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Abstract: In this study, the focus is to collect and summarize various 

advanced forecasting models for multivariate time series dataset. We have 

discussed about the inherent forecasting strengths and weaknesses related 

to these time series modelings. Also, the main section deal with the 

experience of using such data in econometric analysis. Besides, the 

implementation of SAS and R softwares improve the parameter estimation 

and forecasting accuracy. Eventually, we evaluated these forecasting 

models by different criterions and select the best one for the future 

tendency of land market value. 
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Introduction 

Nowadays, there are a lot of methods and techniques 

to analyze and forecasting time series dataset. A lot of 

researchers have been studying time series forecasting 

for approximately one century in order to get better 

forecasts for the future. To achieve best forecast 

accuracy level, various time series forecasting 

approaches have been proposed in the literature. After 

1980s, more sophisticated algorithms could be improved 

since properties of computers were enhanced. 

This research presents a time series estimation and 

prediction methods with the use of classic and advanced 

forecasting tools. Our discussion about different time 

series models is supported by giving the experimental 

forecast results, performed on several macroeconomic 

variables. Also, this paper gives an introduction to the 

basic concepts of time series modeling, together with 

some associated ideas such as stationarity and 

parsimony. Finally, the summary of various existing 

forecasting models can provide information to develop 

an appropriate forecasting model which describes the 

inherent feature of the series. 

The forecasting techniques can be broadly 

categorized as consisting of qualitative and quantitative 

methods. 

Qualitative forecasting techniques are mainly 

exploratory research. Qualitative forecasts are often 

used in providing the insights into the problems. 

However, although some data analysis may be 

performed, the expectations are based on the 

mathematical studies within the field of biological 

mathematics, physical and chemical mathematics and 

others. Perhaps the Delphi Method is the most formal 

and widely known qualitative forecasting method. This 

technique was developed by the RAND Corporation. It 

employs a panel of experts who are assumed to be 

knowledgeable about the problem. The panel members 

are physically separated to avoid their deliberations 

being impacted either by social pressures or by a single 

dominant individual. 

Quantitative forecasting techniques is used to 

quantify the problem by way of generating numerical 

data or data that can be transformed into usable statistics. 

Quantitative methods are much more structured and 

reliable results than Qualitative methods. In subsequent 

sections, as Fig. 1 shown, we will discuss all several 

different types of quantitative forecasting models. 

Advanced Forecasting Models 

Smoothing Model 

For this method, we will present mechanics of the 

most important exponential smoothing methods and 

their application in forecasting time series with 

various characteristics. This helps us develop an 

intuition to how these methods work. We apply the 

simple exponential smoothing method, Holt's linear 

method, exponential smoothing method and additive 

damped method and multiplicative damped method. 

For Exponential Smoothing Methods (ETS) model, we 
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take into innovation by considering multiplicative 

error equations: 
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− −
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where, the  ε ∼ NID(0, σ
2
), lt denotes an estimate of the 

level of the series at time t, bt denotes an estimate of the 

trend (slope) of the series at time t, α denotes the 

smoothing parameter for level. β denotes the smoothing 

parameter for the trend. 

 

 

 
Fig. 1: Summary of advanced forecasting models 
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Autoregressive Integrated Moving Average Model 

The time series processes we have discussed so far 

are all stationary processes, but many applied time 

series, particularly those arising from economic and 

business areas, are non-stationary. With respect to the 

class of covariance stationary processes, non-stationary 

time series can occur in many different ways. They could 

have non-constant means µt, time-varying second 

moments such as non-constant variance 2

t
σ , or both of 

these properties. In this section, we will explain the 

construction of a very useful class of homogeneous non-

stationary time series models, the autoregressive 

integrated moving average models. Some useful 

differencing and variance stabilizing transformations are 

introduced to connect the stationary and non-stationary 

time series models. 

Many models used in practice are of the simple 

ARIMA type, which have a long history and were 

formalized in Box and Jenkins (1970). ARIMA stands 

for Autoregressive Integrated Moving Average and an 

ARIMA(p, d, q) model for an observed series {yt}, t = 

1 ⋅⋅⋅ T is a model where the dth difference zt = yt-yt-d is 

taken to induce stationarity of the series. The process 

{zt} is then modeled as zt = µ + єt with: 

 

1 1 2 2 1 1t t t p t p t t q t q
є є є є u u uφ φ φ η η

− − − − −

= + + + + − − −⋯ ⋯  (5) 

 

or in terms of polynomials in the lag operator L (defined 

through L
s
xt = xt-s): 

 

( ) ( )t t
L є L uφ η=   (6) 

 

where, ut is white noise and usually Normally distributed 

as ut ∼ N(0, σ
2
). The stationarity and invertibility 

conditions are simply that the roots of φ(L) and η(L), 

respectively, are outside the unit circle circle (Mark, 1980). 

Vector Auto-Regression Model 

There are a variety of methods available for 

forecasting economic variables. One common type of 

forecast is Vector Auto-regression modeling for 

multivariate Time Series approach. This type of forecast 

is predominant in economics and financial analysis. 

A Vector Auto-Regression (VAR) model is an useful 

and flexible approach to describe the dynamic behavior 

of economic activity and financial time series dataset; 

that is, a vector of time series. In this system, we 

consider one equation for one variable as dependent 

variable with constant and lags. Each variable is assumed 

to influence with each other in the system, which makes 

direct interpretation of the estimated coefficients very 

difficult (See Hyndman and Athanasopoulos, 2014). We 

write a multi-dimensional VAR(p) as: 
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where, at are white noise process. E(at) = 0 and: 
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In the reduced form, we will include a six variable 

VAR with one lag in our forecasting model: 
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Coefficient φii,i indicates the influence of the iith lag 

of variable Yi on itself, while coefficient φij,i indicates the 

influence of the iith lag of variable Yj on Yi. 

A "VAR in levels" is known as the series modeled 

are stationary, we forecast them directly by fitting a 

VAR to the data. A "VAR in differences" is known as 

the series are non-stationary, we firstly take 

differences to make them stationary and then we fit a 

VAR model. In both cases, the models and 

coefficients are estimated equation by equation using 

the principle of least squares. 

We applied the VAR selection package for 

forecasting the raw data. The function returns 

information criteria and final prediction error for 

sequential increasing the lag order up to a VAR(p)-

process. which are based on the same sample size. For 

each equation, the parameters are estimated by 

minimizing the sum of squared ei,t values. 

Before we ran the R software, we take the log 

transformation of the raw data to stabilize the 

variance. And then, we set the 80% of the data as 

training set and the remaining data as the test set 

(Brockwell and Davis, 2002). 



Miss Lei Wang / Journal of Mathematics and Statistics 2018, Volume 14: 253.260 

DOI: 10.3844/jmssp.2018.253.260 

 

256 

VAR model generate the forecasting in a recursive 

structure. The VAR system require each variable is 

regressed on a constant and p las of its own lags as well 

as on p lags of each of the other variables. To illustrate 

the process, assume that we have fitted the multi-

dimensional VAR (1) described in equations Equation 

(7) for all observations up to time T. 

Then the one-step-ahead forecasts are generated by: 

 

1, 1,
1, 1| 1 11,1 12,1

ˆ ˆˆ ˆ
T T

T T y y
y c φ φ

+
= + +   (8) 

 

1, 2,
2, 1| 1 21,1 22,1

ˆ ˆˆ ˆ
T T

T T y y
y c φ φ

+
= + +   (9) 

 

1, 3,
3, 1| 1 31,1 32,1

ˆ ˆˆ ˆ
T T

T T y y
y c φ φ

+
= + +   (10) 
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T T y y
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+
= + +   (11) 

 

1, 5,
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T T y y
y c φ φ

+
= + +   (12) 

 

1, 6,
6, 1| 1 61,1 62,1

ˆ ˆˆ ˆ
T T

T T y y
y c φ φ

+
= + +   (13) 

 

This is the same form as Equation (8) to Equation 

(13) except that the errors have been set to zero and 

parameters have been replaced with their estimates. 

AR-GARCH Model 

In 1982, Engle introduced the Auto-Regressive 

Conditional Heteroscedasticity (ARCH) and explicitly 

recognizes this type of temporal dependence. Moreover, 

Crawford and Fratantoni (2003) applied a Markov-

switching model to U.S. home price and compare the 

performance with ARIMA and Generalized 

Autoregressive Conditional Heteroscedasticity 

(GARCH) models. In 1991, Nelson put forward 

Exponential Garch (E-Garch) and Glosten et al. (1993), 

introduced GJR-GARCH  model (See Engle, 2001). 

Besides, Miles (2008) evaluate the Forecasting 

Performance of Linear and Non-linear Models of House 

Prices. To correlate changes in volatility with changes in 

returns, Engle et al. (1987) proposed the GARCH-M 

model (Miles, 2008). 

The ARCH model assumes that the changes in 

variance is a function of the realizations of squares of 

preceding errors. 

To model a time series єt using an ARCH process, we 

assume that: 

 

t t t
h Z є=   (14) 
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where, ht is the conditional variance. 

Especially, the order of the model needs to be 

specified for each of the parametric models before fitting 

the model to the in-sample data. 

The ability to model volatility clustering can be seen 

in the definition of the conditional variance where it is 

evident that a large 2

t i
Z

−

will give rise to a large 2

t
h : 
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Hence the conditional variance of Zt is: 
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We can also state that the current conditional 

variance should also depend on the previous conditional 

variances as: 
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h h h h
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 (21) 

 

In this notation, the error term Zt follow a generalized 

autoregressive conditional heteroskedastic process with 

orders p and q, GARCH(p, q), which is proposed by 

Bollerslev (2006). 

Although the error term, єt, can be autocorrelated in 

the regression model, it should be stationary. A non-

stationary error structure could produce a spurious 

regression where a significant regression can be achieved 

for a totally unrelated series as shown in Clive and Paul 

(1986) and Peter (1986). In such a case, one should 

properly difference the series before estimating the 

regression (Brockwell and Davis, 2002). 

To fit the AR(m)- GARCH(p, q) model, we consider 

the following formula: 
 

( )1 2
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∑ ∑
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where, f(t, xt-1, xt-2,⋅⋅⋅) is the regression function of xt, et ∼ 

N(0.1). 
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GARCH model is a generalization of ARCH model. 

In GARCH (p,q), when p = 0, it is ARCH(q) model. 

To fit a GARCH model for єt, we must follow. 

A portmanteau Q test is used for autocorrelation in 

errors: 

 

H0: There is no evidence show that there are 

autocorrelation in residuals for some lag p. 

H1: There are some evidence show that there are 

autocorrelation in residuals for some lag p. 

 

The investigation of conditional variance models has 

been one of the main areas of study in time series 

analysis of financial markets. Towards these ends, the 

GARCH model and its variations have been applied to 

many risk and volatility studies. We use above simple 

examples to illustrate the procedures (William, 2006). 

Bayesian VAR Model 

The Bayesian approach was introduced to a reevaluation 

of the VAR approach based on the Bayesian principles. 

Thus, the VAR approach was characterized by several 

deficiencies, especially due to the over-parameterization 

problems. The Bayesian approach proposes a solution to 

this problem due to the fact that it does not ponder too much 

any of the parameters of the model. However the emphasis 

falls on the use of prior distributions for the parameters, the 

prior distributions being a key factor in the BVAR 

approach. Therefore, the advantages and disadvantages of 

VAR model and BVAR were listed in Table 1. 

When developing the BVAR model, Litterman has 

made some assumptions on the unrestricted VAR model 

given by the following equations (Volkan and Gu, 2009): 
 

1 1 2 2t t t p t p t
Y y y y єµ

− − −

= + Π +Π + +Π +⋯   (22) 

 

1t t t
y y c є

−

− = +   (23) 

 

As for example, writing the nth equation in a BVAR 

model: 
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  (24) 

The s

ij
Φ  gives the coefficient relating yit to yj,t-s 

Litterman (1980) assumed that 1

ii
Φ  = 1 and all the other 

( )s
ij

Φ = 0. These 0 and 1 values characterize the mean of 

the prior distribution for the coefficients. Moreover, 

Litterman (1980) assumed that: 
 

( ) ( ) ( ) ( ) ( )( )
2

21 2

2
1, 1, 0, , ,

s s

ii ii ij
N N N S i j l

s

γ
γ

 
Φ ∼ Φ ∼ Φ ∼     

 
 (25) 

 

Although each equation i = 1, 2,..., n of the VAR is 

estimated separately, the same value γ is used for each 

i. Smaller values of γ mean greater confidence in the 

prior information. 

According to Litterman (1986), the prior for the 

variance is the only other prior to be set, the standard error 

on the coefficient estimate of lag l of variable j in equation 

i is denoted by a standard deviation of the form S(i, j, l): 

 

( )
( ) ( ) ( ),

, ,

i

i

g l f i j
S i j l

γ σ

σ

  =   (26) 

 

and: 

 

( )
1 ,

,
,.

ij

when i j
f i j

w when i j

=
= 

≠
 

 

where, i

j

σ

σ

 is correction for the scale for the series i 

compared with j and 0 < γ < 1. In Equation (26), the 

model requires choosing specific values for g(l) (the lag 

decay) and γ, the tightness parameter and the standard 

deviation on the first own lag, will improve forecasting 

performance. Thus, the parameter g(l) measures the 

tightness on lag l with respect to lag 1 and is assumed 

to have a harmonic shape with a decay factor of λ. (See 

Gupta and Sichei, 2006). 

Litterman (1984a) a found that tight priors around 

zero on coefficients of other variables provide better 

forecast. Choon-Shan and Roy (2004) recommended a 

value of λ = 0.7 in concert with γ = 0.9. Kinal and Ratner 

(1986) used λ = 0.40 and γ = 0.90 (See Choon-Shan and 

Roy, 2004). 

 
Table 1: Comparison of Bayesian VAR and VAR models 

 Advantages Disadvantages 

Bayesian VAR model Reducing root mean square imposing some Overcome problems with prior distributions 

 prior restrictions on parameters percent error 

 Easier and more accurate assessment of uncertainty. 

VAR model Fairer assumptions about data interaction of different Over-parameterization the loss of degrees of 

 related variables in forecasting macroeconomic freedom which exponentially decrease for the 

 variable number of lags included over-fitting phenomenon 
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VECM Model 

VECMs are a theoretically-driven approach useful 

for estimating both short-term and long-term effects 

of one time series on another. Inherent in the 

distinction is the notion of equilibrium. Failure to 

establish co-integration often leads to spurious 

regression problems. 

The VECM(P) form with the cointegration rank r(≤ k) 

is written as: 

 

1 1t t t t
LLMV LLMV LLMV єδ π

− −

∆ = + +Φ∆ +  (27) 

 

where, єt is Gaussian random variable and are 

matrices of parameters estimated using OLS. The 

component π produces different linear combinations 

of levels of the time series Xt as such the matrix 

LLMVt contains information about the long run 

properties of the system describe by the model. For 

instance, if the rank of the matrix π is 0, then no series 

of the variables can be expressed as a linear 

combination of the remaining series. This indicates 

that there does not exists a long run relationship 

among the series of the VAR model as a test of co-

integration a rank of 0 means integration is rejected. 

On the other hand, if the rank of the coefficient matrix π is 

1, or greater than 1 then there exists 1 or more co-

integrating vectors. This indicates a long run relationship 

or that the series exhibits significant evidence or behaving 

as a co-integrated system (See Kamal, 2014). 

Since the Johansen approach requires a correctly 

specified VECM, it is necessary to ensure that the 

residuals in the model are "white noise". This involves 

setting the appropriate lag-length in the model and 

including (usually dummy) variables that only affect 

the short-run behavior of the model. It is pointed out 

that residual misspecification can arise as a 

consequence of omitting these important conditioning 

variables and increasing the lag-length is often not the 

solution (as it usually is, for example, when 

autocorrelation is present). The procedures for testing 

the properties of the residuals are discussed and 

illustrated through examples. We then consider the 

method of testing for "reduced rank", that is, testing 

how many co-integration vectors are present in the 

model. At this stage a major issue is confronted which 

presents considerable difficulty in applied work, 

namely that the reduced rank regression procedure 

provides information on how many unique co-

integration vectors span the co-integration space, while 

any linear combination of the stationary vectors is itself 

also a stationary vector (See Richard, 1995). 

Forecasting Accuracy 

In this paper, the author focus on statistical 

methodology and forecast macroeconomic variable on 

time series datasets regarding real estate scenario. The 

Table 2 showed all the potential univariate forecasting 

models. However, the Log transformation reduced the 

Root Mean Square Error (RMSE) significantly, which is 

almost near to 0.1. 

We mainly evaluate forecasting models based on 

the two performance measures of RMSE and Akaike 

Information Criterion (AIC) for univariate forecasting 

model. As was the case with the forecast in Table 4, land 

market value is projected to continue increase in the 

following years. It shows the stable increase in the future. 

This number will significantly rise to 7.3 in 2018. 

 
Table 2: Comparison Table for univariate forecasting model 

Model  ME  RMSE  MAE  MPE  MAPE  AIC 

Regression  -1.103e-13  1127.403  918.1104  0.6624  21.1810  586.37193 

Log Regression  -2.7e-17  0.1661  0.1489  -0.0371  1.7665  -12.84073 

Regression with  -5.2326  590.5238  424.728  -1.1753  7.9002  545.45 

AR (2) errors 

ETS (M,A,N)  -91.4374  617.2248  339.1251  -0.8840  408.4312  413.6146 

ARIMA (1,1,0)  88.7736  713.7366  477.83  2.6121  7.973  532.83 

Log ARIMA (2,0,1)  0.001  0.063  0.057  0.006  0.692  N/A 

 
Table 3: Comparison Table for multivariate forecasting model 

Model  VAR (1)  BVAR (2)  VECM (2)  AR(2)-GARCH(1,1) 

RMSE  0.08125  0.00797  0.0059  0.139570 

AICC  -860.1579  -4.5159  -12.8474  -39.04328 

HQC 1   -4.49395  -12.8065  -39.031194 

AIC -  4.52431  -12.8951  -39.04328 

SBC 2   -4.43271  -12.6122  -32.99622 

FPEC 3   0.010844  2.514E-6 

BIC 4  -805.7328 
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The author measured forecasting performance by 

RMSE and AIC, as the authors did and we will also 

compare performance in terms of Mean absolute Error 

(MAE), AICC, Bayesian Information Criterion (BIC) 

and so on. The MAE criterion is most appropriate 

when the cost of a forecast error rises proportionally 

with respect to the absolute size of the error. With 

RMSE, the cost of the error rises as the square of the 

error and so large errors can be weighted far more 

than proportionally. 

In addition, while RMSE and AIC are good 

relative measures, both depend on the scale of the 

forecast variable. Moreover, each could hypothetically 

be quite low and still contain systematic bias and do a 

poor job of forecasting average value changes. A 

given forecasting model may have a systematic 

positive or negative bias and do a poor job of tracking 

the actual mean of value changes and measures such 

as RMSE and MAE could well miss this defect. We 

will thus evaluate forecasts based on the four 

performance measures of RMSE, AIC and MAE. 

In Table 3, we provide the forecasting accuracy for 

multivariate forecasting model. But some criterion are 

missing and not comparable. Eventually, we selected 

VECM (2) for forecasting land market value. Because 

the VECM (2) minimize the RMSE and AICC (the 

small-sample-size corrected version of Akaike 

information criterion). 

Conclusion 

Land market value, both directly and indirectly, is 

related to the housing market, commercial and 

residential buildings, construction industry, job-hunting 

market and home price. Therefore, the improved 

forecasting promise important benefits for any parties 

exposed to housing market (Miles, 2008). 

The Table 4 shows the VECM (2) forecasting 

model for the general tendency of the land market 

value for about 10 years. The forecasting results 

shows the stable increase in the future. This number 

will increase to 9.12 in 2022. 

The forecasting in real estate market is more 

important and necessary for the economy of 

American, because the tendency of Land Market 

Value would be helpful for government and investor 

to examine the problem in housing market, make the 

appropriate policy and regulate the housing market. 

On the other hand, forecasting techniques are widely 

used in the area of finance and housing market. Thus, 

a given forecasting model did a good job of tracking 

the actual value of land market changes. Most 

importantly, the advanced forecasting model can 

improve the accuracy and provide a better accurate 

guidance and more options for decision-maker. 

Table 4: Forecasting VECM (2) Model for LLMV 

Year  Forecasting Error 95% L B 95% U B 

2013  8.61155 0.07584 8.46290 8.76019 

2014  8.66936 0.15104 8.37334 8.96539 

2015 8.76250 0.22786 8.31590 9.20910 

2016 8.86550 0.30301 8.27161 9.45939 

2017 8.96023 0.37445 8.22633 9.69413 

2018 9.03590 0.44069 8.17217 9.89963 

2019 9.08805 0.50070 8.10670 10.06941 

2020 9.11704 0.55394 8.03134 10.20275 

2021 9.12638 0.60040 7.94961 10.30315 

2022 9.12117 0.64054 7.86573 10.37661 
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Appendix
a
: 1982-2015 Land Market Value Datasets

b
 

Year LMVc CPI GDPd IR UR CCI PP PMI Year LMV CPI GDP IR UR CCI PP PMI 

1982 1274.88 96.5 6.49 6.2 9.7 43.4 231.66 42.8 2000 4509.19 172.2 12.68 3.4 4 75.9 282.16 43.9 
1983 1232.25 99.6 7 3.2 9.6 44.70 233.79 69.9 2001 5428.39 177.1 12.71 2.8 4.7 79.7 284.97 45.3 
1984 1387.16 103.9 7.4 4.3 7.5 46.7 235.82 50.6 2002 6123.09 179.9 12.96 1.6 5.8 81.7 287.63 51.6 

1985 1546.45 107.6 7.71 3.6 7.2 47.9 237.92 50.7 2003 7208.82 184.13 13.53 2.3 6 85.9 290.11 60.1 

1986 1879.09 109.6 7.94 1.9 7 50.4 240.13 50.5 2004 8646.18 188.9 13.95 2.7 5.5 93.1 292.81 57.2 
1987 2297.13 113.6 8.29 3.6 6.2 2.7 242.29 61 2005 10708.93 195.3 14.37 3.4 5.1 100 295.52 55.1 

1988 2678.79 118.3 8.61 4.1 5.5 54.5 244.50 56 2006 12547.31 201.6 14.72 3.2 4.6 106 298.38 51.4 

1989 3097.56 124.8 8.85 4.8 5.3 56.4 246.82 47.4 2007 12290.28 207.3 14.99 2.8 4.6 107 301.23 49 
1990 3257.63 130.7 8.91 5.4 5.6 58 249.62 40.8 2008 10464.64 215.3 14.58 3.82 5.8 103.3 304.09 33.1 

1991 3050.34 136.2 9.02 4.2 6.8 58.2 252.98 46.8 2009 7537.82 214.5 14.54 -0.32 9.3 98.10 306.77 55.3 

1992 3089.8 140.3 9.41 3 7.5 58.9 256.51 54.2 2010 7173.83 218.1 14.94 1.64 9.6 96.4 309.35 57.5 
1993 2948.23 114.5 9.65 3 6.9 61.8 259.92 55.6 2011 6184.28 224.9 15.19 3.14 8.9 97.4 311.72 53.1 

1994 2995.76 148.2 10.05 2.6 6.1 64.6 263.13 56.1 2012 5543.56 229.6 15.43 2.08 8.1 98.4 314.11 50.4 

1995 2945.05 152.4 10.28 2.8 5.6 67.3 266.28 46.2 2013 6777.04 233 15.92 1.46 7.4 104.8 316.5 56.5 
1996 3033.87 156.9 10.74 3 5.4 68.6 269.39 55.2 2014 8152 237.2 16.29 1.61 6.2 111.8 318.86 55.1 

1997 3120.62 160.5 11.21 2.3 4.9 70.6 272.65 54.5 2015 8737.11 242.1 16.3 0.1 5.5 100.37 320.99 53.5 

1998 3437.02 163.11 11.77 1.6 4.5 72.5 275.85 46.8 

1999 3886.17 166.6 12.32 2.2 4.2 72.7 279.04 57.8 
aThe data was based on the 34 years' national data on past and present real estate transaction from 1982 to 2015. 
bhttp://www.statista.com/statistics/188105/annual-gdp-of-the-united-states-since-1990/ 

Source: U.S. Bureau of Labor Statistics https://en.wikipedia.org/wiki/Main-Page. 
cThe unit of land market value is million 
dThe unit of GDP is trillion. 


