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Abstract: Option pricing using artificial neural networks (ANN) model 
while relaxing the assumption of constant volatility still remains a 
challenge. The conventional practice for pure ANN models has been to 
either model volatility using the very ANN model and have the model 
output fed as an input to the ANN option pricing model, or to make 
allowances for a large number of lags directly as inputs to the option 
pricing model with the belief that the ability of ANN to incorporate 
flexibility and redundancy creates a more robust model. This has been 
done in spite of a well-known fact-that financial time series data 
harbors a set of characteristics such as volatility clustering, 
leptokurtosis and leverage effects-features that ANNs in their pure 
forms have proved inadequate in capturing. Consequently, this study 
sought to follow the conventional methods employed by other studies 
and developed two pure ANN option pricing models-one with 
constant volatility and the other while violating the assumption of 
constant volatility with an aim of establishing whether significant 
differences exist in the outputs of the two models. The intraday data 
for the AAPL stock option for the period between December 2016 
and March 2017 with 56,238 data points was used in validating the 
developed models. Results indicate that the ANN model (with varying 
volatility) makes better predictions than the model with constant 
volatility. However, the difference between the performance of the 
two models is not significant at 0.05 level of significance.  
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Introduction 

For the past two decades, the Black-Scholes Model 
(BSM) has continuously received considerable attention 
especially in underlying probability attributes of an 
European call option on a non-dividend stock (Al Saedi 
and Tularam, 2018) and has been identified as the basic 
building block of the financial derivatives theory 
(Wilmott et al., 1995). However, through numerous 
studies, inconsistencies have consistently been proved to 
exist between the market prices and the BSM output-a 
vice that has been associated with the highly 
questionable assumptions that underpin the development 
and use of the BSM, including but not limited to: 
Constant volatility, existence of efficient markets, non-

dividend paying structures, known and constant interest 
rates, log-normally distributed returns, commission free 
transactions and a perfectly liquid market. 

In a bid to contain this discrepancies, advances have 
been made both in the model itself and its respective 
solution methods-both analytical and numerical. The 
advances made on the analytical solutions include but 
are not limited to: the use of the generalization technique 
in which parabolic partial differential equations were 
reduced to canonical form (Harper, 1994); the finite-
difference methods to provide the exact solution of the 
Black-Scholes Equation (BSE) (Forsyth et al., 1999), 
Mellin transformation (Jódar et al., 2005), application of 
time-varying parameters technique in coming up with a 
simple derivation of the explicit formula of an option in 
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time-dependent parameters of the Black-Scholes PDE 
(Rodrigo and Mamon, 2006), use of the Adomain 
approximate decomposition technique (Bohner and 
Zheng, 2009), application of the Projected Differential 
Transformation Method (PDTM), a modification of the 
Differential Transformation Method (DTM) on the BSE 
for European option valuation (Edeki et al., 2015) and 
finally the use of Laplace transform to provide a solution 
to the Black-Scholes terminal value (Shin and Kim, 2016), 
all as reviewed in detail by Al Saedi and Tularam (2018). 

On the other hand, numerous advances have similarly 
been made on the numerical solution including the use of 
the: Mellin transform (Cortés et al., 2005), semi-
discretization technique (Company et al., 2008), Crank-
Niolcon method (Ankudinova and Ehrhardt, 2008), 
Cubic spline wavelets and multi-wavelet bases method 
(Černá et al., 2016), the two-step backward differentiation 
formula in the temporal discretization and a Higher-Order 
Difference approximation with Identity Expansion 
(HODIE) scheme (Rao, 2016), among others. A detailed 
review on the use of these techniques can be found on Al 
Saedi and Tularam (2018). 

In spite of such and many more concerted efforts 
having been employed to improve the performance of 
the BSM, findings from numerous studies still show that 
these techniques have not been able to very well capture 
more realistic aspects that characterize day-to-day 
transactions such as the presence of transaction costs, 
high volatility, illiquid markets and large investor 
preference. In addition, market participants change their 
option pricing attitudes from time to time and thus, many 
researchers hold the view that existing complexity issues 
require non-linear solutions. 

It is against this background that a good number of 
researchers shifted focus to non-parametric models 
flexible enough and capable of capturing the non-linear 
patterns that characterize the observed market data. One 
such model is the Artificial Neural Network (ANN) 
model. ANNs have increasingly become promising 
alternatives to the BSM and other parametric option 
pricing models. This is due to the fact that unlike the 
BSM, they do not require or rely on any underlying 
assumptions (Malliaris and Salchenberg, 1993) and are 
trained inductively using historical or implied input 
variables and option transaction data (Andreou et al., 
2006). Their popularity as well as use in option pricing is 
constantly increasing as reflected in studies by (Enke and 
Dagli, 2007; Mostafa and Dillon, 2008; Hajizadeha and 
Seifia, 2011) among others. Malliaris and Salchenberg 
(1993), are among the pioneers of ANN option pricing 
models. The duo sought not only to develop an ANN 
model that processes financial input data to estimate the 
market option prices for European options at closing, but 
also to compare this network’s ability to the BSM. 

Comparisons revealed that the MSE for the ANN was 
less than that of the BSM in more than half the cases 
examined and for both in-the-money and out-of-the 
money prices. Based on these results, the study concludes 
that the ANN methodology offers a valuable alternative to 
estimating option prices to the traditional BSM. 

Another immediate attempt was by Hutchnison et al. 
(1994). They used three different network architectures 
namely: Radial Basis Function (RBF), Multilayer 
Perception (MLP) and Projection Pursuit Regression (PPR) 
to fit both Monte-Carlo simulated Brownian underlier and 
Black-Scholes option data and S and P 500 futures thereof. 
The authors however used a minimalist approach in the 
selection of their inputs and restricted the network inputs to 
time to maturity (T-t) and Moneyness. Interest rate and 
volatility were also assumed to be constant. Since then, a 
good number of studies have been conducted on option 
pricing using ANN (Amilon, 2003; Mostafa And Dillon, 
2008; Hajizedah and Seifi, 2011; Gradojevic et al., 2007; 
Mitra, 2012). 

We however note that a good number of these studies 
have ended up curing the linearity aspect that existed in 
the parametric models while still clinging to the same 
assumptions on the BSM. Hutchnison et al. (1994) for 
instance, by using a minimalist approach in the selection 
of their inputs and restricting the network inputs to time 
to maturity (T−t) and Moneyness, ends up holding 
interest rate and volatility constant-an assumption that 
draws criticism in the BSM. Secondly, majority of the 
studies using pure ANN models have handled the time 
variant volatility component by pre-modelling it using 
ANN, before using it as an input to the ANN option 
pricing model. However, it may not pass unnoticed that 
financial data is characterized by some features such as 
volatility clustering, leptokurtosis among others that 
ANN have proved inadequate in capturing. This study 
therefore seeks to determine whether this technique has 
any significance in modelling option prices, by 
comparing purely ANN option pricing models with time-
variant volatility and ANN models with constant 
volatility, so asto establish whether the former has any 
impact on the option prices vis-à-vis the later model. 

Materials and Methods  

Data 

The study used intraday data for the AAPL stock 
option for the period between December 2016 and 
March 2017 with 56,238 data points. 

The Case of Constant Volatility 

Since our objective in this subsection is to price 
under the no arbitrage assumptions, with constant 
interest rate and constant volatility, the model inputs 
consists of time to maturity and moneyness, λ, which is 
the ratio of the strike price to the underlying asset price 
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defined by: 
 

t

X

S
λ =  (1) 

 
There is no celebrated theory for the determination of 

an optimal ANN architecture. Rather, this is generally 
realized by fixing the number of layers and choosing the 
number of nodes in each layer. There are always two 
layers representing the input and output variables in any 
neural network and therefore choosing the number of 
hidden layers is always a puzzle in ANN structure. The 
number of hidden nodes allow neural networks to 
capture non-linear patterns and detect the complex 
relationships in the data. Networks with too voluminous 
hidden nodes may cause over-fitting glitches leading to 
poor forecasting capacity. Previous research e.g., by 
Shahin et al. (2002) has shown that one hidden layer is 
sufficient to approximate any continuous function, 
provided that sufficient connection weights are given. 

The very first step in ANN modelling involves the 
transformation of input variables to values between 0 
and 1. As Najjar et al. (1997) pointed out, this 
adjustment is effective in ensuring faster training by 
preventing larger values from overriding smaller ones. 
As a result, the inputs to this model were first 
transformed as follows: For moneyness: 
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t t
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and for time to maturity we had: 
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( ) ( )
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α

α

α

− − −
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The normalized inputs are then multiplied by weights 

(to be determined), after which they act as inputs to each 
of the hidden nodes. As a result, the input to the j^th 
hidden node is obtained as follows: For moneyness, we 
have the transformation: 
 

*

jM jM

t

X
I

S
α

α

ω

 
=   

 
 (4)  

 
Where: 
I
αjM = The normalized moneyness input to the jth  
  hidden node 
ωjM = Weights connecting the normalized moneyness  
  input to the jth hidden node  
M = Index notation for moneyness 
 j = The hidden neuron position for j = 1, 2, …, H 
 

On the other hand, for time to maturity, we have 

the transformation: 
 
 ( )

*

j j
I T t
α τ τ

α

ω= −  (5) 
 
Where: 
I
αjM = The normalized time to maturity input to the jth  

  hidden node 
ωjt = Weights connecting the normalized moneyness  
  input to the jth hidden node  
M = Index notation for moneyness 
 j = The hidden neuron position for j = 1, 2, …, H 
 

Ultimately, the net input to the jth hidden node is 
obtained as: 
 

( )
*

*

0Hj j jM j

t

X
I T t

S
τ

α

α

ω ω ω

 
= + + −  

 
 (6) 

 
One of the major strengths of neural networks is their 

ability to capture nonlinear patterns in a given dataset. 
This is achieved through the use of activation functions 
which process data in the hidden layers of the model. 
Activation functions not only capture non-linear 
relationships existing between inputs and outputs, but 
also constrain the values of the output layer into a 
bounded domain. The choice of an activation function is 
therefore critical and should be sensitive to the nature of 
data as well as the desired output. 

The sigmoid function is the only function that in 
addition to producing positive outputs, produces outputs 
whose values range between 0 and 1. This is necessary 
first, to satisfy the option pricing conditions such as the 
positivity of option prices and secondly in rescaling the 
inputs from other neurons back to (0,1). The sigmoid 
function (defined as in Equation 7) was thus taken as the 
activation function of choice i.e.: 
 

( )
1
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y
e

φ
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+

 (7) 

 
As a result, the input IHj of the jth hidden node is 

transformed as follows: 
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Where: 

( )0
, , , , , ,

j j jM j t
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τ
ϕ ω ω ω  = The output from the jth  

  hidden node, for j = 1,  
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H = The number of hidden  
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 = The input to the jth  
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  hidden node  
ωj0 = The bias to the jth  
  hidden node 
α  = 1, 2,…, H 
 

Equation 8 represents the output of the jth hidden 
node, which needs to be combined with the outputs from 
the other H-1 hidden nodes into a single value to act as 
an input to the output node. This is done through a 
connection of weights linking the hidden neurons to the 
output neuron as follows: 
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 (9) 

 
Where: 
ω0 = The bias to the output node 
ωj0 = The weight connecting the jth hidden node to the 
  output node 
 

From the output neuron, the input Ioj defined in Equation 
13 is transformed using the sigmoid function defined in 
Equation 7. This is to ensure that the option prices modelled 
remain positive and that the values remain in the range of 0 
and 1. This transformation implies that the resultant output 
from the neuron is of the form: 
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Finally, a reverse of expression 2 and 3, i.e.: 
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is used to de-scale the scaled neuron output and produce 
the target output for each α, for α = 1,2, …, n and where 

1 0 0 0
, , , ,j j jM jτω ω ω ω ω=ω . 

Equation 11 is the target output of our model, whose 
difference with the real time option prices 

c
Pɶ we try to 

minimize in training. This output, for each α = 1, 2, …, n 
can be re-written as in Equation 12: 
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 (12) 

Determining H, the Number of Hidden Nodes 

For a single hidden layer network, several rules-of-
thumb have been suggested for obtaining the best 
number of hidden layer nodes. These include: 
 
(a) Taking the number of hidden nodes to be 75% of the 

input units (Salchenberger et al., 1992). In that case, 
this implies that the H in this study would be 
obtained as: 

 

 

0.75

0.75(2)

1.5

2

H I=

=

=

≅

  (13) 

 
(b) Taking the number of hidden nodes to be 

somewhere between the average and the sum of the 
input and output nodes (Hajela and Berke, 1991), 
implying that in our case, H would lie in the range: 

 
 1 3H≤ ≤  (14) 
 
(c) Fixing an upper limit and then working backwards. 

Hecht-Nielsen (1989) and Caudill (1988) suggested 
that the upper limit of the number of hidden nodes 
be twice the number of inputs plus 1. Letting I be 
the number of inputs, H in this case would be 
obtained as follows: 

 

 

2 1

2(2) 1

5

H I= +

= +

=

 (15) 

 
This study proposes and adopts a method for 

number of hidden neurons (H) determination in which 
all the three proposals by (Salchenberger et al. (1992), 
Hajela and Berke (1991) and Hecht-Nielsen (1989) 
Caudill (1988) are incorporated. 

Let H denote the number of hidden neuron, I- the 
number of input nodes and O- the number of output 
nodes. Then: 
 

,0.75 2 1
2

I O
Min I H I

+ 
≤ ≤ + 

 
 (16) 

 
This is so because, clearly, the minimum number 

of nodes would fall between seventy five percent of 
the inputs and the average of the input and output 
nodes, while the maximum would be the Hecht-
Nielsen’s and Caudill’s 2I+1.  

Training to the Network 

The SSE was used in training the network, in which 
case the weights were adjusted in such a way that the 
SSE between the targets 

c
Pɶ  and the models output 

1
( , , , , )

t
X S T tγ ω  was minimized. Since the study used the 
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bipolar activation function, the Quasi-Newton algorithm 
was used in minimization. 

The ANN Option Pricing Model with Time-Variant 

Volatility 

Volatility 

Though the Black-Scholes model and some other 
option pricing models have always assumed constant 
volatility, empirical evidence strongly suggests 
otherwise. In incorporating time-variant volatility, ANN 
forecasts of historical volatility were used as inputs in 

addition to moneyness 
t

X

S
 and time to maturity (T-t). 

The historical volatility was first computed as follows. 
Let rt denote returns in the price of the underlying 

asset (stock) given the asset price at t-1 defined as: 
 

1

1

t t
t

t

P P
r

P

−

−

−

=  (17) 

 
Further, define the average of rt over a time T and 

denote it by r  as: 
 

1

T

t
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r

r
T

=

=

∑
 (18) 

 
Then, the historical volatility is given by: 

 

( )
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t
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T
σ
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−

=

−

∑
 (19) 

 
Consequently, a d-days historical volatility is 

obtained by substituting T by d, for T<d, to obtain 
moving averages or order d-1 of the form: 
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2

1

1

d

t

t

d
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σ
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−

=

−

∑
 (20) 

 
The conventionally and widely used number of 

days (ds) in computing historical volatility are d = 10, 
20, 30. Thus to allow for comparison and taking into 
account the number of trading days for our data, the 
study took d = 10. 

Conventionally, non-constant volatility in option 
pricing using ANN has been modelled by taking various 
lags alongside other variables such as lags of an 
underlying asset as inputs to the ANN and varying this 
inputs until the optimal model is obtained. Malliaris and 
Salchenberg (1995) for instance used this approach and 
ended up with 13 input variables. This study chose to use 
various volatility lags as inputs to the ANN volatility 
model. The implication is that we began by expressing 
historical volatility as a function of its own lags, so that: 

( )1 2
, ,...,

d dt dt dt K
Dσ σ σ σ

− − −

=  (21) 
 

Consequently, we would have K input nodes 
representing the K volatility lags and a single output 
neuron representing the d-day historical volatility. 
Similar steps explained from equation 2 to 12 are used in 
modelling volatility so that we end up with a 
transformed volatility output which we denote by σdα. 
The outputs of this ANN volatility model (σdα) are then 
fed as inputs to the ANN option pricing model in 
addition to moneyness and time to maturity.  

Just as before, the now three inputs are first 
transformed to ranges between 0 and 1. From here, 
similar steps used in developing the ANN model with 
constant volatility are used with the only difference 
being the additional input node representing the time 
variant volatility. This is summarized diagrammatically 
and mathematically as in Fig. 1 follows: 
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As it can be seen, the resultant output from the output neuron is of the form: 
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 (22) 

 
A reverse of the scaling expression i.e: 
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descales the scaled neuron output and produces the target output ( )2 2

, , , , , ,
t d

X S T t
α

γ ω σ  for each α for α = 1,2,…..n. 

Equation 23 gives the target output of the model whose difference with the real valued option prices 
C
Pɶ we minimize in 

training using the quasi-newton, just as it were with the constant volatility model. 
 

 
 

Fig. 1: Formulation of the ANN option pricing model with non-constant volatility 
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Results and Discussion 

In validating the developed model, the study used 
intraday data for the AAPL stock option for the period 
between December 2016 and March 2017 with 56,238 
data points. Of these options values, 59.15% were In The 
Money (ITM) while 40.85% were Out Of The Money 
(OTM). The data was divided into three sets with 50% 
(28,119) used in training the model, 25% (14,160) used 
in testing and the remaining 25% (14,059) used in the 
validation of the model. 

Among the tasks in the development of our ANN 
models was to determine the optimal number of hidden 
layers (which structurally had to be the same), the 
learning difficulty of the models in terms of the training 
time and the performance of the model in terms of the 
differences between the predictions generated by it and 
the target output. For the ANN option pricing model 
with constant volatility, results indicated no variations 
between the number of hidden neurons and the SSE. 
However, variation existed between the number of 
neurons and the network training time as shown in Fig. 2. 
Results further indicate that in spite of the neurons giving 
similar SSEs, two hidden neurons had the least training 
time of 0.03s. As a consequence, a model with two hidden 
neurons and a single layer of hidden nodes was adopted. 

Interest was also drawn to how the various learning 
rates impact on the training time of the model. As shown 
on Figure 3, the learning rate of 0.3 provided the 
quickest training time of 0.3s. Other statistics worth 
noting is that the number of iterations were varied 
between 1000 and 100000 with the optimal weight being 
achieved in 59,676 iterations. 

The SSE, MSE and the RMSE were used to 
measure the performance of the ANN model with 
constant volatility during training, testing and 
validation. Table 1 summarizes the error statistics 
obtained in the three phrases. 

An analysis of the performance of the model with 
regards to ITM and OTM options reveals that the model 
predicts the OTM option prices better than the ITM 
option prices. This result is consistent with what was 
obtained by Malliaris and Salchenber (1993), whose 
conventional ANN model revealed that the ANN model 
performed better in modelling OTM option prices 
compared to ITM option prices. Secondly, the pattern in 
which the validation errors are slightly above the testing 
ones exhibited by the predicted values for both the ITM 
and OTM is also exhibited by the ITM option prices but 
not the OTM option prices, since for OTM, the 
validation errors are uniquely less than ITM errors. The 
study therefore concluded that the pattern exhibited by 
the joint model could be a carryover effect from the ITM 

option prices which, by the way, formed a greater share 
(59.15%) of the option contracts analyzed. Further it 
demonstrates the nature of the data as the training, 
testing and validation datasets were separated 
hierarchically. Table 2 summarizes the results. 

As also noted, in the second part of this study, in 
addition to moneyness and time to maturity, the study 
used historical volatility as one of the option pricing 
variables. The conventional practice adopted by the ANN 
option price modelers dealing with time-variant volatility 
is to make allowances for a large number of lags (in the 
case of volatility) with the belief that the ability of ANN to 
incorporate flexibility and redundancy creates a more 
robust model. This is exactly what was done in this 
section with volatility lags being varied beginning with lag 
one and increasing the number of lags until the optimal 
model was obtained. While dealing with volatility, 
attention was drawn to the effect of the lag variation on 
the model complexity in terms of the structure (no of 
hidden layers and nodes therein, learning rate, training 
time, etc.) and the model performance. The study 
observed these variables while varying the lags beginning 
with lag 1. 3-D plots (Fig. 4 to 13) were used to monitor 
the patterns of change for every lag with respect to the 
number of hidden nodes, the learning rate and the SSE. 

At lag 1, it was observed that there were no 
outliers in the SSE with its values mostly ranging 
between 0.84134 and 0.84237, with the number of 
hidden nodes H ranging between 1 and 3. From these, 
the minimum SSE (0.84134) is obtained at the 
combination of 2 hidden nodes and a learning rate of 
0.8 with a training time of 0.01s. At the second lag, 
the number of hidden nodes H ranged between 2 and 
7, resulting from equation 3.21 formulated and 
adopted in the methodology. Nonetheless, the hidden 
nodes that yielded minimum SSEs across the learning 
rates (h) ranged from 2 to 5. Lower rates also had 
higher values of H than higher rates. The SSE also 
ranged between 0.84488 and 5.09788, with only 3 
values out of the 36 being greater than 5. The 
minimum value of the SSE attained at this point was 
0.84488, with H = 2 and training time T = 0.02s. For 
lag 3, the number of hidden nodes H ranged between 2 
and 7 as well. However, unlike in the second lag in 
which ( ) min H ( )h Max H≤ < , in this case, 

( )min H ( )h Max H≤ ≤ . The SSE ranged between 0.8386 
and 5.10316, with the latter values obtained at the 
learning rate of 0.8 and 0.9. The minimum value of 
the SSE attained at this point was 0.8386, with H=4 
and training time T = 0.03s – all high from the 
preceding lag. At the fourth lag, the number of hidden 
nodes H ranged between 3 and 9. Nonetheless, the 
hidden nodes that yielded minimum SSEs across the 
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learning rates (h) ranged from 3 to 7. Lower rates also 
had higher values of h than higher rates. The SSE also 
ranged between 0.83152 and 5.10319, with an 

increase as well of SSEs greater than 5. The minimum 
value of the SSE attained at this point was 0.83152, 
with H = 4 and training time T = 0.02s. 

 

Table 1: Performance of the ANN model with constant volatility 

Performance of the ANN model with constant volatility 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 Training Testing Validation 

 (n = 28,119) (n = 14,160) (n = 14,059) 

SSE 491.69393 304.02095 513.50400 

MSE 0.01748 0.02147 0.03652 

RMSE 0.13221 0.14653 0.19111 

 
Table 2: Performance of the ANN model with constant volatility in pricing ITM and OTM options 
 In-The-Money  Out-of-The-Money 

 -------------------------------------------------------------- -------------------------------------------------- 

 Testing Validation Testing Validation 

SSE 289.569500 514.480100 65.98528 64.523670 

MSE 0.034817 0.061874 0.01149 0.011235 

RMSE 0.186592 0.248744 0.10719 0.105996 

 

 
 

Fig. 2: Number of neurons in the hidden layer Vs training time 
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Fig. 3: Learning rate vs training time 
 

 
 

Fig. 4: Volatility lag 1 versus the number of hidden nodes (N), learning rate (R) and the SSE (m) 
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Fig. 5: Volatility lag 2 versus the number of hidden nodes (N), learning rate (R) and the SSE (m) 
 

 
 

Fig. 6: Volatility lag 3 versus the number of hidden nodes (N), learning rate (R) and the SSE (m) 
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Fig. 7: Volatility lag 4 versus the number of hidden nodes (N), learning rate (R) and the SSE (m) 
 

 
 

Fig. 8: Volatility lag 5 versus the number of hidden nodes(N), learning rate (R) and the SSE (m) 
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Fig. 9: Volatility lag 6 versus the number of hidden nodes (N), learning rate (R) and the SSE (m) 
 

 
 

Fig. 10: Volatility lag 7 versus the number of hidden nodes(N), learning rate (R) and the SSE (m) 
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Fig. 11: Volatility lag 8 versus the number of hidden nodes(N), learning rate (R) and the SSE (m) 
 

 
 

Fig. 12: Volatility lag 9 versus the number of hidden nodes(N), learning rate (R) and the SSE (m) 
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Fig. 13: Volatility lag 10 versus the number of hidden nodes(N), learning rate (R) and the SSE (m) 
 

 
 

Fig. 14: Volatility lags Vs minimum training times 
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Fig. 15: Volatility lags Vs optimal H 
 

 
 

Fig. 16: Volatility lags Vs minimum SSE 
 

 
 

Fig. 17: Volatility lags Vs minimum learning rate 
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For lag 5, the number of hidden nodes H ranged 
between 3 and 11. However, in this case 

( )min H 3 9 ( )h Max H= ≤ ≤ < . The SSE ranged between 

0.822 and 5.10312, with the latter values obtained at the 
learning rates beyond 0.5. The minimum value of the 
SSE attained at this point was 0.822, with H = 4 and the 
training time T=0.02s. At the sixth lag, the number of 
hidden nodes H ranged between 4 and 13. Nonetheless, 
the hidden nodes that yielded minimum SSEs across the 
learning rates (h) had the range case 

( )min H 4 9 ( )h Max H= ≤ ≤ < . Lower rates also had higher 

values of H than higher rates. The SSE also ranged 
between 0.7703 and 5.10319, signifying a drop in the 
minimum SSE but an increase in the maximum values of 
the SSE from the preceding lag. The minimum value of 
the SSE attained at this point was 0.7703, with H = 4 and 
training time T = 0.35s. For lag 7, the number of hidden 
nodes H ranged between 4 and 15, with 

( )min H 4 13 ( )h Max H= ≤ ≤ < . The SSE ranged between 

0.7710 and 5.10319, with the latter values obtained from 
the learning rate of 0.4. The minimum value of the SSE 
attained at this point was 0.7710, with H = 4 and training 
time T = 0.05s – all high from the preceding lag. At the 
eighth lag, the number of hidden nodes H ranged 
between 5 and 17. Unlike the previous cases, the hidden 
nodes that yielded minimum SSEs across the learning 
rates (h) had a different range 

( )min H 5 17 ( )h Max H= ≤ ≤ ≤ . The SSE also ranged 

between 0.06955 and 5.10319, with an increase as well 
of SSEs greater than 5 still beginning from a learning 
rate of 0.4. The minimum value of the SSE attained at 
this point was 0.06955, with H = 9 and training time T = 
6.78s, a sharp increase in training time. 

As of lag 9, the number of hidden nodes H ranged 
between 5 and 19, with ( )min H 5 10 ( )h Max H= ≤ ≤ < . 

The SSE ranged between 0.01895 and 5.10319, with 
the latter values having been obtained from the 
learning rate of 0.3. This is the lag that produced the 
minimum value of the SSE (0.01895), with H = 10 and 
the training time T = 11.08s – an all high training time in 
all the lags. At the tenth lag, the number of hidden nodes 
H ranged between 6 and 21. The hidden nodes that 
yielded minimum SSEs across the learning rates (h) had 
a range ( )min H 6 18 ( )h Max H= ≤ ≤ < . The SSE also 

ranged between 0.44025 and 5.10319, with an increase 
as well of SSEs greater than 5 beginning from a learning 
rate of as low as 0.1. The minimum value of the SSE 
attained at this point was 0.44025, with H = 7 and a 
training time T = 0.08s. From this lag onwards, the 
minimum SSE began increasing going forward to an 
all value of greater than 5. 

The ultimate and most superior measure of any 
model is the ability to produce outputs whose differences 

from the target outputs is as little as possible. This is 
demonstrated by the value of the errors in the model. As 
it can be seen in Figure 16, the minimum SSE was 
obtained at lag 9, a lag whose optimal number of hidden 
neurons were 10 (Fig. 15), a training time of 11.08s (Fig. 
14) and a learning rate of 0.6 (Fig. 17). This implied that 
the volatility model adopted at this point consisted of 9 
input nodes, 10 hidden neurons and a single layer of 
hidden nodes, with a single output node. It is the output of 
this model that formed part of the volatility input in the 
ANN option pricing model, in which case the input nodes 
were three, a single hidden layer with 1 output node. 

The SSE, MSE and the RMSE were used to measure 
the performance of the ANN option pricing model with 
non-constant volatility during training, testing and 
validation. Table 3 summarizes the error statistics 
obtained in the three phases. The performance of this 
model was better with very slightly large errors 
compared to the previous model as the difference 
between the heteroscedastic and the constant volatility 
model was in most cases 0.00413 (MSE training),           
-0.00082 (MSE testing), 0.00319 (MSE validation), 
0.0148 (RMSE training), 0.00017 (RMSE testing) and 
0.00817 (RMSE validation). 

An analysis of the performance of the model with 
regards to ITM and OTM options reveals that the model 
also predicts the OTM option prices better than the ITM 
option prices. Compared to the previous model in which 
volatility was assumed to be constant, this model 
performed better in modelling ITM option prices while the 
constant volatility model performed better in modeling 
OTM option prices. As shown in Table 4, for the ITM 
options the difference between the heteroscedastic and the 
constant volatility model was -0.027914 (MSE validation) 
and -0.064474 (RMSE validation), while for the OTM 
options the difference between the heteroscedastic and the 
constant volatility model was 0.000486 (MSE validation) 
and 0.002266 (RMSE validation). 

It is however worth noting that despite the fact that 
the ANN model with non-constant volatility performs 
better than the one with constant volatility, the difference 
was not significant at 0.05 level of significance. 
 
Table 3: Errors of the conventional ANN option pricing model 

with non-constant volatility 
Performance of the ANN option pricing model 

(non-constant volatility) 

---------------------------------------------------------------------------- 

 Training Testing Validation 

 (n=24,409) (n=12,204) (n=12,204) 

SSE 377.511920 151.995830 324.644590 

MSE 0.015466 0.012454 0.026601 

RMSE 0.124362 0.111600 0.163099 
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Table 4: ITM-OTM Errors of the conventional ANN model with non-constant volatility 
 In-The-Money (n=14388)  Out-of-The-Money (n=10026) 

 ---------------------------------------------------------- --------------------------------------------------- 

 Testing Validation Testing Validation 

SSE 189.569500 414.480100 101.495290 117.511550 

MSE 0.013176 0.028807 0.010123 0.011721 

RMSE 0.114784 0.169727 0.100614 0.108262 

 
Conclusion 

This study followed the conventional methods 
employed by other studies and developed two conventional 
ANN option pricing models – one while holding volatility 
constant and the other while violating the assumption of 
constant volatility. In the latter case, in handling volatility 
inputs, the study used volatility lags just as it were the case 
with Malliaris and Salchenberg (1993) in which case it 
started with a few input lags and went on increasing. 
The performance of the two models developed were 
mainly measured using the SSE, MSE and RMSE. 
Results indicate that all the two ANN models 
modelled the AAPL OTM option prices better than 
ITM. Secondly, the ANN model (with varying 
volatility) makes better predictions than the model 
with constant volatility. However, the difference 
between the performance of the two was not 
significant. In terms of model complexity, the study 
found that 1 layer of hidden nodes was sufficient in 
developing all the three models, the number of inputs 
and the value of H notwithstanding. Finally, in terms 
of learning difficulty, as depicted by the training time, 
the constant volatility model performed better (0.3 s) 
compared to the heteroscedastic model with lags 
(11.08 s). This was attributed to, first, the lesser 
number of inputs compared to the heteroscedastic 
model with lags. 
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