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ABSTRACT 

In several ways, related fixed point theorems on two or three metric spaces have been demonstrated. By 
applying contractive condition of integral type for class of weakly compatible maps in uncompleted 
intuitionistic fuzzy metric spaces without considering any continuous mappings, in this paper, we verify 
some frequent fixed point theorems for different mappings. 
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1. INTRODUCTION 

In 1922, Banach a polish mathematician proved a 
theorem under appropriate conditions and showed the 
existence and uniqueness of a fixed point this result is 
called Banach fixed point theorem. This theorem is also 
applied to prove the existence and uniqueness of the 
solutions of differential equations. Many authors have 
made different generalization of Banach fixed theorem. 
There are so many researches are available on this fixed 
point theorems. Normally, fixed point theory is classified 
into 3 categories such as (1) Topological Fixed point 
theory (2) Metric Fixed point theory and (3) Discrete 
fixed point theory. In these three areas, the boundary 
lines can be detected by employing the theorems such as 
(1) Brouwer’s Fixed Point Theorem (2) Banach’ s Fixed 
Point Theorem (3) Tarski’ s Fixed Point Theorem. 

The concept of Fuzzy set as a new way to represent 
vagueness in our everyday life  (Zadeh, 1965). However, 
when the uncertainty is due to fuzziness rather than 
randomness, as sometimes in the measurement of an 
ordinary length, it seems that the concept of a fuzzy 
metric space is more suitable. We can divide them into 
following two groups: The first group involves those 
results in which a fuzzy metric on a set X is treated as a 

map where X represents the totality of all fuzzy points of 
a set and satisfy some axioms which are analogous to the 
ordinary metric axioms. Thus, in such an approach 
numerical distances are set up between fuzzy objects. On 
the other hand in second group, we keep those results in 
which the distance between objects is fuzzy and the objects 
themselves may or may not be fuzzy (Manro et al., 2012). 

1.1. Preliminaries 

Some preliminary definitions are given below.  

Definition 1.1 

Zadeh (1965) A fuzzy set A in X is a function with 
domain X and values in [0, 1].  

Definition 1.2 

Schweizer and Sklar (1960)A binary operation *: [0, 
1]×[0, 1]→[0, 1] is a continuous t-norms if * is 
satisfying conditions:  

• *is an commutative and associative  
• *is continuous 
• a*1 = a for all a∈ [0, 1] 
• a*b≤c*d whenever a≤c and b≤d and a, b, c, d ∈ [0, 

1] 
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Definition 1.3 

George and Veeramani (1994) a 3-tuple (X, M, *) is 
said to be a fuzzy metric space if X is an arbitrary set, * 
is a continuous t-norm and M is a fuzzy set on X2 × [0, 
∞] satisfying the following conditions, for all x, y, z ∈ X, 
such that t is in [0, ∞]:  

• (f1) M(x, y, t) > 0 
• (f2) M(x, y, t) = 1 if and only if x = y  
• (f3) M(x, y, t) = M(y, x, t) 
• (f4) M(x, y, t) *M(y, z, s) ≤M(x, z, t + s) 
• (f5) M(x, y, *): (0,∞) → (0, 1] is continuous 

 
Then M is called a fuzzy metric on X. Then M(x, y, t) 

denotes the degree of nearness between x and y with 
respect to t.  

Definition 1.4 

Let (X, M, *) is a fuzzy metric space:  
• A sequence { }nx  in X is said to be convergent to a 

point x ∈ X (denoted by nn
lim x x)

→∞
=  if, for all t > 0, 

n→ ∞): 
 

n p nn
lim M(x 1 t) 1+→∞

× =  

 
• A sequence {xn} in X called a Cauchy sequence if, 

for all t > 0 and p > 0: 
 

n p nn
lim M(x 1 t) 1+→∞

× =  

 
• A fuzzy metric space in which every Cauchy 

sequence is convergent is said to be complete 

Definition 1.5 

Rhoades (1988) a pair of self-mappings (f, g) of a 
fuzzy metric space (X, M, *) is said to be: 
 
• Weakly commuting if: M (fgx, gfx, t) ≥ M(fx, gx, t) 

∀ x ∈ X & t > 0 
• R-weakly commuting if there exists some R > 0 

such that M(fgx, gfx, t) ≥ M(fx, gx, t/R) ∀x ∈ X and 
t > 0 

Definition 1.6 

 Jungck and Rhoades (2008) two self-mappings f and g 
of a fuzzy metric space (X, M, *) are called compatible if: 
 

n nn
lim M(fgX ,gfX , t) 1

→∞
=  

whenever {Xn} is a sequence in X such that: 
  

n nn n
lim fX lim gX x for some x in X

→∞ →∞
= =  

 
Definition 1.7 

 Grabiec (1988): Two self-maps f and g of a fuzzy 
metric space (X, M, *) are called reciprocally 
continuous on X if: 
 

n nn n
LimfgX fx and lim gfX gx

→∞ →∞
= =  

 
whenever {Xn} is a sequence in X such that: 
 

n nn n
lim fX lim gX x for some x in X

→∞ →∞
= =  

Definition 1.8 

Let X be a set, f, g self maps of X. A point x in X is 
called a coincidence point of f and gifffx = gx. We shall 
call w = fx = gx a point of coincidence of f and g.  

Definition 1.9 

Jungck and Rhoades (2008) a pair of maps S and T is 
called weakly compatible pair if they commute at 
coincidence points. 

Definition 1.10 

Two self-maps f and g of a set X are occasionally 
weakly compatible (owc) iff there is a point x in X which is 
a coincidence point of f and g at which f and g commute. 

1.1. Literature Review  

Klim and Wardowski (2007) introduced the concept 
of contraction for set-valued maps in metric spaces and 
the conditions guaranteeing the existence of a fixed point 
for such a contraction are established. One of our results 
essentially generalizes the Nadler and Feng-Liu theorems 
and is different from the Mizoguchi-Takahashi result. 
The second result was different from the Reich and 
Mizoguchi-Takahashi results. The method which had 
used in the proofs of our results was inspired by 
Mizoguchi-Takahashi and Fen-Liu’sideas.  

Mishra et al. (2010) proved some fixed point 
theorems for weakly compatible maps in fuzzy metric 
space satisfying integral type inequality but without 
assuming the completeness of the space or continuity of 
the mappings involved. Paper has extended this concept 
to fuzzy metric space and established the existence of 
common fixed points for a pair of self-mappings. The 
result obtained in the fuzzy metric space by using the 
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notion of non-compatible maps or the property (E.A) 
were very interesting. Paper has proved common fixed 
point theorems for weakly compatible maps in fuzzy 
metric space by using the concept of (E.A) property, 
however, without assuming either the completeness of 
the space or continuity of the mappings involved.  

Singh et al. (2012) aimed was to prove some 
common fixed point theorems in (GV)-fuzzy metric 
spaces. To prove the results, the research had employed 
the idea of compatibility. Wherein conditions on 
completeness of the underlying space (or subspaces) 
together with conditions on continuity in respect of any 
one of the involved maps were relaxed. Research results 
substantially generalized and improved a multitude of 
relevant common fixed point theorems of the existing 
literature in metric as well as fuzzy metric spaces which 
include some relevant results.  

 Bugajewski and Kasprzak (2009) proved a collection 
of new fixed point theorems forso-called weakly F-
contractive mappings. By analogy, paper has introduced 
a class of strongly F-expansive mappings and proved 
fixed point theorems for such mappings. Paper has also 
provided a few examples, which illustrated these results 
and, as an application, paper proved an existence and 
uniqueness theorem for the generalized Fredholm 
integral equation of the second kind. At last, paper has 
applied the Mönch fixed point theorem to prove two 
results on the existence of approximate fixed points of 
some continuous mappings.  

Mishra and Choudhary (2010) presented some common 
fixed point theorems for occasionally weakly compatible 
mappings infuzzy metric spaces under various conditions. 

Du (2012) discussed several characterizations of MT-
functions. Using the characterizations of MT-functions, 
paper established some existence theorems for 
coincidence point and fixed point in complete metric 
spaces. Results showed the new generalizations of 
Berinde–Berinde’s fixed point theorem and Mizoguchi–
Takahashi’s fixed point theorem for nonlinear 
multivalued contractive maps.  

Manro et al. (2012) in this study, we prove 
common fixed point theorems in fuzzy metric spaces. 
We also discuss result related to R-weakly commuting 
type mappings.  

Chauhan (2009) proved a common fixed point 
theorem for two pairs of weakly compatible mappings in 
M-fuzzy metric spaces.  

1.2. Problem Definition 
Lemma 1 

Grabiec (1988): For all x, y∈X, M (x, y, •) is non-
decreasing.  

Lemma 2 

Mishra et al. (1994) and Cho (1997): Let {yn} be a 
sequence in a fuzzy metric space (X, M, *) with the 
condition (FM-6). If there exists a number k ∈ (0, 1) 
such that M(yn+2, yn+1, kt) M (yn+1, yn, t). 

Lemma 3 

Mishra et al. (1994): If for all x, y ∈ X, t > 0 and for a 
number k ∈ (0, 1) M(x, y, kt) = M(x, y, t). 

Theorem 4.1 

Let (X, M, ∗) be a fuzzy metric space with continuous t-
norm ∗ defined by t ∗ t ≥ t for all t ∈ [0, 1]. Let A, B, S, T, P 
and Q be mappings from X into itself such that:  

• P(X) ⊂ AB(X) and Q(X) ⊂ ST(X) 
• There exists a constant k ∈ (0, 1) such that: 
 

0 0

M(px,Qy,Kt) m(x,y,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
where, ϕ: R+ → R+ is a Lebesque-integrable mapping 
which is summable, nonnegative and such that:  
 

0
(t)dt 0foreach 0

ε
ϕ > ε >∫  

 
Where: 
 

M(ABy,Qy, t)M(STx,Px, t),

M(STx,Qy, t),
m(x,y, t) min

M(ABy,Px,(2 )t),

M(ABy,STx, t)

 
 α =  − α 
  

 

 
For all x, y, ∈ (0, 2) and t > 0 and:  

• If one of P(X), AB(X), ST(X) or Q(X) is a complete 
subspace of X, then  

• P and ST have a coincidence point  
• Q and AB have a coincidence point 

Further, if  
• AB = BA, QB = BQ, QA = AQ, PT = TP, ST = TS  
• The pair {P, ST} is weakly compatible, then  
• A, B, S, T, P and Q have a unique common fixed 

point in X 

Proof 

By (a), since P(X) ⊂ AB(X), for any point x0 ∈ X, 
there exists a point x1∈ X such that Px0 = ABx1. Since 
Q(X) ⊂ ST(X), for this point x1 we can choose a point x2 
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∈ X such that Qx1 = STx2 and so on. Inductively, we can 
define a sequencein {yn} in X such that for n = 0, 1,…,: 
 

2n 2n 2n 1

2n 1 2n 1 2n 2

Y Px ABx and

Y Qx STx

+

+ + +

= =

= =
 

 
By (b), for all t>0 and α = 1-q, with q∈(0, 1), we have: 

 

0

M(y2n 1,y2n 2,kt ) M(Qx2n 1,Px2n 2,kt)
(t)dt (t)dt

+ + + +
ϕ = ϕ∫ ∫  

 
2n 2 2 n 1 2 n 2 n 1M(Px ,Px ,kt)

0 0

M(x ,x2 ,t)
(t)dt, (t)dt

+ + + += ϕ ≥ ϕ∫ ∫  

 

2n 2 2n 1

2n 1 2n 1 2n 2 2n 2

2n 2 2n 1 2n 1 2n 2

2n 1 2n 2

m(x ,x , t) min

M(ABx ,Qx , t),M(STx ,Px , t),

M(STx ,Qx , t),M(ABx Px ,(2 )t),

M(ABx ,STx , t)

+ +

+ + + +

+ + + +

+ +

=

 
 α − α 
 
 

 

 

2n 2n 1 2n 1 2n 2

2n 1 2n 1 2n 2n 2

2n 2n 1

M(y , y , t),M(y , y , t),

min M(y , y , t),M(y , y ,(1 q)t),

M(y , y , t)

+ + +

+ + +

+

 
 

= α + 
 
 

 

 

2n 2n 1 2n 1 2n 2

2n 2n 1 2n 1 2n 2

2n 2n 1

M(y , y , t),M(y ,y , t),1

min M(y , y , t),M(y ,y ,qt),

M(y , y , t)

+ + +

+ + +

+

 
 

≥  
 
 

 

 

2n 2n 1 2n 1 2n 2

2n 1 2n 2

M(y ,y , t),M(y ,y , t),
min

M(y , y ,qt)
+ + +

+ +

  ≥  
  

 

 
Since the t-norm * is continuous and M (x, y, .) is left 

continuous, letting q → 1 in (1a),we have: 
 

2n 12n
2n 2 2n 1

2n 1 2n 2

M(y , y , t),
m(x ,x , t) min

M(y , y , t).
+

+ +
+ +

 
≥  

 
 

 
Therefore: 

 

0 0

M(y ,y ,kt ) min M(y ,y ,t), M(y ,y ,t )2n 1 2n 2 2n 1 2n 2 2n 2 2n 3(t)dt (t)dt+ + + + + +ϕ ≥ ϕ∫ ∫  

 
Similarly, we also have: 

 

0 0

M(y ,y ,kt ) min M(y ,y ,t ),M(y ,y ,t )2n 2 2n 3 2n 1 2n 2 2n 2 2n 3(t)dt (t)dt+ + + + + +ϕ ≥ ϕ∫ ∫  

 
In general, we have for n = 1, 2,…: 

0 0

M(y ,y ,kt ) min M(y ,y ,t ),M(y ,y ,t)nn 1 n 2 n 1 n 1 n 2(t)dt (t)dt+ + + + +ϕ ≥ ϕ∫ ∫  

 
Consequently, it follows that for n = 1, 2, …., p = 1, 

2…: 
 

0 0

pM(y ,y ,kt ) min M(y ,y ,t ),M(y ,y ,t /k )nn 1 n 2 n 1 n 1 n 2(t)dt (t)dt+ + + + +ϕ ≥ ϕ∫ ∫  

 
By noting that M(yn+1, yn+2, t/k

p) → 1 as p → ∞, we 
have for n = 1, 2,……: 
 

0 0

M(y ,y ,kt ) min M(y ,y ,t )nn 1 n 2 n 1(t)dt (t)dt+ + +ϕ ≥ ϕ∫ ∫  

 
Hence by Lemma 2, {yn} is a Cauchy sequence. Now 

suppose ST(X) is complete. Note that the subsequence 
{y 2n+1} is contained in ST(X) and has a limit in ST(X). 
Call it z. Let u ∈ ST-1z. Then STu = z. We shall use the 
fact that the subsequence {y2n} also converges to z. By 
(b), we have: 
 

0 0

0

M(Pu,y ,kt ) M(Pu,Qx ,kt)2n 1 2n 1

m(u,x2 1,t )

(t)dt (t)dt

(t)dt

+ +

+

ϕ = ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 
 

2n 1

2n 1 2n 1

2n 1 2n 1

2n 1

M(ABx ,Qx , t),M(STu,Pu, t),

m(u,x , t) min M(STu,Qx , t),M(ABx ,Pu, t),

M(ABx ,STu, t)
+

+ +

+ +

+

 
 

=  
 
 

 

 

2n

2n 2n

2n 1 2n 1M(y , y , t),M(z,Pu, t),M(z,y , t)
min

M(y ,Pu, t),M(y ,z, t)
+ +  =  

  
 

 
which implies that, as n → ∞: 
 

2n 1

1,M(z,Pu, t),1,M
m(u,x , t) min

(z,Pu, t),1

M(z,Pu, t)

+
 

=  
 

=
 

 
Therefore: 
 

0 0

M(Pu,z,kt ) M(Pu,z,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
Therefore, by Lemma 2.3, we have Pu = z. Since STu 

= z thus Pu = z = STu, i.e., u is a coincidence point of P 
and ST. This proves (i).  
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Since P(X) ⊂ AB(X), Pu = z implies that z ∈ AB(X). 
Let v ∈ AB-1z. Then ABv = z. By (b), we have: 
 

0 0

0

M(y ,Qv,kt ) M(Px ,Qv,kt )2n 2n

m(x ,v,t )2n

(t)dt (t)dt

(t)dt

ϕ = ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 
 

2n

2n 2n

2n 2n

m(x ,v, t)

M(ABv,Qv, t),M(STx , t)M(STx ,Qv, t),
min

M(ABv,Px , t),M(ABv,STx , t)

=

  
 
  

 

2n 1 2n

2n 1

2n 2n 1

M(z,Qv, t),M(y ,y , t),

min M(y ,Qv, t),

M(z,y , t),M(z, y , t)

−

−

−

 
 

=  
 
 

 

 
which implies that, as n → ∞: 
 

2n

M(z,Qv, t),1,
m(x v, t) min

M(z,Qu, t),1,1

M(z,Qv, t)

 
+ =  

 

=
 

 
Therefore: 

 

0 0

M(z,Qv,kt) M(z,Qv,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
Therefore, by Lemma 2.3, we have Qv = z. Since 

ABv = z thus Qv = z = ABv, i.e., v is a coincidence point 
of Q and AB. This proves (ii). 

The remaining two cases pertain essentially to the 
previous cases. Indeed if P(X) or Q(X) is complete, then 
by (a) z ∈ P(X) ⊂ AB(X) or z ∈ Q(X) ⊂ ST(X). Thus (i) 
and (ii) are completely established.  

Since the pair {P, ST} is weakly compatible therefore 
P and ST commute at their coincidence point, i.e., 
P(STu) = (ST)Pu or Pz = STz. By (d), we have Q(ABv) 
= (AB)Qv or Qz = ABz.  

Now, we prove that Pz = z, by (b), we have: 
 

0 0

0

M(Pz,y ,kt ) M(Pz,Qx ,kt )2n 1 2n 1

m(z,x ,t )2n 1

(t)dt (t)dt

(t)dt

+ +

+

ϕ ≥ ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 

2n 1 2n 1

2n 1 2n 1 2n 1

2n 1

M(ABx ,Qx , t),M(STz,Pz, t),

m(z,x , t) min M(STz,Qx , t),M(ABx ,Pz, t),

M(ABx ,STz, t)

+ +

+ + +

+

 
 

=  
 
 

 

 

2n 2n 1

2n 1

2n 2n

m(y ,y , t),M(Pz,Pz, t),

min Mpz,y , t,

M(y ,Pz, t),m(y ,Pz, t)

+

+

 
 

=  
 
 

 

 
Proceeding limit as n → ∞, we have: 

 

2n 2

1,1,M(Pz,z, t),M
m(z,x , t) min

(z,Pz, t),M(z,Pz, t)

M(Pz,z, t)

+
 

=  
 

=
 

 
Therefore: 

 

0 0

m(Pz,z,kt ) M(Pz,z,t)
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
Therefore, by Lemma 2.3, we have Pz = z so Pz = 

STz = z. By (b), we have: 
 

0 0

0

m(y ,Qz,kt ) M(Px ,Qz,kt )2n 2 2n 2

m(x ,z,t )2n 2

(t)dt (t)dt,

(t)dt

+ +

+

ϕ = ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 
 

2n 2 2n 2

2n 2 2n 2 2n 2

2n 2

M(ABz,Qz, t),M(STx ,Px , t),

m(x ,z, t) min M(STx ,Qz, t),m(ABz,Px , t),

M(ABz,STx , t)

+ +

+ + +

+

 
 

=  
 
 

 

 

2n 1 2n 2

2n 1

2n 2 2n 1

M(Qz,Qz, t),M(y , y , t),

min M(y ,Qz, t),

M(Qz,y , t),M(Qz,y , t)

+ +

+

+ +

 
 

=  
 
 

 

 

Proceeding limit as n → ∞, we have: 
 

2n 2

1,1,M(z,Qz, t),
m(x ,z, t) min

M(Qz,z, t),M(Qz,z, t)

M(z,Qz, t).

+
 

=  
 

=
 

 
Therefore: 

 

0 0

M(z,Qz,kt) M(z,Qz,t )
(t)dt (t)dt,ϕ ≥ ϕ∫ ∫  
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Therefore, by Lemma 3, we have Qz = z so Qz = 
ABz = z. By (b) and using (d), we have: 
  

0 0

0

M(z,Bz,kt) M(Pz,QBz,kt)

m(z,Bz,t )

(t)dt (t),

(t)dt

ϕ = ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 
 

M(AB(Bz),Q(Bz), t),M(STz,Pz, t),

m(z,Bz, t) min M(STz,Q(Bz), t),M(ABz,Pz, t),

M(AB(Bz),STz, t)

 
 =  
 
 

 

{ }
{ }

= min M(Bz,Bz, t),M(z, z, t),M(z,Bz, t),

= min 1,1,M(z,Bz, t),1,M(Bz, z, t)

= M(z,Bz, t)
 

 
Therefore: 
 

0 0

M(z,Bz,kt ) M(z,Bz,t )
(t)dt (t)dt.ϕ ≥ ϕ∫ ∫  

 
Therefore, by Lemma 3, we have Bz = z. Since ABz = 

z, therefore Az = z. Again by (b) and using (d), we have: 
 

0 0

0

M(Tz,z,kt ) M(P(Tz),Qz,kt)

m(Tz,z,t )

(t)dt (t)dt,

(t)dt,

ϕ = ϕ

≥ ϕ

∫ ∫

∫
 

 
Take α = 1: 

 

{ }

M(ABz,Qz, t), M(ST(Tz), P(Tz), t),

m(Tz,z, t) = min M(ST(Tz)Qz, t), M(ABz,p(Tz), t),

M(ABz,ST(Tz), t)

M(Qz,Qz, t), M(Tz,Tz, t),
= min

M(Tz, z, t),M(z,Tz, t),M(z,Tz, t)

= min 1,1, M(Tz, z, t),M(z,Tz, t),M(z,Tz, t)

= M(Tz

 
 
 
 
 

 
 
 

, z, t).

 

 
Therefore: 

 

0 0

M(Tz,z,kt ) M(Tz,z,t)
(t)dt (t)dt.ϕ ≥ ϕ∫ ∫  

 
Therefore, by Lemma 3, we have Tz = z. Since STz = z, 

therefore Sz = z. By combining the above results, we have: 
 

Az = Bz = Sz = Tz = Pz = Qz = z, 
 

That is z is a common fixed point of A, B, S, T, P and Q. 
The uniqueness of the common fixed point of A, B, S, T, P 
and Q follows easily from (b). This completes the proof. 

If we put P = Q in Theorem 4.1, we have the 
following result.  

Corollary 4.1:  

Let (X, M, ∗) be a fuzzy metric space with continuous t-
norm ∗ defined by t ∗ t ≥ t for all t ∈ [0, 1]. Let A, B, S, T 
and P be mappings from X into itself such that: 

• P(X) ⊂ AB(X) and P(X) ⊂ ST(X) 
• There exists a constant k ∈ (0, 1) such that  
 

0 0

M(Px,Py,kt) m(x,y,t )
(t)dt (t)dt.ϕ ≥ ϕ∫ ∫  

 

where, ϕ: R+ → R+ is a Lebesque-integrable mapping 
which is summable, nonnegative and such that: 
 

0
(t)dt 0for each 0

ε
ϕ > ε >∫  

 
Where: 
 

M(ABy,Py, t),M(STx,Px, t),M(STx, t),
m(x, y, t) min

M(ABy,Px,2 )t),M(ABy,STx, t)

α 
=  − α 

 

 
For all x, y ∈ X, α ∈ (0, 2) and t > 0 and: 

• If one of P(X), AB(X) or ST(X) is a complete 
subspace of X, then  

• P and ST have a coincidence point  
• P and AB have a coincidence point 

Further, if  
• AB = BA, PB = BP, PA = AP, PT = TP, ST = TS and  
• The pair {P, ST} is weakly compatible, Then  
• A, B, S, T and P have a unique common fixed point 

in X. If we put B = T = Ix (the identity mapping on 
X) in Theorem 4.1, we have the following result:  

Corollary 4.2  

Let (X, M, ∗) be a fuzzy metric space with continuous 
t-norm ∗ defined by t ∗ t≥t for all t ∈ [0, 1]. Let A, S, P 
and Q be mappings from X into itself such that:  
 
• P(X) ⊂ A(X) and Q(X) ⊂ S(X) 
• There exists a constant k ∈ (0, 1) such that: 
 

0 0

M(Px,Qy,kt ) m(x,y,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
where, ϕ: R+ → R+ is a Lebesque-integrable mapping 
which is summable, nonnegative and such that: 
 

0
(t) dt 0 foreach 0

ε
ϕ > ε >∫  
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Where: 
 

M(Ay,Qy, t),M(Sx,Px, t),M(Sx,Qy, t),
m(x,y, t) min

M(Ay,Px,2 )t),M(Ay,Sx, t)

α 
=  − α 

 

 
For all x, y ∈ X, α ∈ (0, 2) and t > 0 and:  

• If one of P(X), A(X), S(X) or Q(X) is a complete 
subspace of X 

• then  
• P and S have a coincidence point and  
• Q and A have a coincidence point.  

Further, if  
• QA = AQ and  
• The pair {P, S} is weakly compatible, then  
• A, S, P and Q have a unique common fixed point in X 
 

If we put A = S in Corollary 4.2, we have the 
following result:  

Corollary 4.3 

Let (X, M, ∗) be a fuzzy metric space with 
continuous defined by t ∗ t ≥ t for all t ∈ [0, 1]. Let A, P 
and Q be mappings from X such that: 
• P(X) ⊂ A(X) and Q(X) ⊂ A(X) 
• There exists a constant k ∈ (0, 1) such that: 
 

0 0

M(Px,Qy,kt ) m(x,y,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
where, ϕ: R+ → R+ is a Lebesque-integrable mapping 
which is summa nonnegative and such that: 
 

0
(t)dt 0 foreach 0

ε
ϕ > ε >∫  

 
Where: 
 

M(Ay,Qy, t),M(Sx,Px, t),M(Sx,Qy, t),
m(x,y, t) min

M(Ay,Px,2 )t),M(Ay,Sx, t)

α 
=  − α 

 

 
For all x, y ∈ X, α ∈ (0, 2) and t > 0 and:  

• If one of P(X), Q(X) or A(X) is a complete subspace 
of X, then  

• P and A have a coincidence point and  
• Q and A have a coincidence point 

Further, if  
• QA = AQ and  
• The pair {P, A} is weakly compatible, then  
• A, P and Q have a unique common fixed point in X 

In Theorem 4.1, if we replace the condition QA = AQ 
by weak compatibility of the pair {Q, AB} then we have 
the following theorem.  

Theorem 4.2 

Let (X, M, ∗) be a fuzzy metric space with continuous t-
norm ∗ defined by t ∗ t ≥ t for all t ∈ [0, 1]. Let A, B, S, T, P 
and Q be mappings from X into itself such that:  

• P(X) ⊂ AB(X) and Q(X) ⊂ ST(X) 
• There exists a constant k ∈ (0, 1) such that: 
 

0 0

M(Px,Qy,kt ) m(x,y,t )
(t)dt (t)dtϕ ≥ ϕ∫ ∫  

 
where, ϕ: R+→ R+ is a Lebesque-integrable mapping 
which is summable, nonnegative and such that: 
 

0
(t)dt 0foreach 0,

ε
ϕ > ε>∫  

 
Where:  
 

m(x,y, t)

M(ABy,Qy, t),M(STx,Px, t),M(STx,Qy, t),
min

M(ABy,Px,2 )t),M(ABy,STx, t)

=
α 

 − α 

 

 
For all x, y ∈ X, α ∈ (0, 2) and t > 0 and:  

• If one of P(X), AB(X), ST(X) or Q(X) is a complete 
subspace of X, then  

• P and ST have a coincidence point  
• Q and AB have a coincidence point 

Further, if  
• AB = BA, QB = BQ, PT = TP, ST = TS  
• The pairs {P, ST} and {Q, AB} are weakly 

compatible, Then  
• A, B, S, T, P and Q have a unique common fixed 

point in X. By using Theorem 4.2, we have the 
following theorem 

Theorem 4.3  

Let (X, M, ∗) be a fuzzy metric space with 
continuous t-norm ∗ defined by t ∗ t ≥ t for all t ∈ [0, 1]. 
Let A, B, S, T and Pi, for i = 0, 1, 2,…, be mappings 
from X into itself such that:  

• P0(X) ⊂ AB(X) and Pi(X) ⊂ ST(X), for i ∈ ℕ 
• There exists a constant k ∈ (0, 1) such that: 
 

0 0

M(P x,P y,kt ) m(x,y,t )0 i (t)dt (t)dtϕ ≥ ϕ∫ ∫  
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where, ϕ: R+→ R+ is a Lebesque-integrable mapping 
which is summable, nonnegative and such that: 
 

0
(t)dt 0 foreach 0,

ε
ϕ > ε >∫  

 
Where: 
 

i 0 i

0

m(x,y, t)

M(ABy,P y, t),M(STx,P x, t),M(STx,P y, t),
min

M(ABy,P x,2 )t),M(ABy,STx, t)

=

 α 
 

− α  

 

 
For all x, y ∈ X, α ∈ (0, 2) and t > 0 and: 

• If one of P0(X), AB(X) or ST(X) is a complete 
subspace of X or alternatively, Pi, for i∈ ℕ , are 
complete subspace of X, then  

• P0 and ST have a coincidence point  
• For i∈ℕ , Pi and AB have a coincidence point 

Further, if  
• AB = BA, PiB = BPi(i∈ℕ ), P0T = TP0, ST = TS  
• The pairs {P0, ST} and {Pi(i∈ℕ ), AB} are weakly 

compatible, then  
• A, B, S, T and Pi, for i = 0, 1, 2…, have a unique 

common fixed point in X 

2. CONCLUSION 

Some conditions involve linear and nonlinear 
expressions (rational, irrational and of general type). 
Recently, some fixed point results for mappings 
satisfying an integral type contractive condition. Fixed 
point theorems for various generalizations of 
contraction mappings in probabilistic and fuzzy metric 
space were described. In our proposed method, we 
proved some common fixed point theorems for six 
mappings by using contractive condition of integral 
type for class of weakly compatible maps in non-
complete intuitionistic fuzzy metric spaces, without 
taking any continuous mapping of integral type. The 
theorems and corollary proved that this research 
proved the fixed point theorems in terms of mappings 
in fuzzy metric spaces. 
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