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ABSTRACT

This study investigates the ruin probability ofemewal risk model with constant interest rate apdlaim
parts. We assume that the claim size and the antesal time satisfy a certain dependent structuith
some additional assumptions on their distributiemctions. In particular, we study the asymptotibdaor
of P(R'; (t, x) >x), which holds uniformly in a finite interkan this way, we significantly extend the Li’s
result regarding the pairwise strong quasi-asyngathy independent random variables.

Keywords: Renewal Risk Model, Subexponential Distribution, ifdrm Asymptotic, Pairwise Strong
Quasi-Asymptotically

1.INTRODUCTION and infinite ruin probabilities of a continuous #misk
model. Corresponding results can also be found in
Risk theory plays an important role in financial (Chen and Ng, 2007; Wang, 2008; &i al., 2009;
mathematics and actuarial science. It has beeiestily  Yang and Wang, 2010) and some others.
many domestic and foreign scholars. A variety ekri Consider renewal risk model with the total capital
models with many special features also have beerreserve up to timg denoted byRs(t, X) as expressed by
investigated by many papers in the literature. Theythe following equilibrium Equation 1.1:
provide us different perspectives to understandrigie
model and related theories. About a century ago, Rs(t, x) = xe®
Lundberg (1903) laid the foundation of actuariadkri t'
model in his Uppsala thesis. Waters and +[ ¢ot-9¢ ds—zw xke‘f(t"*'x)Jmst} (1.1)
Papatriandafylou (1983) introduced delay in claims *0 k=L
settlgments in a discrete-tim_e risk model and t_lplpli _z:’_lzked(t-%-Tk)JerTkst}
martingale techniques to derive upper bounds fam ru B
probabilities. In addition, Yuest al. (2005) applied the
probability-generating  functions to obtain  ruin where, x denotes the initial capital of the insurance
probabilities for the compound binomial model with company,d>0 is the constant interest rate ands the
discrete delay time for by-claim. In addition, Tang constant gross premium raie" denotes the total capital
(2005) investigated a simple asymptotic formulatiee  after timet.
ruin probability of the renewal risk model with ctant We have already known the general formula of the
interest force and regularly varying tailed claims, cOmpound-interest:
Recently, Wenget al. (2012) was interested in the tail
probability of the Poisson shot noise process and P:X(1+j)mt
established some asymptotic formulas for the finite m
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P is the amount of money accumulated afftgears x e In our risk model, there are two parts of mutually
is the principal amountt is the number of years the independent claims, namely main claims and by-
amount is deposited or borrowed forjs the number of claims Equation 1.3:
times the interest is compounded per year ansl the
annual rate of interest. Then we start the compiognd x ) St

L = )
more and more, the frequency of compounding include Rs(t x) Zkzlxke kas

yearly, half-yearly, quarterly, monthly, daily, ewvef t S(t-a-T) (1.3)
goes to infinity and then we derive that: * kzlzke Yaomest
P=xlim,, (1+E)mt = xet We referZ, as by-claims or delayed claims in the
— 00 m

renewal risk model. They are identically distrilmigith
_ ) S common distributiorF. They are usually induced by the
In this renewal risk model, the deterministic linea main claim with some probability and the occurrenée
function ct denotes the total _amount of premiums 4 by-claim may be delayed depending on associated
accumulated up to time 0. Then  main claims amount. If the main claim occurs atdhe
) =Ite5(“s)c ds=£(e5t _1) denotes total capital then the bytclaim occurs at thetw,. LetTk_, k>1, be the
0 J corresponding delay times of the by-claim and they
generated by the premiums by the titr@. identically distributed with common distributionrfction
Consider the risk model in which the claim sized an G and form a sequence random variables, which are
the arrival times of successive claims fulfil the nonnegative, but possibly generated at 0. In thigys
following requirements: we assume that theX{, Z,; n>1} and {T, n>1} are
mutually independent.
» The claims sizesX,, k>1 constitute a sequence of The claims can produce the dependent influence on
not necessarily independent and nonnegativeeach other and some additional damages and casts, s

random variables with common distribution H: as a tornado, hurricane and heavy rain-storm ammhso
We define them as by-claim model. Hence, our rehewa
H(X) =1-H (x)=P{= % >0 for allx>0 model with by-claim parts can better reflect thethr

The ultimate ruin probability in the infinite timis
 The arrival times of successive claims are: defined as Equation 1.4:

n
= Y,k=1. The inter-arrival time Y,; k>1
“k Zk:l k ! lval time Y } ®(x) =P(R5(x, s)< 0,for some=> @ (1.4)
form a sequence of random variables with

common distribution functionV, but are not And the ruin probability in the finite time intervid,
necessarily independent. The arrival times of {] js given by Equation 1.5:

successive claims can generate a renewal counting
process Equation 1.2: ®d(x, t) =P(Rs(x, s)< 0,forsome 8 s (1.5)

N(t) :Zk:l]wst} (1.2) The ruin probability in the finite time means the
insurer’s capital falls below zero in the finitemgé

where, } is the indicator function of an eveat Then  interval [0f], that is, the total claim exceeds the initial

N(t) also describes the total number of claims intdini Capital plus premium income. We also investigate th

interval [0, t]. Denote the renewal function bi(t) = a}symptotic behavior of _the ruin probability in tfi.aite
EN(t), t<0 and assume thagt)<oo for all 0<t<co that: time. Once the capital is less than zero, the agicurs
and the company will bankrupt.
[t.e]P(%=1)>0
A{(t,oo]P(Yl:t):O 2. PRELIMINARIES

We first introduce some notations. Throughout the
¢ We assume that{; k>1}, {Y,; k>1} and {c(t); t=0} paper, all limit relationships are fartending to infinite
are mutually independent unless otherwise stated. Define:
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a(x) = o(b(x))if lima(x)/b(x)=0

Furthermore, for two positive bivariate functioas
(-, -) andb (-, -) Equation 2.1:

a(x) ~b(x)if lim, _ ., supg,

a(x,t) _
bx. D ]{ 0 (2.1)

Clearly, the asymptotic relatioa(x,t)~b(x,t) holds
uniformly for teA:

. a(x,t) }L ,
lim sup su - <
x— oo ta| D(X, 1)
And:

a(x,t)
b(x,t)

lim inf inf 1 =1

X — oo t[IA

As is the case for many recent references in tlddi
of risk theory, we are interested in ruin probaigd in
finite interval under the assumption thidt is heavy-
tailed. In particular, the integrated-tail distritmn of H
is subexponential.

For distributionH(x) on the (s, ), H(x) =1-H(X)
is the tail distribution of the functioH. We denote the
upper and lower Matuszewska indexH{k):

. logH, (x) =
I —limy o —— 2 H

H imy._, |0gX L(x)
H,(Xy) for y>1
(x)

=limy _ ,inf

logHy ()
logx Hy (x)
H (xy)

=lim,_,sup=—=fory>1
X A (x) y

Jy —lim

X— 00

A d.f. H with support (Og) is subexponential, if for
all n>2:

lim (9 =1
nH (x)

X > 00

where, theﬁ(x) denotes the n-fold convolution Bf
(Tang, 2006).
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The class of subexponential distribution functions
will be denoted byS The class of subexponential
distribution plays a crucial role in heavy-tailed
distribution. In the insurance industry, practitos
usually choose heavy-tailed random variables to ehod
large claims, so we have included for a more dsail
analysis of their properties.

A sufficient condition for subexponentiality, if éhe
is an integen>2, such that:

ThenHOS
Therefore, under the hypothesis of the formula, we
obtain:

b2
H2() _,

lim,_,— <
TTHK)

The class of dominated varying distribution is
defined as:

D= {de on(0, ) :Iimxﬂwsup% <o fa any y> 0}
y

If we supposeHlID, then for anyy > Jf, , there exist
two positive constantsandd such that wher >y >d:

HO) (]
H(x) y

We have already encountered members of the
following three families:
The definition of the class of long-tailed distrilaun:

L :{de on(0, ) :Iquwsup% =1, for any y> %

We can see that a distributichO £ and only if there
exists a function If: [0,00)— [0,) such thatl(x)—
ool(X) =0 (X) and:

H (x+y) ~H(x)

Holds uniformly for ally] <1 (x).
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According to the definition, we may define a little We say that two random variables§, =1} are
bigger distributionHOERV on [0, «), if there are some pairwise Negatively Quadrant Dependent (NQD), if fo
0<a<fi<oo such that: all positive integers+# j, & and§ are NQD:

s <liminf M slimsupw <s 7, forals=1 P(El SREE XZ) < P('{ls X]) P('{ZS X?)
H(x) H (x)
Or equivalently:
Which denoted byHOERV (-a, -8). If a = B, we

say thatH belongs to the regular variation class and P(&,> X,&, > X,) S P(E,> X )P(E,> X )
write HOR-,.
It is well known that the following proper inclusio Additionally, we also named the LND as the
relationship should hold for the distribution ofkg-tail: NLOD in Li et al. (2009) with different notations and
different formulas.
R-,0ERV(-a,-B)0LnDOD We can define that §, n>1} are WUOD, widely

upper orthant dependent. If there exists a fingal r

Embrechtset al. (1997; Kluppelberg and Stadtmuller, S€4UeNnce QU(“E n=1} satisfying for eacm>1 and for all
1998; Tang and Tsitsiashvili, 2003; Et al., 2009;  XL(=o0, ®), l=i<n:
Hao and Tang, 2008) From the study of many contexts
and literatures, we easily found that the renevish r P(Nd& >x}) < g, (u)l_l
model with constant interest rate mainly involvée t

independent structure between the claim sizes aidh ) )
times of successive claimthis limits the usefulness of We can also define thagf, n>1} are WLOD, widely

the obtained results to some extent. However, thelower orthant dependent. If there exists a finiealr
introduction of dependent structure to risk modeds ~ S€dUeNcedi(, n=1} satisfying for eacm=1 and for all
captured more and more researchers’ attentionciente X0(=o0, ), I<i<n,:

years and it provides a special perspective forrtie

probabilities t.heory. Many previous papers haveay p(ﬂinzl{gi < x})s g.(n) |‘| ” p(,gi > X )

worked on this new topic, for example, Yang and Wan =1

(2010; Liuet al., 2012; Wanget al., 2013) and others. ) ) )

The dependent structure also allows the underlying Accordingly, we would like remark that if thed
random variables to be positive or negative. Hemee, =1} can hold (2.9) and (2.10), it is also said to be
simply summarize the current corresponding resas ~ WOD, widely orthant dependent (Waeigal., 2013):

make clear the relationship between them. It i® als

necessary for our proof_ We further extend the)smﬂd ° And then we should be familiar with some important

n

P& >x%)

the dependent case and get several similar resittst properties of the WUOD and WLOD
the dependent random variables. e Firstly, we supposed, n>1} satisfy the WLOD or
We may define random variableg {i>1} as Lower WUOD
Negatively Dependent (LND) and Upper Negatively * If {f,(-), n>1} are non-decreasing, thefy(;), n>1}
Dependent (UND) if for eackr1 and allx,...x;: are still WLOD or WUOD
* Inversely, if {f,(), n=1} are non-increasing, then
n [z e Ve oy {f(&), =1} are WUOD or WLOD
P(ﬂ'_l{{' =% }) - |_| izlp({' =% ) « Secondly, if &, n>1} are nonnegative and WUOD,

then for eacm>1:
n
P(Nifg >x}) <[] P& >%)

E < n E&
If the sequence can satisfy both the LND and UND, |_|i:15 %l )|_|‘=1 {'
we can name it Negatively Dependent (ND) structure.
Whenn = 2, the LND, UND and ND structures are In particular, if the £, n>1} are WUOD, then for
equivalent (Lehmann, 1966). eachn>1 and anw>0:
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E exp{vzin:l{i} <g,(n) |_| Eexpvé ®(x) ~.[:(I:|(xe6t')) dA(t)

In the following, we will use the assumptions tfaat Result 2

anye>0 Equation 2.2 and 2.3: , ,
Theorem 1 of Liet al. (2009). Consider the renewal

risk model in Sectionl, if the claim sizeX.{ n>1} are
pairwise NQD with common distributiddID, the inter-
arrival times {r,; n>1} are NLOD and theg(t), t>0} is a
And deterministic linear function. In particular, H O£ and

Jy >0, we obtain theb(x,t):

lim, g, (n)e*" =0 (2.2)

lim, g, (n)e" =0 (2.3)

t .

We define the sequence of the real value random (x, t)~J. (H(xe™)) dA(t)
variables {, n>1} as Pairwise Quasi-Asymptotically 0
Independent (PQAI) for any# j:

P (PQAD @ Result 3
Iimsz(|{i |06 > 21§ O >z)= o Theorem 1 of Shen and Lin (2008). Consider the
renewal risk model, if the claim sizesX{ n>1} are
NOD random variables with common distribution
HOLND, the inter-arrival times the inter-arrival times
{Yn; n>1} are i.i.d with common exponential distribution
{N(t), =0} is a homogeneous Poisson process:

We also define the sequence of the real value rando
variables {, n>1} as pairwise Strong Quasi-
Asymptotically Independent (pSQAI), for any j:

lim Pl(I&Pz|é >2]=0
«os P14 P 314, >3) ¢(x,t)~j;(ﬁ(xe""))d/1 (t)
We list several corresponding results and remagk th

methods used in some papers mentioned above heavilResult 4

rely on the i.i.d assumption on the claim size amel _

arrival times of successive claims. By observaiioml Theorem 1.1 of Wangt al. (2013). Consider the

analysis, we compare the advantages and disadesntag "€newal risk model in Section 1. If the claim siZeg;

of above dependent structures. The dependent dase #=1} are WUOD with common distributiolld £n D,

WUOD and WLOD can allow some negative|y and the inter-arrival times\(n; nZl} are WLOD. Also holds

positively random variables. The pSQAI structure ca the relations (2.11) and (2.12). Then for any &mtl,

include the WUOD and PQAI. In addition, when the the relation (2.15) holds uniformly faf14 [0,T] and
random variables aneonnegative, the two structures of then we obtain the equivalent form for héx,T):

pSQAI and PQAI random variables are equivalent and

the pSQAI structure is a more general dependerd cas t_ s ;

than the WUOD. The ND structure is a relatively wea (x, t)~_[0(H(xe NdA(t)

condition, the asymptotic behavior of the ruin @abitity

is not sensitive to the ND structure. Result 5

Result 1 Theorem 1.1 of Liuet al. (2012). Consider the
Theorem 1 of (Chen and Ng, 2007). Consider theenewal risk model in Section 1. If the claim sie;

n>1} are pairwise ND with common distribution inter-arrival times ¥, n=1} are WLOD such that the
HOERV, the inter-arrival timesY, are i.i.d random relation (2.11) holds. Then for any fix&dl4, then:
variables and the c{t), t>0} is a deterministic linear
function and then the asymptotic for the ultimabénr r (Ot )

. Pd(x, t)~| (H dA (t
probability &(x): (%9 0( (e dA(t)
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Result 6

Theorem 3.1 of Li (2013). Consider the by-claim
model in Section 1, assuming thaX,{ X,; n>1} {6,;
n>1} and {T,; n>1} are mutually independenty, Yy, X,,

Y, are PQAI and random pair¥X( Y1), (X2, Yo)... are
identically distributed. Let distributed. Lei DERV and
F alsoJERV, then we obtain:

t_ .
o(x, 1) ~J'O(H(xe‘jt MA(t)

t pt-t' _ L
+jojo (F(xe®S*))d G(s)di(t')

define that thed is constant interest rate, sometindes
yield 0 and the inter-arrival times may follow a
common exponential distribution. Finally, we coresid
the N(t) factor, in risk model section we defilNgt) to
constitute a renewal counting process, but in gsailt
of Shen and Lin (2008), th&l(t) is a homogeneous
Poisson process, which follow the Poisson distidyut
with associated parameter

3. MAIN RESULTS

In this study, we still investigate the renewalkris
model and require the claim sizes and the intevalrr
times satisfy the pSQAI and WLOD structure. We can

For the risk models and results, we may discugmthe get a stronger result under mild assumption, irctvithe
in various aspects according to the motivation of H andF belong to £ n D . In addition, the risk model

research, such as the general risk model or renésial

involving by-claim parts can also lead to a diffare

model, independent structure or dependent structureresult. So we have the following results:

some common heavy-tailed distribution classes, the

constant interest rate or not and so on. By arglyse
found that the claim sizes and the inter-arrivales in
results of (Liet al., 2009; Wangget al., 2013; Li, 2013)
satisfied the different dependent structures, it ais
stronger restriction than the i.i.d condition irsu#ét of
Chen and Ng (2007). But among the different depeinde
structures, we may have different choices in dffier
risk models and then lead to different resultshsag in
Liu et al. (2012), he required both the common
distribution of claim sizes and inter-arrival timislow
the intersection class, but in many cases, theoauth
chose a more mild condition ERV. Furthermore, mnte

of common distribution, some papers involves a more P(A) = P(A)

complicated case, in lgt al. (2009) paper and Yang and
Wang (2010), he remarked the upper and

lower

Lemma 3.1

If P is a probability function ofy, andA; are any set,
then Equation 3.1:

P(U?llpi) 2 zi"llp(A) _zjsisjsmP(AAj)

Pr oof

(3.1)

We use mathematical induction to prove the relation
(3.1). Whenm = 1, we can easily draw the conclusion
that Equation 3.2:

(3.2)

Assume that it is true that whem = k, i.e.,

Matuszewska index, we also consider the upper andequation 3.3:

lower Matuszewska index in the renewal risk moBeit

in Wanget al. (2013) paper, he canceled the condition p(k A > k P(A) - P(AA)
Jy~ In particular, in background section we introduced ( = ) Zi:l ZEiSiSk :

the relation (2.10) and (2.11), Wang al. (2013)
considered them in [Result 4] and we will discussn
in our renewal risk model. In addition, the [Res2jitto
[Result 5] mainly investigate the asymptotic bebawf
ruin probability in finite time and then the [Refsli] and
[Result 6] worked on the formula of ultimate ruin
probability in risk model.

in some paper, it is assumed that th@) is a
deterministic linear function, such as indtial. (2009)

and Chen and Ng (2007). Furthermore, we do not

always requirey>0 and the inter-arrival times may not
have an exponential distribution, but in most cases
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Generally speaking, the
premium functiorc(t) is a general stochastic process, but

344

(3.3)

When m = k+1, we can use the basic probability
formulaP(AOB) = P(A)+P(B)-P(AnB) Equation 3.4:
P(UIEA )= P(UA D A

) ; (3.4)
= P(Ui:lpi) +P(Ac1) - P((Ui:lAS) n ((Ak+1))

Consequently, by induction assumption Equation 3.5:

P(Uﬁrllpi )2 zik:lp(p‘) _ZJSiSjSk PAA)

(3.5)
P () ~P{(UA ) 0 ((Acw)

JMSS
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Therefore, combining the relation from (3.1) t05§3.  both satisfy the pSQAI structure. For ansidn, it holds

we finally get that Equation 3.6: uniformly tOA[O,T]:
+ kil -0, g0 +T)
PUtA )2 X T PA)-D L P(AR)  (36) POGE™ o<y 218 fo 1<
_ fim inf inf > X CLN® =) >1
This ends the proof of the Lemma 3.1. Xx~e  tOAT] P(X;e fo<g > XN E)=n)

According to the Theorem 11 in Chapter 2 of

e 0(0+T;) =
(Kabanovet al., 1986), we have: *P(Ze Yo+mag > XN E)=n)

Lemma 3.2 (Integration by parts) Pr oof

Suppose f and g are right continuous, non-decrgasin - By the Lemma 3.1 and the formula

and with left-hand limit functions ona[ b], where  paQB)<p(A)+P(B), we can easily found:
a<b<R. Then Equation 3.7:

i . P(Xi€ kg +Z €O A 1y >x+L N (=N
J.aG(X)df (x)=9(b)f(b) - o(3f (a)‘L fx-)dg(x) (3.7) 2 P((X€" §, 5 > X+ ()N ¢)=n)

Lemma 3.3 0(Ze Wy 419 > XN )=n))

— —Ow; -
Considering the renewal counting proceksit), t>0} = P((Xie ™ ko < > X+ N )=N))

defined in (1.2). Suppose that'{ n>1} satisfy the +P(Zie_5(mi+-ri):kmv+_r‘<t} >x N t)= n)

WLOD structure and then also holds the (2.12) iatat s L

For anyTOA and anyy>0, we obtain that Equation 3.8: —P((Xje ™y g >x+I(x),N(t)=n)

) _ n(Ze @Mt >xNt)=n

lim,, _ ,, SURgAp, 7 M1) lE(N(t))y]{N(l)>>§ (3.8) (“ s Yoty O=n)
2 P((Xi€ ™ ko < > X+ K)N ¢)=n))

Pr oof

+P(Zie—5(wi +Ti):kmi T < >x,N¢)= n)
See the proof of Lemma 2.1 in Waetgal. (2013).

~P(Xi€*" Y < > X+ (),
Lemma 3.4

Let {X,; n>1} and {Z, n>1} be the mutual
independent  sequences with common distribution  From the last step, because of the fact that the
functionsH andF belong to the clas€ n D uniformly independent relationship among, Z and w;, we
for tOA[O, T], 1<isn, k=1 or 2. conclude:

Then Equation 3.9 and 10:

Zie—S(mi +T) Yo+t <g > XN E)=n)

POXGE ™ Fo,g X 002 > XN =)

P(Xe g, - + 2 K))/kN(t)= 50

((e 63{ ' t}>((x+ (XZ)) () n)) (3.9) =P(Xie &”'Zku,iq}>X+|(X):N([):n)Pai>X1N¢):n)
~P(Xi€ L, < > X/ k,N(t) =n))
ey Because the basic property of probability andltke

(e 4T is large enough:
P(2e 0 Mg ircy > (6t 2 6)) N (1) =)

(3.10) . ' o
Pz W, iy > € KN() =) My P(Z > X N =) =0

Lemma3.6

Lemma 3.5 Let X, andzZ, be the mutual independent sequences with

Under the assumption of Lemma 3X4, andZ, be common distribution function$d and F belong to the
the mutual independent sequences with commonZ n D and both saand both satisfy the pSQAI structure.
distribution functiondH andF belong to the n D and For any ki<n, it holdsuniformly t €A [0,T] Equation 3.11:
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lim, _,,Sup sup P(Xie™ Jo <y +Z €7 1 ir g > =1 €N (=)
T A TIP(XG € ko XN Q)=+ P @ g >XN (D)

(3.11)
For the convenience of proof, we define that:

J=P(Xi€ ™ kg +Z €2 2 1y > X1 €N ()FN)

I =P(Xi€™ kg >XNE)=n)+PE %W g oy >x N (Fn)

A :{Xie—&ni Yo < +Zi & 3w +T) Ly 41 <y > x—| Q(}

B:{Xie_&”i Yo < > X— 2 GON €)= n} D{zie‘f*(mi”ﬂjmi”iq} >x=2 6N €)= n}

That is to say: Considering the fact tha&’“"*™ ande®" belong to
the interval §",1], we may conclude that the set

X —=1(X —5(w: +T,
2( ) 2,650 g, r > «%

x=1(x)

limy _ ,Sup sup —< ! S
X ptDA[O,F')I']J {X,e ko<t >

Proof 0 {Xie—&»i o <t > Z >l (x)} and the set

Firstly, if x is large enough, we consider the 7 & 3@ +T) S
definition ofl(x) and the formul&@(A) = P(AB) + P(AB°), ! Yo 419
it is obviously true:

x=1(x)

X &0 1 > «}
x=1(x)

0 {Zie—ﬁ(mi +Ti)Jf‘Di T > Xi >| (X)}

So we can apply the common probability formula if
(X g7 Yo < > X~ 2 €N €)=n)) ACB, thenP(A)<P(B) to get the followingexpression:

0(Zie* " Vg, i1g >x= 2E)N €)=n))
+P(Xi(1,‘_'3mi J{U’i < * Z; g o) {'@i +T<t} = x=1 &),
(Xi€ " %y g <X= 2 ),

ey, 1oy Sx=2(0,NE)=n))

J< P(xie—ﬁ(ﬂi ]{u)i<t} +Zi e—s((ﬂi +T;) %‘(Di o <t} >x-—| é( )

J < P(X;e Yo<g >x= 2N €)=n)

+P(Zie—5(mi+Ti)J{mi+Ti<t} >x-2&)N¢)=n)
x=1(x)

Zi > )N ¢)=n))
x=1(x)
2

+P(Xie_5‘”i Yo < >

+ P(Zi e_a(mi ) J{mi +T; <t} >

Xi > @)N€)=n)
Followed by the above inequality, we apply the

. n n n
simple formula thatP(AUi:l B) < P(Uile)szizlP(B) By the independent relationship among ¥z and

andBoole’s inequality, we find: { i, Ti}, we have:
ISPXE™ T, 4 >x- 2 EN ()=n) J<P(Xiem" I, ¢ > x- 2 ()N )=n)
+P(Ze O W g iy > x= 2 OON O=n) P2 W iy >x= 2 ON O=n)
- . =1

+P(Xie_5“’i o<t > x-1 , +P(X;e™ "o <ty > . 2(X) NE=nPE >1k))

—o(w; +T: —o(w; +T _I
Ze O Vg amap >1 N €)=n)) Pz g > S NO=0P K216
+P(Zie_6(mi +Ti)j{wi +T; <t} > X_;(X) ,

50, By the property of clasB and Lemma 3.4, we can
Xie l j{mi <t} >| (X),N ¢): n)) get:
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According to the non-decreasing condition in Lemma
n 3.2, we reorganize the relation (3.13):

P[Xie_&ni Yo<tp > X—|2(X) N(t) =
~P( X 1y >x=1(x) N (1) =n)

~P(Xie %, o4 >x.N ¢)=n)
X = I(x)

P(Xe ™ &, > XN (1) 2K)

+P(Zke—5(wk +T) jfUJk+Tk<t} >x,N (t) > k)

P(Zie‘5(mi +Ti)]fwi T<g > N¢)=n) ) )
~P(Zie Ot g gy > x—|( x) N ¢)=n) :.[Ol‘H(XeB )dek (t)
t pt-t'
~P(Z;e g, i1y > XN E)=n) +J-0J-0 1-F (xea(t'J'S'))dG(s') v, (t')
Thus, ifx is large enough: =(mG -V, (O)) —J-;H(xe‘“')dvmk (t)
My o POGE™ 1 < > X N =P @ >16))= 0 v, (0)(6(t)-6(0))
limy o p(zie_(g((JJi Fri)]{mi +T, <t} j jt v 5(t +5) (s')dek (t ')
> X1 Ny =nmyp(x; >1(x) =0 Coo
2 = (Vi (1) Ve, (0)) - jon(xet)dvm (t)
Hence, we may find: H(X)Vo, ( )-v, (0)( (t)-6( ))
J t t—t'
limy _ 5 Z _ 5(t+s)
im suptDAs[gg] 3 J- J- )dG
Consequently, we hold the relation (3.12). J- ( (“S))G 0)dv,, (
This ends the proof of Lemma (3.6).
= (Vi (£) =V, (0)) - 7¢(xe™ v, (¢ W, (0)

Lemma3.7

t
For the renewal risk model introduced in Risk Tlyeor +J-0mG (t'—)0|716(xe&)—H(x)vmk (0) -V, (0)(G(t)—G(O))
section, we have:

3 el g >3

+P(Z e—ﬁ(mk+Tk)J{ T < > X N(t)z k)

—.[;F(xem)G(t—t')dek (t)
o F (") 5( v, (1)

J' A (xe™)dA (t J' J' xe’(*)) dG (s)dA(t) j jt tG(s)dF (xe®)dy,, ()
Pr oof [ F (x)e(9av,, (1)
Firstly, we should define the common distributidn o .[;mG (t-)d H (Xeat)_ H (XéSt)mG (9

wasV,, (t) Equation 3.12:
t pt-t' .
+ [ eEnF(xd )y, (1)
— oy 0do "
P(Xke o< >xN(t)2 k) .
- ot _y i
+P(Zke_8(wk +Tk) :ku)k +Tk<t} > X,N (t) > k) IO F(Xe )G(t t)dek (t )

(3.12)

- ts ot' '
__[ H (Xe )dek (t) We should make clear thaf, (t-) = P(w]( <t) so the
j jt v 6(t+s) dG(s)av (t) wst is equivalent to thél(t)>k andw<t is equivalent to
theN(t)>k, we can derive:
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Zk o Vo, (1) = zk L EN(t)<oo w P(Xke‘&”k J{mk<t} >X,N(t)2k)
Zk:l +P(Zke_6(mk+Tk)]{wk+Tk<t} >x,N(t)2k)
And: t t pt—t' L
=joﬁ(xe5t)dA(t)+J'ojo lf(xea(”s))dG(s)d/l (t)
Zk Vo ()= zk =1 2] =EN(t) <o It ends the proof of Lemma (3.7).

Our main result is for the approximation of finign

In the risk model section, we have already shovah th probability of the renewal risk model with constanterest

EN(t) is a non-decreasing and right continuous function rate. In the following section, we will give proaié some

According to the Lemma 3.2, we can easily obtaat:th related Lemmas mentioned in the following section.
Lemma 3.8 Consider the risk model in Section 1.

50 Assume that the X,,,Y,;n>1}{ @, n>1} and {T,; n>1}

P(xke *Loe<t) >X'N(t)2k) are mutually independent. Let claim siz¥,f>1} and
by-claim parts Z,;n>1} be pSQAI dependent structure

with common distribution functionsi and F belong to

the £ n D and the inter-arrival time¥,;n>1} be WLOD

2

=1 +P(Zke_8(°’k+Tk)3{mk+Tk<t} >x,N(t)= k)

j Zk =1 Voo, (¢ )dH( ) with common distributioriV and also hold the relation
st (2.11) and (2.12). Then for any fixedJA, it holds
—H(xe )Zk Vo, (8) uniformly tOA[O, T:
t pt-t' e 00
+ G(s)d F [ xé(*))d v, (1) ¢ ‘
jj ( ) e o(x, t)~j (e ) dA(t)
o 0
F(xe" )G (t-1) Ve, (©) tet-t _ -
J- zk-l “ +J'J' (Fe®S™)d G(s)dA(t)
5t) o 7 [ vedt 070
:j EN(t—)dH(xe )+H(><e6 )EN 0
0 .
t pt-t' L ie.
+ j J' G(s)d F(xé*‘“S))dEN(t)
+F(xe )G(t- t)(EN(t)EN(0))
We should apply the integration by parts again. We My o 4PN T D(x,1) =0
. — 00 ) t ,
oet [ e yane)
0
zm P(Xke‘&”k o< > X N(t)2 k) +J.t.[t_t (F(xe®S*))d G(s)d A (t)
0J0
k=1 +P(Zke_8(mk+Tk)]{m T > xN(t) = k)
4. PROOFS
J' At-)dH (x .[J' G(s)dF(xé(“S)) At)
Lemma4.l
=H Xe& EN(t)— H Xeat d/‘(t) Consider the risk model introduced in Section 1t Le
0
_ . X, be the sequence of pSQ#tructure random variables
+F(xe )G(t‘t)(EN(t)EN (0)) with a common distribution function df(x) andZ, be
(HS) the sequence of pSQAI structure random variablés avi
J- J- dG(s)dA(t) common distribution function d¥(x). The X, andZ, are
H(x)OLnD and F(x)OL n D for any fixed n, it holds
Therefore: uniformly tOJA[O,T] Equation 4.1:
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P(Zkzl(xke_&»k ]{mk<t} * 4 e_S(mk = %‘wk +T <t} >Xx)N (t) = nj (4 1)
~z“kzlp(xke—swk Yo > XN () =0)* zk:1P @O g >XN(t)=n;

Suppose that:
I= P(Zkﬂ(xke—&»k Yoy + % &0 Lo 47 <t > XN (t)= n)
j= zkzlp(xke-ﬁwk Yopa > XN(t)=n)+ zk:1P @, §3*T) L, 1<q > X N(t) =)

Which is understood as Equation 4.2:

z Xke_(smk ]{mk <t}

. J kel +Zke_6(mk+Tk)]{mk+Tk<t} >=1(x)
lim, . o SUPtAfo,T] 307 0 (4.2) 8w, ~8(0 +T})
tothe Xie J{‘Di <t tZe %"”i +T<t}
>x+1(x),N(t)=n
Pr oof
We need to prove the two inequalities Equation 4.3  Thus, we get:
and 4.4:
. 2D X" Yo,
. J . - '
Ilmxﬂm SLptDA[O,T]j <1 (43) k=1 +Zke S(mk+Tk)]{wk +Tk<t} > X
- Xie_awi J{U’i ¢ * Zi gl %"”i +T<t}
IimxﬂwinfinftDA[O’T]%zl (4.4) >x+1(x),N(t)=n
—0m
>$"p ZJSksn,k;tixke ‘ ]{mk<t}
Firstly, we are ready to prove the relation (4.4), = zizl +7, 6 30 +T)
recalling the definition of thix) satisfying the (2.7) and K Yo +T<
Lemma 3.1, we have Equation 4.5: > (X)), (X €% Yo *Zi &3(e+T) Ly 1<
‘& >x+1(x),N (1) =n)
523" P> o<t
=1 KU 42O r g > X If we apply the basic probability formuR(BnA°) =

. o P(B) -P(BnA) andP(AB) = P(A | B)P(B), we have:
(XieéS I:I{mi<t}+zie6( I TI)%UJi"Tiq}>X |
H(x).N(1)=n) (4.5) 5230 B 5 R *AE T g
5 X &, < = >x+1(x).N(t) =n

1sksn ke i +Zke_6(mk+Tk)j{mk+Tk<t} > x+1(x)

-5
zn P z]sksn,k¢i(xke " Yot
=1 +Zke_6(mk+Tk)]{mk+Tk<t} <-1(x)

Xie_awi J{mi <t} +Z; e_S(mi *h) {'wi +T, <t}
>x+1(x),N(t)=n)

(Xje™ Yo T4 g3 h)

>x+1(x),N(t)=n)

%‘”i +Ti<t}

By observation, we add the inequality:
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-8 . s Jy(x1
+z]sk<isn,P(xke *Yo<i limy _ o, infinf 510,71 1(x1) “s)
4.6
—8(wy +Ty) SO0
+Ze KTk J{wk+Tk<t} >x+|(X) [Xi e {]mid} 2“mxﬂmi”finftm[o,ﬂ%21
+2€ O g g >x+1 () N(D) =n)
P(Xy+2y>x+1(x)) = 3y(x,1) = (I 50,1) = I o(x,1)) Thus, we can conclude that the relation (3.19) can

lead to the relation (4.7).

For J, (x,1), considering the independent relationship
amongX,, Zx andN(t) and the independeprinciple of
probability P(A;0A,|B) < P(A4]B) + P(A,|B), we derive:

Because ofH and F belong to the classC, the
independent relationship betweefy and Z, and the
Lemma 3.5, we find Equation 4.6:

- I(x
e ]{‘”k<t} t4ce Yo %U’k+Tk<t} = _% '

|
(x Z|—12Lk<|<n (X o ]{ @ *Z &0 +T) %‘l’i"'Tiq} >x+1(x) N(t):n)

n _ I - _5(0 +T
< Zi:12]sk<isn(P(Xke o ]{wk<t} < _g:])J '(xi e %‘”id} *Z g™ {jﬁ’i +Ti<t} > X+|(X) N(t) - n)J
ooz By <) o g0z 80D oot M) =0)

n _ | I
= zi:lz]skdsn(P[xke oo J{U’k<t} - g)r:) X & %‘mi <t} > : +2(X) ' N(t) - n]+
&Dk J{u)k<t _l (X) ’Zi e—5(u)i +T) %mi o <t} > X+l (X) N (t) - n]

2n

+P

+P[Z S(mk+Tk)]{u)k+Tk<t} < Q X g0 %‘m }

2n
_S( +T X +1(x
+P| Z,e 5(waer):I{u)k+Tk<t} = % e %T’Ji+-|-i<t} >()‘N(t):nJ

ZM,Xi e fo <) >X+|2(X) N(t)zn}

2n

< Ziqzm«is n,(P[ Xke_swk ]{wk<t}
ZM Z e%(@+T) Ly st<y > x+1(x) N(t):nj
i 4T, < 2

2n

+P[ X o,

( ) X; &% o < }>X+|(X) N(t):n]

= T,
+P[Z g oot k)J{mk+Tk<t}

o + [(x o + X+1(x _
+P[Z e ok T“)J{wquq} ( ) Z, g% T)%“T <> ( ) N(t)—n]

For the last four term of relation (4.8), we caplgghe formulaP(AB) = P(A | B)P(B) and the definition of pSQAI
respectively:

lim, ., sup sup P[xk o e t}‘ >1| 2o e > I(X)Jx [Fx - " X+I(X)j

tOA[0,T]
—5(0 +T [
]X [in gorm {obsT <t} > X+2(X)J:

Sy o +T; X+
Ilquwsuptms[l;pT]P(X € < }‘>7z| a( T){t;!ri+Ti<t}>
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limy _ ,Sup sup P(Zk 8@t fhy Tt
tOA[0,T]

I(x © X +I(x +1(x)
2hn 4> ()]x I e

n

limy, ., Sup sup P(Zk 8@t A< 2
tOA[0,T]

+T +I
th BT 3> 2(X)]

xP[Zi g oo +Ti)3{wi T X +;(X)j =0

Finally, J, (x,I) also goes to zero.
And then, we turn td; ().

J3(X'|)S215k<i<n( (Xke “Foeg 2 XH1 () X 6% 0 +2 @O g, g g >3l (4) N(t):n))
7. 3@+ st 1) x. 55
wp| X Yoo 23D PG g P(Xy+21>x+1(x)
+Zie—5(mi +Ti)]{wi +Ti<t} > X+ (X) N (t) =n
SZ]sk<isn(P(xke_6mk]{mk<t} 2 x+1(X) K €% fo, <) >X+|(X)'N(t)=n)
+P(Xy8 P a2 X (B €T 4,y >0 (%) N(D) =)

+P(Z,e S(mk+Tk)J{ o Tt 2 XF (XK goo fuo,<g > x+1(x) N(t):n)

+P( 5(“’kJ'Tk):I{kaerq} > x+1(x) g &N fo 1 <g > x*1(x) N(t) = n))
We try to apply the definition of pSQAI and the dition of HO £ andFO £ again:

limy _ ,sup sup P
tOA[0,T]

&% {:tln <}2 )1'|( )()1, {‘;lfi<t}> 'X|( ))): 0

limy  ,sup sup P

[
tOA[0,T] (
(2
(2ee

X &% gz (33 3T gy > K Y= o
limy wsupmf[lépﬂpz ICRam o<y 2 % ( )<>1| {&'ri<t}> x| ( )>): 0

lim, ,sup sp P

e Ty > x+1(x) g €2 *T) > x| ): (
tDA[O,T] +Tk<t} ( ) i {lmi +T; <t} (>)

Consequently); (x,1) also goes to zero.

Thus, a combination &k (x,1), J> (x,]) andJs (x,]) can hold the relation (4.4).
In the context of the above proof, we can contioueproof of relation (4.3).
If we consider the following notation in relatioh.8). we define:

n — —
A:{z kzl(xke oo J{mk<t} +Zk96(mk *Td) %mk+Tk<t} > X}
_ n —50; ~5(; +T;) B
B—{zj:l(xje ']{ }+Z e %j+Tj<t}>x I(x)}

We can take the same logic reasoning of the gewass of the probability th&(A) = P(AB) + P(AB®) to the
following relation, we find Equation 4.7:
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j= " = - 3(o, +T, :
I= P[zkzl(xke " J{‘Dk<t} +Zke T %‘wk+Tk<t} >X N(t =n

)

=0 —5(w; +T;
Urj]:lxje “)J]{mj<t}+Zje (o5 J)%mj+Tj<t}>X_|(X) N(t):n) (4 7)
n | S .
+P(zkzl(xke o ]{mkq} +Zke6(mk+Tk) %u)k+Tk<t} > X N(t) =n

—5w: —o(w; +T;) —
U?:lxje ml]{mj<t} +Zje o) +T; %UJj+Tj<t} SX—|(X) N(t)—n)

. n n n . -
After applying theP(Ukle) < Zk:lP(B) < Z _1(AB) to relation (4.9), Therefore, we obtain:

o n —dw: =5(w; +T;) _
JSZkzlp[xje ml%miq} +Zje o %mj+Ti<t} >X_|(X) N(t)_n)

n - i} X
+P(zk:1(xke o Yo <t) +2,,% ) Lo +To<t) > X N(t):n) S<Xj+Z)< x—I(x)j

After the transformation of the inequality from: P(Xke—amk J{u)k<t} +Z, GO +Ty) %wk +qu}}

>x-1(x),N(t)=n

§<Xj+zjsx—l(x)jto—§<—(xj+Zj)sl(x)—xj (N ()
n

n <P(X,& ™ g, o + 24> x-1(%)

And adding to the set of : In addition, we all have known that the Boole’s

inequality can lead to the conclusion:

n -5 £5( +T,
{zk:l(xke K ]{mk<t} tZpe (@) %u)k+Tk<t} > X}

—O0,
Mickenkzj Xk€ " %o, <

We derive: P ~5(0y +T) 1(x) _
’ +Ze ]{mk+Tk<t} <m N (t) =n
j 3 zn P[xke—&»k J{mk <t} + Zk e—ﬁ(mk +Ty) %‘wk +Tk<t}J Xke—&uk J{wk <t}
k=L - = —5(0 +Ty)
7 I(X),N(t) n <P z:lsksn,k#j ¥z @ T J{“’k+Tk<t}
Xi€ " ko, i <I(x),N(t)=n

n ~5(wy +Ty)
+ + kK
Zj=1p ZJSkSn,k;tj Zie Yottt |

Then we apply the simple logic reasoning and De

<I(x),N(t)=n Morgan rule, we may find:
-5 —8(w: +T: X -
Xje ; ]{wi<t} +Zj € o) %‘”j +T; <t} >E N(t) :n] Xie o J{U’k<t}
—0(wy +Ty)
P Z:Isksn,k#j TSR T
Because of the face that: >1(x).N(t)=n
{Xke_&”k Yopet *2E° L, g > X (X)} Usckenke XK€ %o, <
B <P
O X% oy < 22> x-1(x) 20y, o> =
Therefore: Hence, we get:
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1(x)

—3® —o(wy +Ty)
no | Vrskeniej Xk€ ™ Ko g +Zc€T T Ly ameag > 2y

- n .
j< zk:lP(Xke 8“Jk]{mkq} +Z, > x-1 (x))+zk:lP

~8(w;+T}) X

—Sm:
Xje U’]]{ }+Zje %mj+Tj<t}>E N(t)=n

o;<t

According to the Boole’s inequality:

_ -5 I(x
P[Ulsksn,k:tj Xye o Yo <t T4ce 2Ot Lo +T <t} >g_ N(t)= nJ

1(x)

—50) —5(w, +T,) _
SZ]Sksn,k;tjP(Xke k%mkd} +Z ek Tk %‘mk+Tk<t} > K—1 N( ) rﬂ

Then, we have:

~ n _ B
J< zk:lp(xke doy ]{mk<t} +Zce 3y +Ty) %‘ﬂ)k“’qu} >x—| (x))

n n
20
j=1dmd 1<k<n, 2k

- - I(x
PEXke oo ]{mk<t} +Zkes(mk+Tk) %—mk+Tk<t} >£ N(t) = n} )

-3, =8(w; +T;)
. J . [
X;e ]{mj<t}+zje

n - —_
= Z‘tkzlp(xke . ]{mk<t} tce e %‘mk+Tk<t} >x-1 (X))

X
%mj+Tj<t} >H N(t) =n

" 1(X) b, —5(w; +T;) X _

P(Xke ka{mk<t}>mP(je o; %‘mj<t}+zj G {1mj+T,-<t}>H N(t)=n
-5(0 +Ty) 1(X) <50, ~5(w,+T})

HESS Yooy > Ki® ?“”i“} vz e

n n
2
k=14md 1<k, j 2k

X p—
k-1 {1‘”1”14} >H N(t)—n]
n _
szkzlP(Xke 6‘”kjl{mkq} +Z, >x-| (x))
o)

_ I —50;
P[Xke &Dk]{mk<t} >k(7i()1[>(j e " {_qu} >§ N(t):n]

n -5 | (X) =3(w;+T;) X
+ijlzjsksn,j¢k +P(Xke mk]{wk<t} >EZ] € b E‘mi+Tj<t} >E N(t) n

_ I(x . X
+P(Zke S(mk+Tk)]{wk+Tk<t} >£P(j g0 ?‘U"q} >H N(t) n]

J

l(X) - 50(w+T))
She

k1P oty > N(t)=n]=34 (4 > J5 (. )

+P[Zke_6(mk +Ti) Yoy Tt} >

By theH andF belonging to the class , we should consider Lemma 3.6, for everk<dn:

n
P(X€ % % +Z>x—1(x)
limsup, _,, Ssup Ja(x) limsup _ ., supz“":l ( J{f(t} )

Ao, J tOA[O,T] J

. J
limsup, ,, sSup =<1
toa[0,7] Y
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For Js, if theH andF belong to the clasg and the property of pSQAI dependent structure, eréve that:

limsup, P(Xke&*’k Yo <g > I( X 1 Xi e "< >% N( = a= 0
limsup, _, ‘X,P[X & 00k Yop<g > I(X) Z &@i*T) {m o< >5n N( = n= 0
limsup, _, P[Z ER O >); I(X) }(J {qu} >% N( k= B: 0
|imsupxwp[zke‘5‘“’k”k) oy 74 >%>L(7i‘)lzj 55(0;+T)) & o) >% N( )= a
Thus, combining thd, (x,) andJs (x,1), we hold the Firstly, we deal with the;, according to the Lemma
relation (4.3). 4.1, it holds uniformly fotOA [0,T]. We got:

The following section will discuss the asymptotic

behavior ofP(RJ(t X) > x) in detail. Because we are not | {Z _1Zk . ] (Xke_&”k]{mkq} >x,N(t) = n)

only interested in the asymptotic behavior of

P(R}(t,x)>x) involved the independent structure of the + Z%lz: . ]P(Zke‘S(wk+Tk)J{mk+Tk<t} >x,N(t) = n)
n=; =

claim size and the arrival times of successiventdaibut

also in the dependent structure in the renewalmstel. =[ A ]p X & 0% >x,N(t) =n
It ends the proof of Lemma (4.1). Z -1Zn mp+1 ( Yosg )
Lemma 4.2 +P(Zke‘5(“’k+Tk)J{mk+Tk<t} >> x,N(t) = n))):|3—|4

Assume that the X, Y,;n>1}{ w,; n>1} and {T,;
n>1} are mutually independent. Consider the renewal
risk model, we also assume that, and Y, not
necessarily independent. Let clasize {X,;n>1} and thezm’ z“ andzn Z”b , we can get:
by-claim parts Z,;n>1} follows pSQAI dependent n=14m=d k=1 k=14=dn=1
structure with common distribution functions 0L n D

By using the Lemma 3.1 and the independent
relationship betweeiX,, Z and w,, we can exchange

and FOL nD. Th_e inter-arrival time Y,;n>1} with |3:z:_ P(Xke_smkj{mkq} > x,N(1) = n)
common distributionv are WLOD and also suppose =l
the relation (2.11) and (2.12) hold. Then for aixed +PEZE Wy g > XN(t) = )

T €A Equation 4.8: :J't(ﬁ(xe"t'))dA(t')
* b o et X '
P(R5(t.¥)>X) ~jo(H(xe NdA(t) +J‘T‘t (F(xe?S*0)d G(s)d(t)
0J0

o - (4.8)
+J'0J'0 (F(xe®*)d G(s)d(t')

And then forl,, because the independent relationship
amongX, Z, andwy andH, FO D :
Holds uniformlytOA [O,T].

Proof: |4Z:=%+1Z:=1P(Xke_6mkJ{wk<t} >xN(t) = n)

* S +P(Zke_5(“’k+Tk)]{m st > XN(Y) = ”))
. X)) = .\ K+ i
(R()_( ) ) (Zn:l an+1 ] :ZOO Zn P(X e—Bwk >X)
P(Xke—&nk ]{mk <4 +Z, g 3oy +TK)J - n=ny+1 k=1 k ]{wk <t}
-1 2

n _
l[mk+Tk<t} > X'N(t) =n +Zk:lp(zke S(wk+Tk)]{mk+Tk<t} > X)P(N(t) = n)
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IN

3PP PN = o(o-a)s

= I—T(x)nzn:%ﬂP(N(t) =n)+F(x)

00

And combining the relation (2.6), we obtain:

=)

PN =n)

\

E(x
=H () EN ()% (t)ome} * F O)EN (D) n(1)>my) . F(x

20) ¢ o(an) < ()"

)
( /2n) v v
) <c(2n)’ =<c(n)

(x

We may also find two constants ¢ and d such that fo

By the conditiorH D and Lemma 3.3, we derive:

. |
liMpy, o SUP, e SUR 4 = (
o A[O’T]jt(ﬁ(xeat'))dx(t,) y>J and y>Jf underthe condition ofHOD and
0 ‘ relation (2.6) my+1<x/d, it holds uniformly fortCJA[O,T].
+Itjt"t (F xS0y Therefore, from original inequality should yield:
d G(s")dr(t) o _
I2szmomsxldnH(x/2n)P(N(t)— )
Before we turn to the,, we should introduce some +Z F(x/2n)P(N(t)=n)+PN(t)>x/d)
basic probability theory related kg mo<n<x/d
Because of the fact thaP(x+y>t) < P(x>t/2) + scﬁ(x)z . /ng+1P(N(t):n)+clf(x)
P(y>t/2), we get: b=t
> RN (=)
mD<n<x/d
n n n
P( Xy ¥ _Zk>xjsP£ _Xk>x/2j
2" Lo Lo (g EIN®) o >w g
n
+P Z, >x/2 = "
[z'@l k= ) < cH (X)E(N(®) negsmg *+F (x) ENOY e

Secondly, th.e_ basic rule in probability is that any Hence, by the guaranteed condition iéf and F
event of probability should no greater than 1: belonging to the clas® and applying Lemma 3.3 to the
following inequality again, we obtain:

n n
A D zens .
2

e e e
0

Thus:
LY B (005 H)
|2 = [znb<nsx/d+zx/d<nsw ) +J-O'[O (F(Xe ))
] ) d G(s)dn(t)
P[Z ke K +Zkzlzk z x) P(N(t)=n) cH (X)E(N(t))Y+lJ{N(t)>m0}
n _ _ +cF (x) E(N(t)"*
< zm0<nsx/d(P( k:lxk >x/ 2) < IImmb LolMy SUHDA[o,T] q (Xiﬁz)x(t) N F(i{zo(jt'))?(oi)
+P(zkzlzk >X/2))P(N(t):n)+Zx/d<nsooP(N w=n <c lim H(X)+|E(X) lim sup

X—eo H (xe‘)T) + lf(xe‘)T)”b ~@t0A[0T]
Applying the Markov's inequality and make a - _
corresponding substitution, we derive: MO TEIND) N smg =0
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Consequently, we complete the proof of Lemma  Then for any&>0, due to the condition (2.6) in
(4.2). preliminary section, we find that:

Proof of Theorem 3.8 . .
* 6 —
Followed by the Li (2013) approach, we found that: P[Rf’(t' x)> x+5(e t _1)J2,[0(H (1+e) xe’ )dA( )

Ryt ) = e IR (%) = x +j;j;_t'(ﬁ (14 £) ") )d G(s)dA(t)
e es s T X oy AL )00

oo + &£
_Zkzlzke_dwﬂk):"wﬂs@ J-J-t t(lE ) 6(s)aA(t)

Then we rewrite it as: L )
By the arbitrariness of>0, it follows that:

t .
P(R}(t, x)>x+%_(e5t —1))2]’ (I—T(xe"t ))d/l(t')
Considering the ruin probability (1.5) in finitarte in °

Risk Model section: +I;I;_t'(|5(xe5t'))d G(s')dA(t)

Rs(t, X) = X +6(t)—R}(t X)

P(x, t) =P X, s)< 0,forsome 8 s . .
(1) Rx. 9) And then, similarly, we can also obtain the

remaining part:

Therefore:
®(x t) =PE "Rs(x, s)< 0,for some & s P(R}(t, X)> x) ~j;(lfl(xe5y))dy
It follows that: +j;j;_t‘(lf(xe5‘ ) (s')ay
P(R:’(t’x) <X* C(t)) <P )= P(R:’(t’x)> X) This completes the proof of Theorem (3.8).
From which we can see that: 5. CONCLUSION
. . c . Enlightened by the results of (Li, 2013; Waetgal .,
X=Rs(t, X)< Ry (t, x)< X+5(edt _1)_R6(t X) 2013), we obtained some novel results regarding the

pSQAI and WLOD random variables within the class

L n D . Our main results concerned the approximation

for constant interest rate and by-claim model. In

. Cl s . addition, we further prove the main results and
P(Ra(ty x)>x+5(e —1))5¢(X, t)s< P(Ra(t, x)> X) corresponding assumptioriBhe asymptotic behavior of
P(R}(t,x) > x) is a key role in our proof part. Finally, we

We have already proven the relation (4.11), soave ¢ apply the obtained results to a kind of claim-defss

It follows that:

rewrite it: risk model and derive a more precise and more géner
asymptotic formula for ruin probability in finiténte.
C
[Ra(t 0>x+ j ( [X*g ¢ -1) jd/'( ) 6. ACKNOWLEDGEMENT
J’J’t t[ (x+ rft 1 5(s+t)]dG The researcher would like to thank some comments
and constructive suggestions of my advisor andhall

////4 Science Publications 356 JMSS



Lei Wang / Journal of Mathematics and Statistic§3)0339-357, 2014

members of committee. Several stimulating Tang, Q. and G. Tsitsiashvili, 2003. Randomly wéggh

discussions allowed me to develop original idead an sums of subexponential random variables with
improve my paper. application to ruin theory. Extremes, 6: 171-188.
DOI: 10.1023/B:EXTR.0000031178.19509.57
7. REFERENCE Tang, Q., 2006. Insensitivity to negative dependant

the asymptotic behavior of precise large. Election
Probab., 11: 107-120.
Tang, Q., 2005. The finite time ruin probability thfe

Chen, Y. and K.W. Ng, 2007. The ruin probability of
the renewal model with constant interest force and
negatively dependent heavy-tailed claims. Insur.

Math Econ 40: 415-423 DOI: compound Poisson model with constant interest
10.1016/j.insmatheco.2006.06.004 force. J. Applied Pro., 42: 608-619.

Embrechts, P., C. Kluppelberg and T. Mikosch, 1997. Wang, D., 2008. Finite-time ruin probability witledwy-
Modelling Extremal Events: For Insurance and tailed claims and constant interest rate. Stoch.
Finance. 1st Edn., Springer Science and Business Models, 24: 41-57, 2008. DOr:
Media, Berlin, ISBN-10: 3540609318, pp: 645. 10.1080/15326340701826898

Hao, X. and Q. Tang, 2008. A uniform asymptotic Wang, K., Y. Wang and Q. Gao, 2013. Uniform
estimate for discounted aggregate claims with ~ asymptotics for the finite-time ruin probability af
subexponential tails. Insur. Math. Econ., 43: 116- dependent risk model with a constant interest rate.
120. DOI: 10.1016/j.insmatheco.2008.03.009 Methodol. Comput. Applied Probab., 15: 109-124.

Kluppelberg, C. and U. Stadtmuller, 1998. Ruin DOI: 10.1007/s11009-011-9226-y
probabilities in the presence of heavy-tails and Weng, C., Y. Zhang and S. Tan, 2012. Tail behagfor
interest rates. Scand. Actuar. J., 1998: 49-58. poisson shot noise processes under heavy-tailed

DOI: 10.1080/03461238.1998.10413991 shocks and actuarial applications. Methodol.
Lehmann, E.L., 1966. Some concepts of dependence. Comput. Applied Probab., 15: 655-682. DOI:
Annals Math. Stat., 37: 1137-1153. 10.1007/s11009-011-9274-3

probability with NQD dominated varying-tailed probability of some negatively dependent risk
claims and NLOD inter-arrival times. J. Syst. Sci. models with a constant interest rate and

Complex., 22: 407-414. DOl 10.1007/s11424- dominatedly-varying-tailed claims. Stat. Probab.

_ 009-9173-7 . _ _ Lett., 80: 143154. DOI: 10.1016/}.5pl.2009.09.023
Li, .‘]" 2013. On pairwise qua5|-asymptot|cally Yuen, K., J. Guo and K. Wang, 2005. On ultimate iini
independent . random  variables and - their a delayed-claims risk model. J. Applied Prob., 42:

applications. Stat. Probab. Lett., 83: 2081-2087. ) .
DOI: 10.1016/}.spl.2013.05.023 163-174. DOI:10.1239/jap/1110381378

Liu, X., Q. Gao and Y. Wang, 2012. A note on a Waters, H.‘R.‘ and A Papatrian(_zlafylo_u, 1983. Ruin
dependent risk model with constant interest rate. ~ Probabilities allowing for delay in claims settlemte

Stat. Probab. Lett. 82: 707-712. DOI: Insur. Math. ECOﬂ., 4: 113-122. DOI: 10.1016/0167-
10.1016/j.spl.2011.12.016 6687(85)90005-8 _

Lundberg, F., 1903. Configuration approximated fron Kabanov, Y.M., R.S. Liptser and A.N. Shiryaev, 1986
of the probability function. 1l. FBK orsakringav On the variation distance for probability measures
collective risks, Almqvist and Wiksell, Uppsala. d_efined on a filtered space. Probab. Theory Related

Shen, X. and Z. Lin, 2008. Precise large deviatifums Fields, 71: 19-35. DOI: 10.1007/BF00366270

randomly weighted sums of negatively dependent
random variables with consistently varying tails.
Stat. Probab. Lett, 78: 3222-3229. DOI:
10.1016/j.spl.2008.06.007

////4 Science Publications 357 JMSS



