stock market has unique 
characteristics, so the factors influencing the price of 
stocks traded in this market are different from the 
factors influencing other stock markets (Chaigusin et al., 
2008). Examples of factors that influence the Thai 
stock market and the statistics used by researchers 
who have studied these factors in forecasting the SET 
Index are shown in Table 1. 

3.1. Data 

 The data sets used in this study are the daily return 
closing prices for the SET Index at time t (dependent 
variables) and the daily return closing prices for twelve 
factors (explanatory independent variables). 
These twelve factors are the following: 
 
• The Dow Jones Index at time t-1 (DJIA) 
• The Financial Times 100 Index at time t-1 (FSTE) 
• The S&P 500 Index at time t-1 (SP) 
• The Nikkei225 Index at time t (NIX) 
• The Hang Seng Index at time t (HSKI) 
• The Singapore Straits Times Industrial Index at time 

t (SES009) 
• The Taiwan Stock Weighted Index at time t (TWII) 
• The South Korea Stock Exchange Index at time t 

(KOSPI) 
• The Oil Price in the New York Mercantile Exchange 

at time t (OIL) 

• The Gold Price in the New York Mercantile 
Exchange at time t (GOLD) 

• The Currency Exchange Rate in Thai Baht for one 
US dollar at time t (THB/USD) 

• The Currency Exchange Rate in Thai Baht for one 
Hong Kong dollar at time t (THB/HKD) 

 
 The actual closing prices for these twelve factors 
were obtained from http://www.efinancethai.com. We 
used data sets from April 5, 2000, to July 5, 2012. We 
divided these data into two disjoint sets. The first set, 
from April 5, 2000, to December 30, 2011, was used as a 
sample (2,873 observations). The second set, from 
January 3, 2012, to July 5, 2012, was used as out-of-
sample (125 observations). The plot for the SET Index 
closing prices and returns is given in Fig. 1. 
 Descriptive statistics and the correlations matrix are 
given in Table 2 and 3. As can be seen from Table 3, 
there are highly significant correlations (p<0.01) 
between the dependent variables and the explanatory 
variables. Therefore, these explanatory variables were 
used to predict the SET Index. Also, there are highly 
significant correlations (p<0.01) among the explanatory 
variables. From Table 4 there are significant correlations 
between SET and lagged returns of the SET with first 
and second laggs. These correlations provide a measure 
for the linear relations between two variables and also 
indicate the existence of multicollinearity between the 
explanatory variables. However, multiple regression 
analysis based on this dataset also shows that there was a 
multicollinearity problem with the variance inflation factor 
(VIF> = 5.0) as shown in Table 2. One approach to avoid 
this problem is PCA. Hence, we used twelve explanatory 
variables to find the principal components and overall 
descriptive statistics for selected Principal Components 
(PCs), as shown in Table 5 and 6, respectively. 

 
Table 1. Impact factors on the Stock Exchange of Thailand Index (SET Index) 
Factors Researchers 
 -------------------------------------------------------------------------- 
 1 2 3 4 5 6 7 8 
The Nasdaq Index    X 
The Down Jones Index X X X X X X X X 
The S&P 500 Index    X 
The Nikkei Index X X X  X  X X 
The Hang Seng Index X X X  X  X X 
The Straits Times Industrial Index X X X 
The Currency Exchange Rate in Thai Baht to one US dollar  X X   X X 
The Currency Exchange Rate in Thai Baht to 100 Japan Yen  X X 
The Currency Exchange Rate in Thai Baht to one Hong Kong dollar   X 
The Currency Exchange Rate in Thai Baht to one Singapore dollar   X 
Gold Prices  X   X  X 
Oil Prices  X X   X 
Minimum Loan Rates  X   X X X X 
*X is selected in multiple regression 
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Fig. 1. Graph of the SET Index (a) and returns of the SET Index (b) 
 
3.2. Results of Principal Component Analysis 

 Bartlett’s sphericity test for testing the null 
hypothesis where the correlation matrix is an identity 
matrix was used to verify the applicability of PCA. 
The value of Bartlett’s sphericity test for the SET 
Index was 18,167.07, which implies that the PCA is 

applicable to our datasets (Table 2). Moreover, 
Kaiser’s measure of sampling adequacy was also 
computed as 0.788, which indicates that the sample 
sizes were sufficient for us to apply the PCA. The 
results for PCA (Table 5) indicate that there are 
twelve Principal Components (PCs) for multiple 
regression analysis. 
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Table 2. Descriptive statistics of the SET Index and explanatory variables 
Variables Mean Std. Deviation Skewness Kurtosis Correlation with SET close VIF 
SET 0.0373 1.4644 -0.690 9.194 1.000  
DJIA  0.0047 1.2792 -0.017 7.626 0.219** 14.5810 
FSTE  -0.0043 1.3280 -0.169 5.718 0.166** 1.5270 
SP -0.0031 1.3647 -0.128 7.764 0.239** 15.1970 
NIX -0.0273 1.5986 -0.499 7.609 0.369** 2.0100 
HSKI 0.0053 1.6593 -0.067 8.960 0.495** 2.4050 
SES900 0.0122 1.3011 -0.337 7.674 0.507** 2.1500 
TWII -0.0096 1.5716 -0.202 3.348 0.351** 1.6180 
KOSPI 0.0272 1.7733 -0.867 9.737 0.410** 2.1520 
OIL 0.0413 2.5662 0.087 7.578 0.119** 1.0570 
GOLD 0.0581 1.1831 0.137 6.383 0.077** 1.0680 
THB/USD -0.0063 0.4258 0.511 20.223 -0.152** 2.1970 
THB/HKD -0.0059 0.5304 0.570 32.596 -0.107** 2.1750 
Jarque-Bera Normality test in SETclose 10741.72**  
Augmented Dickey-Fuller test in SETclose   -52.76**  
Kaiser-Meyer-Olkin Measure of Sampling Adequacy   0.79  
Bartlett's sphericity test    Approx. Chi-Square 18167.07342 
     df 66 
     Sig. 0 
**Significant at the 0.01 level (2-tailed) 

 
Table 3. Correlation matrix of the SET Index and explanatory variables 

Correlations SET DJIA FSTE SP NIX HSKI SES900 TWII KOSPI OIL GOLD THB/USD THB/HKD 
SET 1.00 
DJIA 0.22** 1.00 
FSTE 0.17** 0.55** 1.00 
SP 0.24** 0.96** 0.56** 1.00 
NIX 0.37** 0.45** 0.39** 0.47** 1.00 
HSKI 0.50** 0.37** 0.29** 0.40** 0.59** 1.00 
SES900 0.51** 0.33** 0.20** 0.35** 0.53** 0.70** 1.00 
TWII 0.35** 0.30** 0.23** 0.32** 0.45** 0.49** 0.47** 1.00 
KOSPI 0.41** 0.31** 0.26** 0.34** 0.59** 0.61** 0.57** 0.57** 1.00 
OIL 0.12** 0.01 -0.01 0.01 0.06** 0.10** 0.11** 0.06** 0.06** 1.00 
GOLD 0.08** 0.04* 0.03 0.05** 0.07** 0.09** 0.07** 0.02 0.07** 0.20** 1.00 
THB/USD -0.15** -0.07** -0.05** -0.08** -0.08** -0.12** -0.12** -0.10** -0.13** -0.04* -0.13** 1.00 
THB/HKD -0.11** 0.00 -0.01 -0.02 0.00 -0.07** -0.10** -0.11** -0.08** -0.12** -0.02 -0.10** 1.00 
**Correlation significant at the 0.01 level (2-tailed) 

 
Table 4. Correlation matrix of the SET Index and lagged returns of the SET 

Correlations SET SETt-1 SETt-2 SETt-3 SETt-4 

SET 1.00 
SETt-1 0.036* 1.00 
SETt-2 0.073** 0.036* 1.00 
SETt-3 0.007 0.073** 0.036* 1.00 
SETt-4 -0.018 0.007 0.073** 0.036* 1.00 
*,**Correlation significant at the 0.05, 0.01 level (2-tailed) respectively. 

 

4. FORECASTING THE RETURNS THE 
SET INDEX BY MEAN EQUATIONS 

 In this section, we forecast the returns for the SET 
Index (rt := µt + εt) using three mean equations (µt): 
constant, AR (2) and multiple regression based on 
PCA. Afterwards, we compare error using two loss 
functions, i.e. Mean Square Error (MSE) and Mean 

Absolute Error (MAE). The parameters for mean 
equations for forecasting the SET Index and the value 
of loss functions are shown in Table 6. We found that 
the mean equation ARMA (1,1) that includes multiple 
regression based on PCAs (Table 6) has the best 
performance (MSE = 0.8886, MAE = 0.7463). So, we 
use this mean equation for forecasting the returns for 
the SET Index. 
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Table 5. Descriptive statistics of selected PCs 

 Initial Eigenvalues         

 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ 

PC Total % of Var Sum DJIA FSTE SP NIX HSKI SES900 

1 4.285 30.606 30.606 0.171 0.134 0.176 0.181 0.181 0.170 

2 1.743 12.449 43.055 0.141 0.122 0.136 0.045 -0.014 -0.033 

3 1.487 10.625 53.680 -0.365 -0.307 -0.353 0.104 0.223 0.254 

4 1.169 8.350 62.030 0.066 0.051 0.066 -0.036 -0.037 -0.046 

5 1.001 7.149 69.180 -0.047 -0.015 -0.053 -0.053 -0.023 -0.012 

6 0.954 6.812 75.992 -0.040 -0.028 -0.030 0.002 -0.007 0.056 

7 0.789 5.633 81.624 -0.076 0.012 -0.062 0.087 0.051 -0.015 

8 0.606 4.331 85.956 -0.240 0.606 -0.242 0.031 -0.379 -0.596 

9 0.570 4.070 90.026 0.407 -0.794 0.376 -0.446 -0.261 -0.056 

10 0.448 3.198 93.225 -0.114 0.590 -0.122 -1.019 0.437 0.571 

11 0.353 2.521 95.745 -0.117 -0.038 -0.109 0.842 -0.089 0.261 

12 0.298 2.127 97.872 -0.025 0.222 -0.051 0.031 -1.358 1.125 

13 0.263 1.882 99.754 -0.008 -0.047 -0.007 -0.014 0.253 -0.186 

14 0.035 0.246 100.000 3.762 0.021 -3.848 0.079 0.085 0.003 

 Weight for the PCs 
 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
PC TWII KOSPI OIL GOLD TH/US TH/HK RT1 RT2 
1 0.153 0.173 0.025 0.028 -0.053 -0.050 0.023 0.029 
2 -0.004 -0.032 -0.092 -0.163 0.490 0.484 -0.080 0.009 
3 0.217 0.250 0.144 0.027 0.158 0.179 -0.076 0.039 
4 -0.120 -0.095 0.602 0.573 0.129 0.156 0.249 0.146 
5 0.040 0.029 -0.188 -0.219 -0.007 0.011 0.541 0.782 
6 0.018 0.091 -0.049 -0.137 0.070 0.054 0.796 -0.609 
7 -0.063 0.081 -0.781 0.782 0.067 0.090 0.055 -0.009 
8 0.759 0.275 0.079 0.072 -0.017 0.010 -0.018 -0.035 
9 0.723 -0.012 -0.063 0.139 0.004 0.043 -0.001 -0.016 
10 0.319 -0.432 -0.072 0.060 0.001 0.044 -0.012 -0.043 
11 0.558 -1.301 -0.051 0.024 -0.058 0.004 0.099 -0.012 
12 -0.096 0.281 -0.012 0.060 0.229 -0.209 -0.077 0.046 
13 0.090 -0.086 0.010 0.044 1.360 -1.351 0.024 0.030 
14 -0.021 0.022 -0.011 0.032 -0.009 0.002 0.021 -0.037 
 
Table 6. Mean equations for returns of the SET Index and loss functions 
Model Mean Equation MSE MAE 

1. Constant mean. t t tµ = E[r ], µ = 0.0373 0.8914 0.7576 

2. AR (2) t 0 1 t-1 2 t-2 t t-1 t-2µ = µ +α r +α r ,µ = 0.34r + 0.72r . 0.8900 0.7570 

3. Multiple regressions based on PCA. 
n

t 0 i it
i=1

µ = µ + β Z∑  

 t 1t 2t 3t 8t 10t 13tµ = 0.718Z -0.132Z + 0.319Z -0.14Z + 0.141Z - 0.063Z  0.8886 0.7463 

 

5. CONCLUSION 

 We considered the problem of forecasting returns 
for the SET Index by using a stationary Autoregressive  
order p (AR (p)) with some explanatory variables. After 
considering four types of mean equations, we 
transformed AR and explanatory variables to PC. We 
found that multiple regressions based on PCA, has the 
best performance(MSE = 0.8886, MAE = 0.7463). 
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