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Abstract: Considering different parameters, Hilbert-type integral inequality
for functions f(x), g(x) in L2[0, o) will be generalized.
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Introduction

We establish more general variants of the integral
Hilbert-type inequality (Hardy et al., 1934):
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unless f{x) = 0 or g(x) = 0, where p>1, g = p/(p-1).
Inequality (1), would be invalid for some f{x), g(x) if the
constant m cosec (m/p) were replaced by a smaller
number see (Hardy et al., 1934). Inequality (1) with its
modifications have played an important role in the raise
of many mathematical and physical branches see for
instance (Xingdong and Bicheng, 2010; Jichang and
Debnath, 2000).

In this study we are concerned with the case when p
=g = 2, i.e., we focus on the inequality:

b[b[f( g(y dxdySﬁ[Ifz(x)dxjgz(x)de R @)

f(x),g(x) el [0,00).

Many mathematicians have worked on generalizing
inequality (2) in different ways. Some of them developed
half discrete analogues of (2) see for instance (Xin and
Yang, 2012; Zhenxiao and Yang, 2013), while others
worked on developing different variants of the
denominator of the left hand side see for example
(Bicheng, 1998; Bicheng and Qiang, 2015; Bing et al.,
2015; Jichang and Debnath, 2000). For example in
(Bicheng, 1998) the following inequality can be found:
forO0<a<band 0 <A< 1, fx), g(x)e L*[0, ) we have:
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The objective of this paper is to derive more general
form of Hilbert's inequality (2) by introducing some
parameters. In particular we generalize inequality (3)
focusing on developing the denominator of the left hand
side. In this study A(p, q) is the S-function.
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Main Results and Discussion

This section states and discusses the main theorem
which will be proved in the fourth section. For different
parameters ¢, A€ (0, 1] we have the following theorem.

Theorem 2.1

Suppose that 0 <a < b, 0 <c <d, A, B are nonzero
real numbers and 0 < ¢, A< 1. Then for functions f{x),
g(x) € L’[0,0) the following Hilbert-type inequality
holds:
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Remark 2.2
IfA=B=1andt=1, Theorem 2.1 gives:
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Remark 2.3

If a = ¢ and b = d, then inequality (5) reduces to
inequality (3), which in turn leads to the original
Hilbert's inequality (2) if A=1and a —» 0 and b — .

To prove Theorem 2.1, we prove first two lemmas
introduced in the following section.

Lemmas

In this section we present and prove two needed
lemmas.

Lemma 3.1

For parameters ¢, A where 0 < ¢, A < 1, define ¢, and
W), as:

0 7

Tl (1) fo1 (172
L= | = du,y, = = du. (6
g !(w) (i) Taer ?.[(1+u‘) o ©

1 (A A4 1
Then ¢ = 25| 2.2 and y,, =1¢,, .
cn ¢t,l tﬁ( B > 2} an Vi ) ¢1.A

Proof

Put ' = v in y, ; to obtain:
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However, it is known that the Beta function is given
by (see for instance (Greene and Krantz, 2006)):

1 p-1 q-1
Y4y
s = —d s
B(p.q) £(1+y)p+q ly

which produces:
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Now, substituting u’ = v in ¢, ; gives:
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Hence, from (7) and (8) we obtain ¢, , =%ﬂ(5,5j as

stated above.
Lemma 3.2

For parameters ¢, A€(0, 1], define A,,(y) as:
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Then h,,(»)=2 h, (1) = w.; (defined by (6)). The
equality holds when y = 1.

Proof
For y € (0, 1] we have:
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Integrating the first term by parts leads to:
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Therefore, h,,(y) is strictly decreasing on (0, 1].
Hence 7, (y) 2 h; x(1) = ;4. As required.

We use Lemmas 3.1 and 3.2 to prove our main result.
Proofs of Main Results
Proof of Theorem 2.1

By Cauchy's inequality, we can estimate the left hand
side of (4) as follows:
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where:

w,,}v(a,b,x):: (11)

and:
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Substituting u = (SJ' L in (11) leads to:
X

1
(B/4) < 1A
X
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Use the substitution u

in the second integral to

y
have:
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where, ¢, is as defined in Lemma 3.1 and A,,(.) is as
defined in Lemma 3.2. Now, Apply Lemma 3.2 to
equation (13) to obtain:
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Now substitute (15) and (16) into inequality (10)
yields (4) as required.

Conclusion

We have derived new Hilbert-type inequality which
can be considered as a generalization of previously
proved ones.
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