

 © 2019 Hanningtone Meshack Simiyu, Anthony Gichuhi Waititu and Jane Aduda Akinyi. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Mathematics and Statistics

Original Research Paper

Comparative Analysis of the Artificial Neural Networks

Options Pricing Model Under Constant and Time-Variant

Volatilities

Hanningtone Meshack Simiyu, Anthony Gichuhi Waititu and Jane Aduda Akinyi

Department of Statistics and Actuarial Science, Pan African University Institute for Basic Sciences,

Technology and Innovation (PAUISTI), Nairobi, Kenya

Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya

Article history

Received: 01-04-2019

Revised: 28-06-2019

Accepted: 19-07-2019

Corresponding Author:

Hanningtone Meshack Simiyu

Department of Statistics and

Actuarial Science, Pan African

University Institute for Basic

Sciences, Technology and

Innovation (PAUISTI), Nairobi,

Kenya, Jomo Kenyatta

University of Agriculture and

Technology (JKUAT), Nairobi,

Kenya
Email: shanningtone13@gmail.com

Abstract: Option pricing using artificial neural networks (ANN) model
while relaxing the assumption of constant volatility still remains a
challenge. The conventional practice for pure ANN models has been to
either model volatility using the very ANN model and have the model
output fed as an input to the ANN option pricing model, or to make
allowances for a large number of lags directly as inputs to the option
pricing model with the belief that the ability of ANN to incorporate
flexibility and redundancy creates a more robust model. This has been
done in spite of a well-known fact-that financial time series data
harbors a set of characteristics such as volatility clustering,
leptokurtosis and leverage effects-features that ANNs in their pure
forms have proved inadequate in capturing. Consequently, this study
sought to follow the conventional methods employed by other studies
and developed two pure ANN option pricing models-one with
constant volatility and the other while violating the assumption of
constant volatility with an aim of establishing whether significant
differences exist in the outputs of the two models. The intraday data
for the AAPL stock option for the period between December 2016
and March 2017 with 56,238 data points was used in validating the
developed models. Results indicate that the ANN model (with varying
volatility) makes better predictions than the model with constant
volatility. However, the difference between the performance of the
two models is not significant at 0.05 level of significance.

Keywords: Artificial Neural Networks Model, Option Pricing, Volatility

Introduction

For the past two decades, the Black-Scholes Model
(BSM) has continuously received considerable attention
especially in underlying probability attributes of an
European call option on a non-dividend stock (Al Saedi
and Tularam, 2018) and has been identified as the basic
building block of the financial derivatives theory
(Wilmott et al., 1995). However, through numerous
studies, inconsistencies have consistently been proved to
exist between the market prices and the BSM output-a
vice that has been associated with the highly
questionable assumptions that underpin the development
and use of the BSM, including but not limited to:
Constant volatility, existence of efficient markets, non-

dividend paying structures, known and constant interest
rates, log-normally distributed returns, commission free
transactions and a perfectly liquid market.

In a bid to contain this discrepancies, advances have
been made both in the model itself and its respective
solution methods-both analytical and numerical. The
advances made on the analytical solutions include but
are not limited to: the use of the generalization technique
in which parabolic partial differential equations were
reduced to canonical form (Harper, 1994); the finite-
difference methods to provide the exact solution of the
Black-Scholes Equation (BSE) (Forsyth et al., 1999),
Mellin transformation (Jódar et al., 2005), application of
time-varying parameters technique in coming up with a
simple derivation of the explicit formula of an option in

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

159

time-dependent parameters of the Black-Scholes PDE
(Rodrigo and Mamon, 2006), use of the Adomain
approximate decomposition technique (Bohner and
Zheng, 2009), application of the Projected Differential
Transformation Method (PDTM), a modification of the
Differential Transformation Method (DTM) on the BSE
for European option valuation (Edeki et al., 2015) and
finally the use of Laplace transform to provide a solution
to the Black-Scholes terminal value (Shin and Kim, 2016),
all as reviewed in detail by Al Saedi and Tularam (2018).

On the other hand, numerous advances have similarly
been made on the numerical solution including the use of
the: Mellin transform (Cortés et al., 2005), semi-
discretization technique (Company et al., 2008), Crank-
Niolcon method (Ankudinova and Ehrhardt, 2008),
Cubic spline wavelets and multi-wavelet bases method
(Černá et al., 2016), the two-step backward differentiation
formula in the temporal discretization and a Higher-Order
Difference approximation with Identity Expansion
(HODIE) scheme (Rao, 2016), among others. A detailed
review on the use of these techniques can be found on Al
Saedi and Tularam (2018).

In spite of such and many more concerted efforts
having been employed to improve the performance of
the BSM, findings from numerous studies still show that
these techniques have not been able to very well capture
more realistic aspects that characterize day-to-day
transactions such as the presence of transaction costs,
high volatility, illiquid markets and large investor
preference. In addition, market participants change their
option pricing attitudes from time to time and thus, many
researchers hold the view that existing complexity issues
require non-linear solutions.

It is against this background that a good number of
researchers shifted focus to non-parametric models
flexible enough and capable of capturing the non-linear
patterns that characterize the observed market data. One
such model is the Artificial Neural Network (ANN)
model. ANNs have increasingly become promising
alternatives to the BSM and other parametric option
pricing models. This is due to the fact that unlike the
BSM, they do not require or rely on any underlying
assumptions (Malliaris and Salchenberg, 1993) and are
trained inductively using historical or implied input
variables and option transaction data (Andreou et al.,
2006). Their popularity as well as use in option pricing is
constantly increasing as reflected in studies by (Enke and
Dagli, 2007; Mostafa and Dillon, 2008; Hajizadeha and
Seifia, 2011) among others. Malliaris and Salchenberg
(1993), are among the pioneers of ANN option pricing
models. The duo sought not only to develop an ANN
model that processes financial input data to estimate the
market option prices for European options at closing, but
also to compare this network’s ability to the BSM.

Comparisons revealed that the MSE for the ANN was
less than that of the BSM in more than half the cases
examined and for both in-the-money and out-of-the
money prices. Based on these results, the study concludes
that the ANN methodology offers a valuable alternative to
estimating option prices to the traditional BSM.

Another immediate attempt was by Hutchnison et al.
(1994). They used three different network architectures
namely: Radial Basis Function (RBF), Multilayer
Perception (MLP) and Projection Pursuit Regression (PPR)
to fit both Monte-Carlo simulated Brownian underlier and
Black-Scholes option data and S and P 500 futures thereof.
The authors however used a minimalist approach in the
selection of their inputs and restricted the network inputs to
time to maturity (T-t) and Moneyness. Interest rate and
volatility were also assumed to be constant. Since then, a
good number of studies have been conducted on option
pricing using ANN (Amilon, 2003; Mostafa And Dillon,
2008; Hajizedah and Seifi, 2011; Gradojevic et al., 2007;
Mitra, 2012).

We however note that a good number of these studies
have ended up curing the linearity aspect that existed in
the parametric models while still clinging to the same
assumptions on the BSM. Hutchnison et al. (1994) for
instance, by using a minimalist approach in the selection
of their inputs and restricting the network inputs to time
to maturity (T−t) and Moneyness, ends up holding
interest rate and volatility constant-an assumption that
draws criticism in the BSM. Secondly, majority of the
studies using pure ANN models have handled the time
variant volatility component by pre-modelling it using
ANN, before using it as an input to the ANN option
pricing model. However, it may not pass unnoticed that
financial data is characterized by some features such as
volatility clustering, leptokurtosis among others that
ANN have proved inadequate in capturing. This study
therefore seeks to determine whether this technique has
any significance in modelling option prices, by
comparing purely ANN option pricing models with time-
variant volatility and ANN models with constant
volatility, so asto establish whether the former has any
impact on the option prices vis-à-vis the later model.

Materials and Methods

Data

The study used intraday data for the AAPL stock
option for the period between December 2016 and
March 2017 with 56,238 data points.

The Case of Constant Volatility

Since our objective in this subsection is to price
under the no arbitrage assumptions, with constant
interest rate and constant volatility, the model inputs
consists of time to maturity and moneyness, λ, which is
the ratio of the strike price to the underlying asset price

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

160

defined by:

t

X

S
λ = (1)

There is no celebrated theory for the determination of

an optimal ANN architecture. Rather, this is generally
realized by fixing the number of layers and choosing the
number of nodes in each layer. There are always two
layers representing the input and output variables in any
neural network and therefore choosing the number of
hidden layers is always a puzzle in ANN structure. The
number of hidden nodes allow neural networks to
capture non-linear patterns and detect the complex
relationships in the data. Networks with too voluminous
hidden nodes may cause over-fitting glitches leading to
poor forecasting capacity. Previous research e.g., by
Shahin et al. (2002) has shown that one hidden layer is
sufficient to approximate any continuous function,
provided that sufficient connection weights are given.

The very first step in ANN modelling involves the
transformation of input variables to values between 0
and 1. As Najjar et al. (1997) pointed out, this
adjustment is effective in ensuring faster training by
preventing larger values from overriding smaller ones.
As a result, the inputs to this model were first
transformed as follows: For moneyness:

*

, 1,2,...,
t t

t

t t

X X
Min

S SX
n

S X X
Max Min

S S

α

α

α

   
−   

     = =        −   
   

 (2)

and for time to maturity we had:

()
() ()

() ()
*

, 1,2,...,
T t Min T t

T t n
Max T t Min T t

α

α

α

− − −

− = =

− − −

 (3)

The normalized inputs are then multiplied by weights

(to be determined), after which they act as inputs to each
of the hidden nodes. As a result, the input to the j^th
hidden node is obtained as follows: For moneyness, we
have the transformation:

*

jM jM

t

X
I

S
α

α

ω

 
=   

 
 (4)

Where:
I
αjM = The normalized moneyness input to the jth
 hidden node
ωjM = Weights connecting the normalized moneyness
 input to the jth hidden node
M = Index notation for moneyness
 j = The hidden neuron position for j = 1, 2, …, H

On the other hand, for time to maturity, we have

the transformation:

 ()

*

j j
I T t
α τ τ

α

ω= − (5)

Where:
I
αjM = The normalized time to maturity input to the jth

 hidden node
ωjt = Weights connecting the normalized moneyness
 input to the jth hidden node
M = Index notation for moneyness
 j = The hidden neuron position for j = 1, 2, …, H

Ultimately, the net input to the jth hidden node is
obtained as:

()
*

*

0Hj j jM j

t

X
I T t

S
τ

α

α

ω ω ω

 
= + + −  

 
 (6)

One of the major strengths of neural networks is their

ability to capture nonlinear patterns in a given dataset.
This is achieved through the use of activation functions
which process data in the hidden layers of the model.
Activation functions not only capture non-linear
relationships existing between inputs and outputs, but
also constrain the values of the output layer into a
bounded domain. The choice of an activation function is
therefore critical and should be sensitive to the nature of
data as well as the desired output.

The sigmoid function is the only function that in
addition to producing positive outputs, produces outputs
whose values range between 0 and 1. This is necessary
first, to satisfy the option pricing conditions such as the
positivity of option prices and secondly in rescaling the
inputs from other neurons back to (0,1). The sigmoid
function (defined as in Equation 7) was thus taken as the
activation function of choice i.e.:

()
1

1
y

y
e

φ
−

=

+

 (7)

As a result, the input IHj of the jth hidden node is

transformed as follows:

()

() ()

0

*

0

, , , , , ,

1

1 exp 1

j jM j t

j jM j

t

X S T t

X
T t

S

τ

τ

α

φ ω ω ω

ω ω ω

=

   
+ − + + −  

   

 (8)

Where:

()0
, , , , , ,

j j jM j t
X S T t

τ
ϕ ω ω ω = The output from the jth

 hidden node, for j = 1,
 2, …, H
H = The number of hidden
 nodes

()
*

*

0

j jM j

t

X
T t

S
τ

α

α

ω ω ω

 
+ + −  

 
 = The input to the jth

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

161

 hidden node
ωj0 = The bias to the jth
 hidden node
α = 1, 2,…, H

Equation 8 represents the output of the jth hidden
node, which needs to be combined with the outputs from
the other H-1 hidden nodes into a single value to act as
an input to the output node. This is done through a
connection of weights linking the hidden neurons to the
output neuron as follows:

()

() ()

0 0 0 0

1

0 0 *

1

0

, , , , , ,

1

1 exp 1

H

j j j j jM j t

j

H

j

j

j jM j

t

I X S T t

X
T t

S

τ

τ

α

ω ω φ ω ω ω

ω ω

ω ω ω

=

=

= +

 
 
 
 

= +  
    

+ − + + −   
     

∑

∑

 (9)

Where:
ω0 = The bias to the output node
ωj0 = The weight connecting the jth hidden node to the
 output node

From the output neuron, the input Ioj defined in Equation
13 is transformed using the sigmoid function defined in
Equation 7. This is to ensure that the option prices modelled
remain positive and that the values remain in the range of 0
and 1. This transformation implies that the resultant output
from the neuron is of the form:

()
()

0 0 0

1
, , , , , , , ,

1 exp
j j jM j t

oj

X S T t

I
τ

φ ω ω ω ω ω =

+ −

 (10)

Finally, a reverse of expression 2 and 3, i.e.:

()

()
(){ }

(){ }

(){ }

1

1

1

1

1

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

t

t

t

t

t

X S T t

Max X S T t

X S T t

Min X S T t

Min X S T t

γ ω

ϕ ω

ϕ ω

ϕ ω

ϕ ω

 
 =
 −
 

+

 (11)

is used to de-scale the scaled neuron output and produce
the target output for each α, for α = 1,2, …, n and where

1 0 0 0
, , , ,j j jM jτω ω ω ω ω=ω .

Equation 11 is the target output of our model, whose
difference with the real time option prices

c
Pɶ we try to

minimize in training. This output, for each α = 1, 2, …, n
can be re-written as in Equation 12:

()

()
(){ }

(){ }

(){ }

1

1

1

1

1

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

t

t

t

t

t

X S T t

Max X S T t

X S T t

Min X S T t

Min X S T t

α
γ ω

ϕ ω

ϕ ω

ϕ ω

ϕ ω

 
 =
 −
 

+

 (12)

Determining H, the Number of Hidden Nodes

For a single hidden layer network, several rules-of-
thumb have been suggested for obtaining the best
number of hidden layer nodes. These include:

(a) Taking the number of hidden nodes to be 75% of the

input units (Salchenberger et al., 1992). In that case,
this implies that the H in this study would be
obtained as:

0.75

0.75(2)

1.5

2

H I=

=

=

≅

 (13)

(b) Taking the number of hidden nodes to be

somewhere between the average and the sum of the
input and output nodes (Hajela and Berke, 1991),
implying that in our case, H would lie in the range:

 1 3H≤ ≤ (14)

(c) Fixing an upper limit and then working backwards.

Hecht-Nielsen (1989) and Caudill (1988) suggested
that the upper limit of the number of hidden nodes
be twice the number of inputs plus 1. Letting I be
the number of inputs, H in this case would be
obtained as follows:

2 1

2(2) 1

5

H I= +

= +

=

 (15)

This study proposes and adopts a method for

number of hidden neurons (H) determination in which
all the three proposals by (Salchenberger et al. (1992),
Hajela and Berke (1991) and Hecht-Nielsen (1989)
Caudill (1988) are incorporated.

Let H denote the number of hidden neuron, I- the
number of input nodes and O- the number of output
nodes. Then:

,0.75 2 1
2

I O
Min I H I

+ 
≤ ≤ + 

 
 (16)

This is so because, clearly, the minimum number

of nodes would fall between seventy five percent of
the inputs and the average of the input and output
nodes, while the maximum would be the Hecht-
Nielsen’s and Caudill’s 2I+1.

Training to the Network

The SSE was used in training the network, in which
case the weights were adjusted in such a way that the
SSE between the targets

c
Pɶ and the models output

1
(, , , ,)

t
X S T tγ ω was minimized. Since the study used the

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

162

bipolar activation function, the Quasi-Newton algorithm
was used in minimization.

The ANN Option Pricing Model with Time-Variant

Volatility

Volatility

Though the Black-Scholes model and some other
option pricing models have always assumed constant
volatility, empirical evidence strongly suggests
otherwise. In incorporating time-variant volatility, ANN
forecasts of historical volatility were used as inputs in

addition to moneyness
t

X

S
 and time to maturity (T-t).

The historical volatility was first computed as follows.
Let rt denote returns in the price of the underlying

asset (stock) given the asset price at t-1 defined as:

1

1

t t
t

t

P P
r

P

−

−

−

= (17)

Further, define the average of rt over a time T and

denote it by r as:

1

T

t

t

r

r
T

=

=

∑
 (18)

Then, the historical volatility is given by:

()
2

1

1

d

t

t

r r

T
σ

=

−

=

−

∑
 (19)

Consequently, a d-days historical volatility is

obtained by substituting T by d, for T<d, to obtain
moving averages or order d-1 of the form:

()
2

1

1

d

t

t

d

r r

T
σ

=

−

=

−

∑
 (20)

The conventionally and widely used number of

days (ds) in computing historical volatility are d = 10,
20, 30. Thus to allow for comparison and taking into
account the number of trading days for our data, the
study took d = 10.

Conventionally, non-constant volatility in option
pricing using ANN has been modelled by taking various
lags alongside other variables such as lags of an
underlying asset as inputs to the ANN and varying this
inputs until the optimal model is obtained. Malliaris and
Salchenberg (1995) for instance used this approach and
ended up with 13 input variables. This study chose to use
various volatility lags as inputs to the ANN volatility
model. The implication is that we began by expressing
historical volatility as a function of its own lags, so that:

()1 2
, ,...,

d dt dt dt K
Dσ σ σ σ

− − −

= (21)

Consequently, we would have K input nodes
representing the K volatility lags and a single output
neuron representing the d-day historical volatility.
Similar steps explained from equation 2 to 12 are used in
modelling volatility so that we end up with a
transformed volatility output which we denote by σdα.
The outputs of this ANN volatility model (σdα) are then
fed as inputs to the ANN option pricing model in
addition to moneyness and time to maturity.

Just as before, the now three inputs are first
transformed to ranges between 0 and 1. From here,
similar steps used in developing the ANN model with
constant volatility are used with the only difference
being the additional input node representing the time
variant volatility. This is summarized diagrammatically
and mathematically as in Fig. 1 follows:

1.

*

1M

t

X

S
α

ω

 
  
 

2.

*

2M

t

X

S
α

ω

 
  
 

3.
*

HM

t

X

S
α

ω

 
  
 

4. ()
*

1
T t

τ
α

ω −

5. ()
*

2
T t

τ
α

ω −

6. ()
*

H
T t

τ
α

ω −

7. ()*

1
d

dσ α
ω σ

8. ()*

2 d dσ α
ω σ

9. ()*

d
H dσ α

ω σ

10.
10

ω

11.
20

ω

12.
0H

ω

13. () ()
*

* *

10 1 1 1 dM d

t

X
T t

S
τ σ α

α

α

ω ω ω ω σ

 
+ + − +  

 

14. () ()
*

* *

20 2 2 2
d

M d

t

X
T t

S
τ σ α

α

α

ω ω ω ω σ

 
+ + − +  

 

15. () ()
*

* *

0
d

H HM H H d

t

X
T t

S
τ σ α

α

α

ω ω ω ω σ

 
+ + − +  

 

16.

() ()
01 *

* *

10 1 1 1

1

1 exp
d

M d

t

X
T t

S
τ σ α

α

α

ω

ω ω ω ω σ

 
 
 
 
     + − − − − −  
     

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

163

17.

() ()
02 *

* *

20 2 2 2

1

1 exp
d

M d

t

X
T t

S
τ σ α

α

α

ω

ω ω ω ω σ

 
 
 
 
     + − − − − −  
     

18.

() ()
0 *

* *

0

1

1 exp
d

H

H HM H H d

t

X
T t

S
τ σ α

α

α

ω

ω ω ω ω σ

 
 
 
 
     + − − − − −  
     

19.
0

ω

20.

() ()
0 0 *

1
* *

10 1 1 1

1

1 exp
d

H

j

j

M d

t

X
T t

S
τ σ α

α

α

ω ω

ω ω ω ω σ

=

 
 
 
 +
     + − − − − −  
     

∑

21.

()

() ()
0 0 *

1
* *

10 1 1 1

1

1
1 exp 1

1 exp
d

H

j

j

M d

t

X
T t

S
τ σ α

α

α

ω ω

ω ω ω ω σ

=

  
  
  
  + − +
       + − − − − −  
       

∑

As it can be seen, the resultant output from the output neuron is of the form:

()

()

() ()

2

0 0 *

1
* *

10 1 1 1

, , , , ,

1

1
1 exp 1

1 exp
d

t d

H

j

j

M d

t

f X S T t

X
T t

S
τ σ α

α

α

ω σ

ω ω

ω ω ω ω σ

=

=

  
  
  
  + − +
       + − − − − −  
       

∑

 (22)

A reverse of the scaling expression i.e:

()

() (){ } (){ }

(){ }

2 2

2 2 2

2

, , , , ,

 , , , , , , , , , , , , , , ,

 , , , , ,

t d

t d

X S T t

f X S T t Max Min

Min

α
γ ω σ

ω σ  = −
 

+

t d t d

t d

f ω X S T t σ f ω X S T t σ

f ω X S T t σ

 (23)

descales the scaled neuron output and produces the target output ()2 2

, , , , , ,
t d

X S T t
α

γ ω σ for each α for α = 1,2,…..n.

Equation 23 gives the target output of the model whose difference with the real valued option prices
C
Pɶ we minimize in

training using the quasi-newton, just as it were with the constant volatility model.

Fig. 1: Formulation of the ANN option pricing model with non-constant volatility

*

t

X

S
α

 
  
 

()
*

T t
α

−

*

dα
σ

13

14

15

20

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

164

Results and Discussion

In validating the developed model, the study used
intraday data for the AAPL stock option for the period
between December 2016 and March 2017 with 56,238
data points. Of these options values, 59.15% were In The
Money (ITM) while 40.85% were Out Of The Money
(OTM). The data was divided into three sets with 50%
(28,119) used in training the model, 25% (14,160) used
in testing and the remaining 25% (14,059) used in the
validation of the model.

Among the tasks in the development of our ANN
models was to determine the optimal number of hidden
layers (which structurally had to be the same), the
learning difficulty of the models in terms of the training
time and the performance of the model in terms of the
differences between the predictions generated by it and
the target output. For the ANN option pricing model
with constant volatility, results indicated no variations
between the number of hidden neurons and the SSE.
However, variation existed between the number of
neurons and the network training time as shown in Fig. 2.
Results further indicate that in spite of the neurons giving
similar SSEs, two hidden neurons had the least training
time of 0.03s. As a consequence, a model with two hidden
neurons and a single layer of hidden nodes was adopted.

Interest was also drawn to how the various learning
rates impact on the training time of the model. As shown
on Figure 3, the learning rate of 0.3 provided the
quickest training time of 0.3s. Other statistics worth
noting is that the number of iterations were varied
between 1000 and 100000 with the optimal weight being
achieved in 59,676 iterations.

The SSE, MSE and the RMSE were used to
measure the performance of the ANN model with
constant volatility during training, testing and
validation. Table 1 summarizes the error statistics
obtained in the three phrases.

An analysis of the performance of the model with
regards to ITM and OTM options reveals that the model
predicts the OTM option prices better than the ITM
option prices. This result is consistent with what was
obtained by Malliaris and Salchenber (1993), whose
conventional ANN model revealed that the ANN model
performed better in modelling OTM option prices
compared to ITM option prices. Secondly, the pattern in
which the validation errors are slightly above the testing
ones exhibited by the predicted values for both the ITM
and OTM is also exhibited by the ITM option prices but
not the OTM option prices, since for OTM, the
validation errors are uniquely less than ITM errors. The
study therefore concluded that the pattern exhibited by
the joint model could be a carryover effect from the ITM

option prices which, by the way, formed a greater share
(59.15%) of the option contracts analyzed. Further it
demonstrates the nature of the data as the training,
testing and validation datasets were separated
hierarchically. Table 2 summarizes the results.

As also noted, in the second part of this study, in
addition to moneyness and time to maturity, the study
used historical volatility as one of the option pricing
variables. The conventional practice adopted by the ANN
option price modelers dealing with time-variant volatility
is to make allowances for a large number of lags (in the
case of volatility) with the belief that the ability of ANN to
incorporate flexibility and redundancy creates a more
robust model. This is exactly what was done in this
section with volatility lags being varied beginning with lag
one and increasing the number of lags until the optimal
model was obtained. While dealing with volatility,
attention was drawn to the effect of the lag variation on
the model complexity in terms of the structure (no of
hidden layers and nodes therein, learning rate, training
time, etc.) and the model performance. The study
observed these variables while varying the lags beginning
with lag 1. 3-D plots (Fig. 4 to 13) were used to monitor
the patterns of change for every lag with respect to the
number of hidden nodes, the learning rate and the SSE.

At lag 1, it was observed that there were no
outliers in the SSE with its values mostly ranging
between 0.84134 and 0.84237, with the number of
hidden nodes H ranging between 1 and 3. From these,
the minimum SSE (0.84134) is obtained at the
combination of 2 hidden nodes and a learning rate of
0.8 with a training time of 0.01s. At the second lag,
the number of hidden nodes H ranged between 2 and
7, resulting from equation 3.21 formulated and
adopted in the methodology. Nonetheless, the hidden
nodes that yielded minimum SSEs across the learning
rates (h) ranged from 2 to 5. Lower rates also had
higher values of H than higher rates. The SSE also
ranged between 0.84488 and 5.09788, with only 3
values out of the 36 being greater than 5. The
minimum value of the SSE attained at this point was
0.84488, with H = 2 and training time T = 0.02s. For
lag 3, the number of hidden nodes H ranged between 2
and 7 as well. However, unlike in the second lag in
which () min H ()h Max H≤ < , in this case,

()min H ()h Max H≤ ≤ . The SSE ranged between 0.8386
and 5.10316, with the latter values obtained at the
learning rate of 0.8 and 0.9. The minimum value of
the SSE attained at this point was 0.8386, with H=4
and training time T = 0.03s – all high from the
preceding lag. At the fourth lag, the number of hidden
nodes H ranged between 3 and 9. Nonetheless, the
hidden nodes that yielded minimum SSEs across the

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

165

learning rates (h) ranged from 3 to 7. Lower rates also
had higher values of h than higher rates. The SSE also
ranged between 0.83152 and 5.10319, with an

increase as well of SSEs greater than 5. The minimum
value of the SSE attained at this point was 0.83152,
with H = 4 and training time T = 0.02s.

Table 1: Performance of the ANN model with constant volatility

Performance of the ANN model with constant volatility

--

 Training Testing Validation

 (n = 28,119) (n = 14,160) (n = 14,059)

SSE 491.69393 304.02095 513.50400

MSE 0.01748 0.02147 0.03652

RMSE 0.13221 0.14653 0.19111

Table 2: Performance of the ANN model with constant volatility in pricing ITM and OTM options
 In-The-Money Out-of-The-Money

 -- --

 Testing Validation Testing Validation

SSE 289.569500 514.480100 65.98528 64.523670

MSE 0.034817 0.061874 0.01149 0.011235

RMSE 0.186592 0.248744 0.10719 0.105996

Fig. 2: Number of neurons in the hidden layer Vs training time

Number of neurons Vs training time

1, 0.17
5, 0.16

4, 0.11

3, 0.06

2, 0.03

0 2 4 6

Number of neurons in the hidden layer

T
ra
in
in
g
 t
im

e
(s
)

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

166

Fig. 3: Learning rate vs training time

Fig. 4: Volatility lag 1 versus the number of hidden nodes (N), learning rate (R) and the SSE (m)

Learning rate Vs training time

0.2, 0.19

0 0.2 0.4 0.6 0.8 1 1.2

Learning RATE

0.25

0.2

0.15

0.1

0.05

0

0.1, 0.17
0.4, 0.16

0.7, 0.13

0.6, 0.14
0.8, 0.15

1, 0.14

0.9, 0.2 0.5, 0.2

0.3, 0.1

Lag one

0.8435

0.8430

0.8425

0.8420

0.8415

0.8435

0.8430

0.8425

0.8420

0.8415

1.0
1.5

2.0

2.5

3.0

0.2

0.4

0.6

0.8

R
N

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

167

Fig. 5: Volatility lag 2 versus the number of hidden nodes (N), learning rate (R) and the SSE (m)

Fig. 6: Volatility lag 3 versus the number of hidden nodes (N), learning rate (R) and the SSE (m)

Lag two

5

4

3

2

1

5

4

3

2

1

2.0

m

2.5

3.5

4.5

3.0

4.0

5.0

0.2

0.4

0.6

0.8

R
N

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6

0.8

R

2
3

4
5

6

7

N

Lag three

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

168

Fig. 7: Volatility lag 4 versus the number of hidden nodes (N), learning rate (R) and the SSE (m)

Fig. 8: Volatility lag 5 versus the number of hidden nodes(N), learning rate (R) and the SSE (m)

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6

0.8

R

3
4

5
6

7
N

Lag four

8

9

5

4

3

2

1

Lag five

5

4

3

2

1

m

0.2

0.4

0.6

0.8

R

4

6

N

8

10

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

169

Fig. 9: Volatility lag 6 versus the number of hidden nodes (N), learning rate (R) and the SSE (m)

Fig. 10: Volatility lag 7 versus the number of hidden nodes(N), learning rate (R) and the SSE (m)

5

4

3

2

1

Lag six

5

4

3

2

1

m

0.2

0.4

0.6
0.8

R

4
6

N

8

10

12

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6
0.8

R

4
6

N

8
10

12

14

Lag seven

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

170

Fig. 11: Volatility lag 8 versus the number of hidden nodes(N), learning rate (R) and the SSE (m)

Fig. 12: Volatility lag 9 versus the number of hidden nodes(N), learning rate (R) and the SSE (m)

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6
0.8

R

6

N

8
10

12
14

16

Lag eight

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6
0.8

R

5

10

15 N

Lag nine

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

171

Fig. 13: Volatility lag 10 versus the number of hidden nodes(N), learning rate (R) and the SSE (m)

Fig. 14: Volatility lags Vs minimum training times

0 5 10 15

LAG

Lag Vs training times

T
R
A
IN

IN
G
 T
IM

E
S

12

10

8

6

4

2

0

5

4

3

2

1

5

4

3

2

1

m

0.2

0.4

0.6
0.8

R

10

15

20
N

Lag ten

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

172

Fig. 15: Volatility lags Vs optimal H

Fig. 16: Volatility lags Vs minimum SSE

Fig. 17: Volatility lags Vs minimum learning rate

lag Vs minimum SSE

M
IN

IM
U
M
 S
S
E

0 2 4 6 8 10 12

LAG

1

0.8

0.6

0.4

0.2

0

Lag Vs Optimal H

12

10

8

6

4

2

0

O
P
T
IM

A
L
 H

0 2 4 6 8 10 12

LAG

0 5 10 15

LAG

1

0.8

0.6

0.4

0.2

0 O

P
T
IM

A
L
 L
E
A
R
N
IN

G
 R
A
T
E
S

Lag Vs learning rate

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

173

For lag 5, the number of hidden nodes H ranged
between 3 and 11. However, in this case

()min H 3 9 ()h Max H= ≤ ≤ < . The SSE ranged between

0.822 and 5.10312, with the latter values obtained at the
learning rates beyond 0.5. The minimum value of the
SSE attained at this point was 0.822, with H = 4 and the
training time T=0.02s. At the sixth lag, the number of
hidden nodes H ranged between 4 and 13. Nonetheless,
the hidden nodes that yielded minimum SSEs across the
learning rates (h) had the range case

()min H 4 9 ()h Max H= ≤ ≤ < . Lower rates also had higher

values of H than higher rates. The SSE also ranged
between 0.7703 and 5.10319, signifying a drop in the
minimum SSE but an increase in the maximum values of
the SSE from the preceding lag. The minimum value of
the SSE attained at this point was 0.7703, with H = 4 and
training time T = 0.35s. For lag 7, the number of hidden
nodes H ranged between 4 and 15, with

()min H 4 13 ()h Max H= ≤ ≤ < . The SSE ranged between

0.7710 and 5.10319, with the latter values obtained from
the learning rate of 0.4. The minimum value of the SSE
attained at this point was 0.7710, with H = 4 and training
time T = 0.05s – all high from the preceding lag. At the
eighth lag, the number of hidden nodes H ranged
between 5 and 17. Unlike the previous cases, the hidden
nodes that yielded minimum SSEs across the learning
rates (h) had a different range

()min H 5 17 ()h Max H= ≤ ≤ ≤ . The SSE also ranged

between 0.06955 and 5.10319, with an increase as well
of SSEs greater than 5 still beginning from a learning
rate of 0.4. The minimum value of the SSE attained at
this point was 0.06955, with H = 9 and training time T =
6.78s, a sharp increase in training time.

As of lag 9, the number of hidden nodes H ranged
between 5 and 19, with ()min H 5 10 ()h Max H= ≤ ≤ < .

The SSE ranged between 0.01895 and 5.10319, with
the latter values having been obtained from the
learning rate of 0.3. This is the lag that produced the
minimum value of the SSE (0.01895), with H = 10 and
the training time T = 11.08s – an all high training time in
all the lags. At the tenth lag, the number of hidden nodes
H ranged between 6 and 21. The hidden nodes that
yielded minimum SSEs across the learning rates (h) had
a range ()min H 6 18 ()h Max H= ≤ ≤ < . The SSE also

ranged between 0.44025 and 5.10319, with an increase
as well of SSEs greater than 5 beginning from a learning
rate of as low as 0.1. The minimum value of the SSE
attained at this point was 0.44025, with H = 7 and a
training time T = 0.08s. From this lag onwards, the
minimum SSE began increasing going forward to an
all value of greater than 5.

The ultimate and most superior measure of any
model is the ability to produce outputs whose differences

from the target outputs is as little as possible. This is
demonstrated by the value of the errors in the model. As
it can be seen in Figure 16, the minimum SSE was
obtained at lag 9, a lag whose optimal number of hidden
neurons were 10 (Fig. 15), a training time of 11.08s (Fig.
14) and a learning rate of 0.6 (Fig. 17). This implied that
the volatility model adopted at this point consisted of 9
input nodes, 10 hidden neurons and a single layer of
hidden nodes, with a single output node. It is the output of
this model that formed part of the volatility input in the
ANN option pricing model, in which case the input nodes
were three, a single hidden layer with 1 output node.

The SSE, MSE and the RMSE were used to measure
the performance of the ANN option pricing model with
non-constant volatility during training, testing and
validation. Table 3 summarizes the error statistics
obtained in the three phases. The performance of this
model was better with very slightly large errors
compared to the previous model as the difference
between the heteroscedastic and the constant volatility
model was in most cases 0.00413 (MSE training),
-0.00082 (MSE testing), 0.00319 (MSE validation),
0.0148 (RMSE training), 0.00017 (RMSE testing) and
0.00817 (RMSE validation).

An analysis of the performance of the model with
regards to ITM and OTM options reveals that the model
also predicts the OTM option prices better than the ITM
option prices. Compared to the previous model in which
volatility was assumed to be constant, this model
performed better in modelling ITM option prices while the
constant volatility model performed better in modeling
OTM option prices. As shown in Table 4, for the ITM
options the difference between the heteroscedastic and the
constant volatility model was -0.027914 (MSE validation)
and -0.064474 (RMSE validation), while for the OTM
options the difference between the heteroscedastic and the
constant volatility model was 0.000486 (MSE validation)
and 0.002266 (RMSE validation).

It is however worth noting that despite the fact that
the ANN model with non-constant volatility performs
better than the one with constant volatility, the difference
was not significant at 0.05 level of significance.

Table 3: Errors of the conventional ANN option pricing model

with non-constant volatility
Performance of the ANN option pricing model

(non-constant volatility)

--

 Training Testing Validation

 (n=24,409) (n=12,204) (n=12,204)

SSE 377.511920 151.995830 324.644590

MSE 0.015466 0.012454 0.026601

RMSE 0.124362 0.111600 0.163099

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

174

Table 4: ITM-OTM Errors of the conventional ANN model with non-constant volatility
 In-The-Money (n=14388) Out-of-The-Money (n=10026)

 -- ---

 Testing Validation Testing Validation

SSE 189.569500 414.480100 101.495290 117.511550

MSE 0.013176 0.028807 0.010123 0.011721

RMSE 0.114784 0.169727 0.100614 0.108262

Conclusion

This study followed the conventional methods
employed by other studies and developed two conventional
ANN option pricing models – one while holding volatility
constant and the other while violating the assumption of
constant volatility. In the latter case, in handling volatility
inputs, the study used volatility lags just as it were the case
with Malliaris and Salchenberg (1993) in which case it
started with a few input lags and went on increasing.
The performance of the two models developed were
mainly measured using the SSE, MSE and RMSE.
Results indicate that all the two ANN models
modelled the AAPL OTM option prices better than
ITM. Secondly, the ANN model (with varying
volatility) makes better predictions than the model
with constant volatility. However, the difference
between the performance of the two was not
significant. In terms of model complexity, the study
found that 1 layer of hidden nodes was sufficient in
developing all the three models, the number of inputs
and the value of H notwithstanding. Finally, in terms
of learning difficulty, as depicted by the training time,
the constant volatility model performed better (0.3 s)
compared to the heteroscedastic model with lags
(11.08 s). This was attributed to, first, the lesser
number of inputs compared to the heteroscedastic
model with lags.

Acknowledgement

The authors acknowledge the African Union
through the Pan African University Institute for Basic
Sciences, Technology and Innovation (PAUISTI) and
the department of Statistics and Actuarial Sciences
(STACS) of the Jomo Kenyatta university of
Agriculture and Technology for their great support

Funding Information

The authors acknowledge the African Union through
the Pan African University Institute for Basic Sciences,
Technology and Innovation (PAUISTI) for the
scholarship and funding of the research leading to/and
this publication.

Author’s Contributions

Hanningtone Meshack Simiyu: Conception and
design, acquisition of data, analysis and interpretation.

Anthony Gichuhi Waititu and Jane Aduda

Akinyi: Conception. Designing and reviewing the
article critically for significant intellectual content and
giving final approval.

Ethics

This article is original and contains unpublished
resources. All the authors have read and sanctioned the
manuscript and are gratified that there are no ethical
concerns involved.

References

Al Saedi, Y.H. and G.A. Tularam, 2018. A review of the
recent advances made in the black-scholes models
and respective solutions methods. J. Math. Stat., 14:
29.39. DOI: 10.3844/jmssp.2018.29.39

Amilon, H., 2003. A neural network versus black-
scholes: A comparison of pricing and hedging
performances. J. Forecast.

Andreou, P.C., C. Charalambous and H.S. Martzoukos,
2006. Robust artificial neural networks for pricing of
European options. Computat. Economics, 27: 329-351.

Ankudinova, J. and M. Ehrhardt, 2008. On the
numerical solution of nonlinear black-scholes
equations. Comput. Math. Applic., 56: 799-812.
DOI: 10.1016/j.camwa.2008.02.005

Bohner, M. and Y. Zheng, 2009. On analytical solutions
of the black-scholes equation. Applied Math. Lett.,
22: 309-313. DOI: 10.1016/j.aml.2008.04.002

Caudill, M., 1988. Neural networks primer, Part III. AI
Expert 3.

Černá, D., V. Pasheva, N. Popivanov and G. Venkov,
2016. Numerical solution of the black-scholes
equation using cubic spline wavelets. Proceedings of
the AIP Conference, (IPC’16), AIP Publishing,
USA. DOI: 10.1063/1.4968447

Company, R., E. Navarro, J.R. Pintos and E. Ponsoda,
2008. Numerical solution of linear and nonlinear
black-scholes option pricing equations. Comput.
Math. Applic., 56: 813-821.

 DOI: 10.1016/j.camwa.2008.02.010

Hanningtone Meshack Simiyu et al. / Journal of Mathematics and Statistics 2019, Volume 15: 158.175

DOI: 10.3844/jmssp.2019.158.175

175

Cortés, J., L. Jódar, R. Sala and P. Sevilla-Peris, 2005.
Exact and numerical solution of Black-Scholes
matrix equation. Applied Math. Comput., 160:
607-613. DOI: 10.1016/j.amc.2003.11.018

Edeki, S.O., O.O. Ugbebor and E.A. Owoloko, 2015.
Analytical solutions of the black-scholes pricing
model for European option valuation via a projected
differential transformation method. Entropy, 17:
7510-7521. DOI: 10.3390/e17117510

Enke, D. and C.H. Dagli, 2007. A hybrid option pricing
model using a neural network for estimating
volatility. Int. J. General Syst.

 DOI: 10.1080/03081070701210303
Forsyth, P., K. Vetzal and R. Zvan, 1999. A finite element

approach to the pricing of discrete lookbacks with
stochastic volatility. Applied Math. Finance, 6: 87-106.
DOI: 10.1080/135048699334564

Gradojevic, N., G. Ramazan and D. Kukolj, 2007.
Option pricing with modular neural networks.

Hajela, P. and L. Berke, 1991. Neurobiological
computational modes in structural analysis and
design. Comput. Structures.

Hajizadeha, E. and A. Seifia, 2011. A hybrid modeling
approach for option pricing.

Harper, J., 1994. Reducing parabolic partial differential
equations to canonical form.

Hecht-Nielsen, R., 1989. Theory of the back-propagation
neural network. Proceedings of the International
Joint Conference on Neural Networks, (CNN’
1989), Washington, DC, pp: 593-606.

Hutchnison, J.M., A.W. Lo and T. Poggio, 1994. A
nonparametric approach to pricing and hedging
derivative securities via learning networks. J.
Finance, 49: 851-889.

Jódar, L., P. Sevilla-Peris, J. Cortés and R. Sala, 2005.
A new direct method for solving the black-
scholes equation. Applied Math. Lett., 18: 29-32.
DOI: 10.1016/j.aml.2002.12.016

Malliaris, M. and L. Salchenberg, 1993. A neural
network model for estimating option prices. J.
Applied Intel., 3: 193-206.

Mitra S.K., 2012. An Option Pricing Model That
Combines Neural Network Approach and Black
Scholes Formula. Global J. Inc. (US).

Mostafa, F. and T. Dillon, 2008. A neural network
approach to option pricing. Computat. Finance
Applic., 3: 71-84.

Najjar, Y.M., I.A. Basheer and M.N. Hajmeer, 1997.
Computational neural networks for predictive
microbiology: Methodology. Int. J. Food Microbiol.

Rao, S.C.S., 2016. High-order numerical method for
generalized Black-Scholes model. Proc. Comput.
Sci., 80: 1765-1776.

 DOI: 10.1016/j.procs.2016.05.441
Rodrigo, M.R. and R.S. Mamon, 2006. An alternative

approach to solving the black-scholes equation with
time-varying parameters. Applied Math. Lett., 19:
398-402. DOI: 10.1016/j.aml.2005.06.012

Salchenberger, L.M., E.M. Cinar and N.A. Lash, 1992.
Neural networks: A new tool for predicting thrift
failures. J. Decis. Sci.

Shahin, M.A., M.B. Jaksa and H.R. Maier, 2002.
Artificial neural network based settlement prediction
formula for shallow foundations on granular soils.
Australian Geomechanics.

Shin, B. and H. Kim, 2016. The solution of black-
scholes terminal value problem by means of
Laplace transform. Glob. J. Pure Applied Math.,
12: 4153-4158.

Wilmott, P., S. Howison and J. Dewynne, 1995. The
Mathematics of Financial Derivatives: A Student
Introduction. 1st Edn., Cambridge University Press.

