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Abstract: This study considers the parameter change test for integer-

valued time series models based on the Poisson quasi-maximum likelihood 

estimates. As a change point test, we consider the score vector-based 

CUSUM test and show that its limiting null distribution takes the form of a 

function of Brownian bridges. Moreover, the residual-based CUSUM tests 

are considered as alternatives. For evaluation, we conduct a Monte Carlo 

simulation study with Poisson, zero-inflated Poisson, negative binomial and 
Conway-Maxwell integer-valued generalized autoregressive conditional 

heteroscedastic models and Poisson integer-valued autoregressive models, 

and compare the performance of the proposed CUSUM tests. Our findings 

confirm that the proposed test is a functional tool for detecting a change 

point when the underlying distribution is unspecified. 
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1. Introduction 

Integer-valued time series have been intensively 

studied over the past decades in finance and economy, 

engineering and industry and environmental and health 

science. Since the seminal papers of McKenzie (1985), 

Alzaid and Al-Osh (1990), and Al-Osh and Aly (1992), 

integer-valued autoregressive (INAR) models with a 

binomial thinning operator have been popular among 

researchers. Later, integer-valued generalized 

autoregressive conditional heteroscedastic (INGARCH) 

models have emerged in the literature and attracted 

attention of researchers. Refer to Heinen (2003), 

Ferland et al. (2006), Fokianos et al. (2009), Neumann 

(2011), and Weiß (2018) for a general review of time 

series models of counts. 
In both INAR and INGARCH models, the Poisson 

distribution has been widely used as the conditional 
distribution of present observations over past 
information. However, it fails to describe well the over-
dispersion phenomenon frequently observed in real 
situations. To overcome this shortcoming, several 
authors have used other distributions, such as Negative 
Binomial (NB), zero-inflated generalized Poisson, and 
one-parameter exponential family distributions. We refer 
to Davis and Wu (2009), Zhu (2011, 2012), Christou and 
Fokianos (2014), and Davis and Liu (2016). In practice, 
however, approaches based on specific distributions can 

be problematic when the assumed distribution does not 
fit the dataset well. In this case, the Poisson Quasi-
Maximum Likelihood Estimator (QMLE) method of 
Ahmad and Francq (2016) can be a good substitute to the 
MLE-based method. In particular, the Poisson QMLE 
method works well with INAR models because the 
conditional mean and variance in these models are 
unrelated to their underlying distributions. In this study, 
we demonstrate that the Poisson QMLE approach can be 
useful for applying the CUSUM method to integer-
valued time series. 

Since time series often undergo structural changes in 

their underlying models, the problem of detecting change 

points has been an important research topic in time series 

analysis. This subject has a long history and numerous 
articles exist in this literature stream. See Csörgo and 

Horváth (1997) and Lee et al. (2003) for a review of the 

CUSUM test. The change point test for integer-valued time 

series has been studied in both INAR and INGARCH 

models. Kang and Lee (2009, 2014), Fokianos and Fried 

(2010, 2012), Franke et al. (2012), Fokianos et al. (2014), 

and Lee et al. (2018). The CUSUM test compares the 

parameter estimates calculated from sequentially observed 

samples and detects a change when the CUSUM test 

statistic exceeds a predetermined value at some time 

point. Although the estimate-based CUSUM test 

performs satisfactorily in many situations, it often has 
severe size distortions when applied to GARCH-type 

models, as demonstrated by Kang and Lee (2014). 
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Hence, the score vector-and residual-based tests have 

been used as alternatives. See Lee et al. (2004) and 

Lee and Lee (2019) for their background. Lee and Lee 

(2019) also showed that the CUSUM test based on 

standardized residuals can enhance the power 
markedly and Lee (2019) recently demonstrated that 

the residual-based CUSUM of squares test 

outperforms the Lee and Lee (2019) test for Poisson 

INGARCH(1,1) models to a great extent. 

In this study, we compare the performance of Poisson 

QMLE-based CUSUM tests such as the score vector-

based CUSUM test, the residual-based CUSUM test, and 

the residual-based CUSUM of squares test. Our 

simulation study reveals that the Poisson QMLE 

method is well incorporated with the CUSUM test. 

Our findings show that (i) the score vector-based 

CUSUM test is largely superior to the other tests in 

INGARCH models, (ii) only the residual-based 

CUSUM of squares test can detect a change of zero 

proportion, and (iii) the residual-based CUSUM test 

shows outstanding performance in dealing with INAR 

models. The remainder of this paper is organized as 

follows. Section 2 proposes the CUSUM test based on 

the score vectors with Poisson QMLE and derives the 

asymptotic result for this test. Section 3 reports the 

results of our simulation study using Poisson, zero-

inflated Poisson, NB and Conway-Maxwell (COM) 

INGARCH(1,1) models as well as Poisson INAR(1) 

models. Section 4 provides concluding remarks. 

2. Poisson QMLE-Based CUSUM Test 

Let {Yt, t  1} be a time series of counts 

with 0 1( ) ( | ),t t t tE Y     where t  is the -field 

generated by Yt, Yt1, and 0 belongs to some parameter 

space d  . Further, we assume that t() is a function 

of random variables Yt, Yt1,..., namely, t () = t (Yt, 

Yt1,...;) and{Yt, t ()} is stationary and ergodic. An 

important example of {Yt} is the INGARCH model with 
the conditional distribution of the one-parameter 

exponential family in Davis and Liu (2016), namely: 

 

 

   

1

1 1 1

| | ,

| , ,

t t t

t t t t t

Y p y

E Y f Y



 



  



 ∶
 (1) 

 

where t is the -field generated by 1, Y1,..., Yt, f(x, y) 

is a nonnegative bivariate function defined on 

 0 0[0, ) (  0   and p( | ) is a probability mass 

function given by 

 

 | exp{ ( )} ( ), 0,p y y A h y y      

where  is the natural parameter, A() and h(y) are 

known functions and A'() exists and is strictly 

increasing; further,    
1

't tA 


 . Yt is stationary and 

ergodic if f satisfies the condition that for all 

, ' 0x x  and
0, 'y y  , 

 

1 2sup| ( , ) ( ', ') | | ' | | ' |,f x y f x y x x y y 


 


      

 

where 1, 2  0 satisfies 1 + 2 < 1. Model (1) 

accommodates a broad class of INGARCH models 
including Poisson and NB-INGARCH models. Our setup 

also includes INAR models, as shown by Ahmad and 

Francq (2016); see Example 2 in the next section. 

Setting 1 0: ( ) ( ,..., , ,...; )t t t tY Y y      for some fixed 

nonnegative integer
0y 0(e.g., = 0),y we obtain the Poisson 

QMLE of
0 by 

 

1

ˆ ( ),
n

n t

t

argmax 



   

 

where ( ) ( ) log ( ).t t t tY        Here, when 

1 1( ,  )t t tf Y    as seen in Model (1), t are recursively 

obtained through the equation 1 1( , )t t tf Y   with the 

preassigned initial values Y0, 0. 

Below are some regularity conditions, where 

0<<1 and V represent a generic constant and 

integrable random variable, respectively, |||| denotes 

the 1L norm for vectors and matrices and E() is taken 

under true parameter 0 . In particular, the QMLE ˆ
n is 

strongly consistent and asymptotic normal, as shown 

by Ahmad and Francq (2016): 

 

(A1) 0 is an interior point that belongs to the compact 

parameter space .d  

(A2) t () is continuous and for any t and 

, ( ) ( )t t c        for some c > 0. 

(A3) 0( ) ( )t t    a.s. for some t if and only if 0  . 

(A4) 4 4

1 1, (sup ( )) ,EY E        
4 2

2

1 1( ) ( )
sup sup .

T
E

 

   

   

  
   
   
 

 

 Moreover, 
2

1 ( )
T

 

 



 
is continuous on  . 

(A5) For all , sup ( ) ( ) t

t tt V        and 

( ) ( )
sup .tt t V


   


 

 
 

 
 

(A6) 1 ( )
0Tv

 







a.s. if and only if 0v  . 
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 Under (A1)–(A6), we can see that as 

0
ˆ, nn    a.s. and 

 

 1 1

0 0 0 0
ˆ( ) 0, ( ) ( ) ( ) ,d

nn N J I J        
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   

 
   

  

  
  

  

 

 

with ( ) ( ) log ( )t t t tY       . See Ahmad and Francq 

(2016). For example, when ( )t  is linear with 

1 1

( )
( , , ) , (1, , ) .T Tt

t tY
 

    


 


 


 

Here, we consider the problem of testing the 

following hypotheses: 
 

0 :H  remains the same over 1 ,... nY Y vs. 1H not 0H  

 
For this task, we employ the score vector-based 

CUSUM test given by 

 

1

1 1
1

ˆ ˆ1 ( ) ( )ˆ ˆmax ,

T

score k kt n t n
n t n t

k n
T I

n

 

 



 
 

    
           

   (2) 

 

where 

 
2

1

ˆ ˆ1 ( ) ( )ˆ 1 .
ˆ( )

n
t t n t n

n T
t t n

Y
I

n

  

  

    
           
  

 

The critical values of score

nT are obtained asymptotically 

from the following. 

Theorem 1 

Suppose that (A1)–(A6) are fulfilled. Then, under H0, 

as n, 

 
2

0 1

sup ( ) ,score d

n d
S

T B S
 

  

 

where { ( ),0 }dB S s  is a d−dimensional Brownian 

bridge. 

Proof. We first verify 
 

0 0
1

1 ˆmax ( ) ( ) ( ) (1),k n k n p
k n

k
S S S o

nn
  

 

 
   
 

 (3) 

 
where 
 

1

( )
( ) k t

k tS











  and 1

( )
( ) k t

k tS











 . 

 

By (A5), we have 

 

1

1 ˆ ˆmax | ( ) ( ) | (1).k n k n p
k n

S S o
n

 
 

   

 

Thus, it suffices to show that 

 

1

1 ˆ ˆ ˆmax || ( ) ( ) { ( ) ( )}|| (1).k n k n n n n n p
k n

k
S S S S o

nn
   

 
     

 

By the mean value theorem, we get 

 
2

0

1
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S S

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 
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


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for some intermediate point n
  between 0 and ˆ

n . Thus, 

for any sequence of positive integers n with n   and 

0n

n


 as n, we have 

 

0 0 0
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2 2
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k
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

 
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 

 

 

 
which can be seen to be (1)po by using the ergodicity, 

(A4) and the dominated convergence theorem. Thus, 

Equation 3 is asserted. 

Next, because 0( )
,t

t





 
 

 
is a sequence of 

stationary martingale differences, using Donsker’s 

invariance principle, we have 
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1/2

0 [ ] 0

1
( ) ( ) ( ),d

ns dI S B s
n

    

 

Hence, owing to Equation 3, we have 

 

1/2

0 [ ] 0

1
( ) ( ) ( ),d

ns dI S B s
n

    

 

Since ˆ
nI converges to

0( )nI  , we obtain 

 
1

2
[ ]

1 ˆˆ ( ) ( ),d

n ns n dI S B s
n




  

 

This establishes the theorem. 

We reject the null hypothesis at the level of 0.05 if 
ˆ score

nT is above 3.004 in our simulation study. Instead of 

the score vector-based CUSUM test, we can also employ 

the residual-based CUSUM test of Kang and Lee (2014) 

and Lee and Lee (2019) as seen below when the 

conditional variance Vt() parameterized with  is also 

well formulated, as in the INGARCH and INAR models. 

In practice, however, it is impossible to derive the form 

of the conditional variance of INGARCH models 
without knowing their underlying distributions. As such, 

Lee and Lee’s CUSUM test is applicable only when the 

underlying distribution is known. 

Let 

 

ˆˆ, ( ),

ˆˆ ˆ( ) / , / ( ).

t t t t t t n

t t t t t t t n

є Y є Y

Y V є V

  

   

   

  
 

 

Kang and Lee (2014) and Lee and Lee (2019) considered 

the CUSUM tests ˆ res

nT  and ˆ sres

nT , based on the ordinary 

and standardized residuals as follows: 

 

1
1 11

1ˆ ˆ ˆmax ,
ˆ

k n
res

n t t
k n

t tn

k
T

nn
 

  
 

    (4) 

 

1
1 12

1ˆ ˆ ˆmax ,
ˆ

k n
sres

n t t
k n

t tn

k
T

nn
 

  
 

    (5) 

 
where 2

1
ˆ

n and 2

2
ˆ

n are consistent estimators of 
2

1 ( )tVar  and 2

2 ( )tVar  . Then, under the regularity 

conditions on t and t as in Lee and Lee (2019), 
ˆ res

nT and ˆ sres

nT converge weakly to 0 1sup ( )s B s   as n, 

where B is a Brownian bridge. The proof is omitted 

because it is essentially the same as that of Theorem 1 of 

Kang and Lee (2014) and Lee and Lee (2019). In 

particular, Lee and Lee (2019) demonstrated the 

superiority of ˆ sres

nT  to  ˆ res

nT  in terms of power. In our 

simulation study, however, we merely consider 
ˆ res

nT because
tV is unknown in general. We reject 

0H if 

ˆ 1.358res

nT  at the level of 0.05. 

Meanwhile, Lee (2019) considered the CUSUM of 

squares test based on 2

t̂ : 

 

2 2

1
1 1

1ˆ ˆ ˆmax .
k n

score

n t t
k n

t t

k
T

nn
 

 
 

    

 

Then, we can see that as ˆ, /score

nn T  converges to 

the sup of a Brownian bridge in distribution, where 

 

2

1

(0) 2 ( ) (0, )
h

h  




     

 

with 2 2

1 1( ) ( , )hh Cov    . Moreover, we can see that as n 

 , 

 

2 1/2 2 2 2

1

: ( ) ,
n

n t t

t

Var n є Eє 



 
   

 
  

 

which can be proven similarly to Theorem 1 of Lee 

(2019) (see also the Appendix and Remark 1 (4) therein) 

using the -mixing property of {Yt} and near epoch 

property of 2

1{ } (Davis and Liu (2016) and Woodridge 

and White (1988)). In practice, 2 must be estimated 

from the data. As an estimate of 2, we use 

 

   

2

1

2 2 2 2

1

2 2

1

ˆ ˆˆ (0) 2 ( ),

1
ˆ ˆ ˆ( ) ,

1
ˆ

nh

n n n

h

n h

n n n h

t

n

t

t

h

h
n

n

  

    

 











 

  









 

 

with 2

102(log )nh n . See Lee (2019). 

Our primary objective here is to evaluate the score 

vector-based CUSUM test ˆ score

nT  as well as the residual-

based CUSUM tests ˆ res

nT and ˆ squares

nT calculated from the 

Poisson QMLE. In our simulation study, we consider the 

Poisson and NB-INGARCH(1,1) models and INAR(1) 

models for this task. 

Example 1 (INGARCH(1,1) model): The Poisson 

INGARCH(1,1) model is given by: 

 

1 1 1| ( ),t t tt t tY Poisson Y          
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with ω>0, α, β≥0 and α+β<1. 

The zero-inflated Poisson INGARCH(1,1) model is 

given by 
 

1 0| (1 ) ( / (1 )),t t tY Poisson        

 

where
0 is the distribution with mass 1 at 0,  is a real 

number in (0,1), and 
t is the same as above. Lee et al. 

(2016) verified that {Yt} is strictly stationary and 

ergodic. In addition, it can be checked that {Yt} is β-

mixing. In particular, 
1( | ) (1 ) (1 ).t t t tVar Y        

The NB-INGARCH(1,1) model is defined as 
 

1

1 1

( , ),

(1 )
,

| t t

t
t t t

t

t NB r p

r p
Y

p

Y

   



 


   

 

 
where r is a positive integer and NB(r, p) denotes the NB 

distribution with the probability mass function: 
 

1
( ) (1 ) , 0,1,2,...

1

k r
k r

P Y k p p k
r

  
    

 
 

 
In practice, r is unknown and must be estimated form 

data, for instance, using the Akaike Information 

Criterion (AIC) or Bayesian Information Criterion (BIC) 

as in Davis and Wu (2009). 

The COM-INGARCH(1,1) model is defined by 
 

1

1 1

( , ),|

,

t t

t t t

t COM v

Y

Y 

   



   
 

 

where COM (λ, ν) denotes the COM distribution with 
the probability mass function: 

 

1
( )

! ( , )

r
k

P Y k
k S v





 
   

 
 

 

with  0( , ) / ! .
v

k

kS v k 

   

Example 2 (INAR(1) model): The INAR(1) model 

is defined as: 

 

1 ,t t tY Y Z    

 

where ◦ is a binomial thinning operator and Zt are iid 

random variables following the Poisson or NB 

distribution. In this case, 1( )t tY      where ω = 

EZt. As discussed by Ahmad and Francq (2016), the 
Poisson QMLE method provides an estimating tool 

that adopts a likelihood approach that can replace the 

conditional least squares method. 

3. Simulation Study 

In this section, we evaluate the three tests, namely, 

ˆ score

nT , ˆ res

nT and ˆ squares

nT in Equations 2, 4, 6 for the 

INGARCH(1,1) and INAR(1) models as follows: 
 
(1) Poisson INGARCH(1,1) model 

(2) NB-INGARCH(1,1) model 

(3) Zero-inflated Poisson INGARCH(1,1) model 

(4) COM Poisson INGARCH(1,1) 

(5) Poisson INAR(1) model 
 

In this simulation, the empirical sizes and powers are 

obtained as the rejection number of H0 out of 1000 

replications at the level of 0.05 for n = 500, 1000 and 

various parameter settings. The corresponding critical value 

is 1.358. To check the power, we consider the situation in 

which a parameter change occurs at [n/2]. Here, we use R 

running on Windows 10 and the package compoisson. 

The results in Tables 1-5, wherein the bold face 

stands for the model with the largest power, show that 

there is no severe size distortion in most cases and 

that the size approaches 0.05 as the sample size 

increases. The power also increases as the sample size 

rises. Overall, the results reveal that ˆ score

nT  performs 

reasonably well in Cases 1–4 but over sizes in Case 5. In 

Case 1, ˆ squares

nT   mostly outperforms the others as seen in 

Table 1, whereas ˆ score

nT  also compares well with ˆ squares

nT , 

especially when n = 1000. In Case 2, as seen in Table 2, 
ˆ score

nT appears to outperform the others to a large 

extent, which shows the efficacy of the score vector-

based CUSUM test when the underlying distribution 

is not Poisson. In Case 3, only ˆ squares

nT appears to be able 

to detect a change of zero proportion as seen in Table 

3. Except for this case, ˆ score

nT mostly outperforms the 

others as in Case 2. As seen in Table 4, the result in 

Case 4 also confirms the superiority of ˆ score

nT to the 

others in terms of power, except for the v change case, 

in which ˆ squares

nT performs better. However, 
ˆ score

nT appears to oversize in some cases. In Case 5, as 

seen in Table 5, ˆ score

nT  oversizes and ˆ res

nT appears to 

outperform the others in most cases. Moreover, it 

turns out that ˆ squares

nT detects a change in the 

innovation variance  well, whereas it cannot detect 

a change in the thinning parameter . Our findings 

show that none of the tests completely outperforms 

the other tests and that ˆ score

nT is highly recommended 

for INGARCH(1,1) models. However, when the zero 

proportional change is our main interest, ˆ squares

nT is 

preferred. Moreover, when dealing with INAR 

models, we recommend using ˆ res

nT . 
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Table 1: Sizes and powers for Poisson INGARCH(1,1) model 

(ω, α, β )  size   power 

→ (ω, α, β) n ˆ score

nT  ˆ res

nT  ˆ squares

nT  ˆ score

nT  ˆ res

nT  ˆ squares

nT  

(1, 0.2, 0.3) 500 0.048 0.027 0.031 0.992 0.903 0.922 

→ (2, 0.2, 0.3) 1000 0.042 0.040 0.043 1.000 0.977 0.999 

(1, 0.2, 0.3) 500 0.048 0.027 0.031 0.983 0.967 0.822 

→ (0.5, 0.2, 0.3) 1000 0.042 0.040 0.043 1.000 0.996 0.998 

(0.5, 0.2, 0.3) 500 0.043 0.026 0.034 0.990 0.963 0.849 

→ (1, 0.2, 0.3) 1000 0.041 0.036 0.035 1.000 0.995 0.998 

(1, 0.2, 0.3) 500 0.048 0.027 0.031 0.555 0.335 0.999 

→ (1, 0.6, 0.3) 1000 0.042 0.040 0.043 0.933 0.908 1.000 

(1, 0.2, 0.3) 500 0.048 0.027 0.031 0.817 0.991 0.966 

→ (1, 0.2, 0.7) 1000 0.042 0.040 0.043 1.000 1.000 0.999 

(1, 0.2, 0.3) 500 0.048 0.027 0.031 0.560 0.972 0.983 

→ (1, 0.3, 0.6) 1000 0.042 0.040 0.043 1.000 1.000 1.000 

(1, 0.3, 0.6) 500 0.036 0.026 0.066 0.163 0.465 0.770 

→ (2, 0.3, 0.6) 1000 0.050 0.029 0.053 0.855 0.971 0.978 

(1, 0.3, 0.6) 500 0.036 0.026 0.066 0.124 0.358 0.638 

→ (0.5, 0.3, 0.6) 1000 0.050 0.029 0.053 0.685 0.851 0.904 

(0.5, 0.3, 0.6) 500 0.045 0.029 0.044 0.178 0.253 0.583 

→ (1, 0.3, 0.6) 1000 0.038 0.027 0.059 0.787 0.762 0.894 

(1, 0.3, 0.6) 500 0.036 0.026 0.066 0.696 0.995 0.936 

→ (1, 0.1, 0.6) 1000 0.050 0.029 0.053 1.000 1.000 1.000 

(1, 0.3, 0.6) 500 0.036 0.026 0.066 0.968 0.979 0.994 

→ (1, 0.3, 0.1) 1000 0.050 0.029 0.053 1.000 1.000 1.000 

(1, 0.3, 0.6) 500 0.036 0.026 0.066 0.789 0.990 0.992 

→ (1, 0.2, 0.3) 1000 0.050 0.029 0.053 1.000 1.000 1.000 

 
Table 2: Sizes and powers for negative binomial INGARCH(1,1) model 

(ω, α, β, r)  size   power 

→ (ω, α, β, r) n ˆ score

nT  ˆ res

nT  ˆ squares

nT  ˆ score

nT  ˆ res

nT  ˆ squares

nT  

(1, 0.2, 0.3, 1) 500 0.049 0.030 0.023 0.896 0.763 0.481 

→ (2, 0.2, 0.3, 1) 1000 0.040 0.032 0.017 0.999 0.988 0.819 

(1, 0.2, 0.3, 1) 500 0.049 0.030 0.023 0.768 0.044 0.401 

→ (1, 0.6, 0.3, 1) 1000 0.040 0.032 0.017 0.994 0.186 0.617 

(1, 0.2, 0.3, 1) 500 0.049 0.030 0.023 0.313 0.082 0.102 

→ (1, 0.2, 0.7, 1) 1000 0.040 0.032 0.017 0.659 0.260 0.182 

(1, 0.2, 0.3, 1) 500 0.049 0.030 0.023 0.466 0.098 0.142 

→ (1, 0.3, 0.6, 1) 1000 0.040 0.032 0.017 0.889 0.303 0.240 

(1, 0.2, 0.3, 3) 500 0.044 0.033 0.025 0.991 0.937 0.831 

→ (2, 0.2, 0.3, 3) 1000 0.035 0.043 0.022 1.000 0.992 0.984 

(1, 0.2, 0.3, 3) 500 0.044 0.033 0.025 0.493 0.018 0.809 

→ (1, 0.6, 0.3, 3) 1000 0.035 0.043 0.022 0.961 0.236 0.935 

(1, 0.2, 0.3, 3) 500 0.044 0.033 0.025 0.498 0.328 0.234 

→ (1, 0.2, 0.7, 3) 1000 0.035 0.043 0.022 0.924 0.641 0.408 

(1, 0.2, 0.3, 3) 500 0.044 0.033 0.025 0.550 0.296 0.358 

→ (1, 0.3, 0.6, 3) 1000 0.035 0.043 0.022 0.962 0.647 0.516 

(1, 0.3, 0.6, 3) 500 0.036 0.013 0.013 0.491 0.009 0.079 

→ (2, 0.3, 0.6, 3) 1000 0.035 0.020 0.018 0.884 0.040 0.172 

(1, 0.3, 0.6, 3) 500 0.036 0.013 0.013 0.514 0.299 0.168 

→ (1, 0.1, 0.6, 3) 1000 0.035 0.020 0.018 0.953 0.773 0.387 

(1, 0.3, 0.6, 3) 500 0.036 0.013 0.013 0.719 0.662 0.307 

→ (1, 0.3, 0.1, 3) 1000 0.035 0.020 0.018 0.983 0.912 0.535 

(1, 0.3, 0.6, 3) 500 0.036 0.013 0.013 0.634 0.629 0.292 

→ (1, 0.2, 0.3, 3) 1000 0.035 0.020 0.018 0.980 0.900 0.524 
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Table 3: Sizes and powers for zero-inflated Poisson INGARCH(1,1) model 

(ω, α, β, ρ)  size   power 

→ (ω, α, β, ρ) n ˆ score

nT  ˆ res

nT  ˆ squares

nT  ˆ score

nT  ˆ res

nT  ˆ squares

nT  

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.992 0.953 1.000 

→ (2, 0.2, 0.3, 0.2) 1000 0.040 0.029 0.035 1.000 0.992 1.000 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.619 0.037 0.996 

→ (1, 0.6, 0.3, 0.2) 1000 0.040 0.029 0.035 0.986 0.394 1.000 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.684 0.301 0.366 

→ (1, 0.2, 0.7, 0.2) 1000 0.040 0.029 0.035 0.987 0.755 0.575 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.747 0.340 0.545 

→ (1, 0.3, 0.6, 0.2) 1000 0.040 0.029 0.035 0.993 0.826 0.767 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.034 0.037 0.126 

→ (1, 0.2, 0.3, 0.3) 1000 0.040 0.029 0.035 0.036 0.031 0.307 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.048 0.051 0.433 

→ (1, 0.2, 0.3, 0.4) 1000 0.040 0.029 0.035 0.056 0.041 0.842 

(1, 0.2, 0.3, 0.2) 500 0.044 0.032 0.025 0.062 0.050 0.677 

→ (1, 0.2, 0.3, 0.5) 1000 0.040 0.029 0.035 0.051 0.054 0.979 

(1, 0.2, 0.3, 0.5) 500 0.048 0.037 0.030 0.061 0.046 0.696 

→ (1, 0.2, 0.3, 0.2) 1000 0.049 0.035 0.027 0.068 0.067 0.981 

(1, 0.3, 0.6, 0.2) 500 0.035 0.033 0.019 0.669 0.016 0.224 

→ (2, 0.3, 0.6, 0.2) 1000 0.058 0.035 0.024 0.968 0.056 0.458 

(1, 0.3, 0.6, 0.2) 500 0.035 0.033 0.019 0.745 0.424 0.440 

→ (1, 0.1, 0.6, 0.2) 1000 0.058 0.035 0.024 0.996 0.952 0.698 

(1, 0.3, 0.6, 0.2) 500 0.035 0.033 0.019 0.893 0.781 0.556 

→ (1, 0.3, 0.1, 0.2) 1000 0.058 0.035 0.024 1.000 0.992 0.761 

(1, 0.3, 0.6, 0.2) 500 0.035 0.033 0.019 0.825 0.753 0.541 

→ (1, 0.2, 0.3, 0.2) 1000 0.058 0.035 0.024 1.000 0.991 0.757 

 
Table 4: Sizes and powers for COM Poisson INGARCH(1,1) model 

(ω, α, β, ν)  size   power 

→ (ω, α, β, ν) n ˆ score

nT  ˆ res

nT  ˆ squares

nT  ˆ score

nT  ˆ res

nT  ˆ squares

nT  

(1, 0.2, 0.3, 2) 500 0.086 0.018 0.040 0.717 0.265 0.401 

→ (2, 0.2, 0.3, 2) 1000 0.071 0.031 0.039 0.962 0.201 0.744 

(1, 0.2, 0.3, 2) 500 0.086 0.018 0.040 0.648 0.154 0.593 

→ (1, 0.6, 0.3, 2) 1000 0.071 0.031 0.039 0.935 0.135 0.935 

(1, 0.2, 0.3, 2) 500 0.086 0.018 0.040 0.399 0.504 0.118 

→ (1, 0.2, 0.7, 2) 1000 0.071 0.031 0.039 0.835 0.860 0.242 

(1, 0.2, 0.3, 2) 500 0.086 0.018 0.040 0.539 0.657 0.190 

→ (1, 0.3, 0.6, 2) 1000 0.071 0.031 0.039 0.957 0.943 0.396 

(1, 0.2, 0.3, 2) 500 0.086 0.018 0.040 0.971 0.739 1.000 

→ (1, 0.2, 0.3, 1) 1000 0.071 0.031 0.039 1.000 0.818 1.000 

(1, 0.2, 0.3, 1) 500 0.047 0.027 0.031 0.990 0.762 0.996 

→ (1, 0.2, 0.3, 2) 1000 0.044 0.041 0.042 1.000 0.843 1.000 

(1, 0.3, 0.6, 2) 500 0.055 0.025 0.032 0.849 0.717 0.300 

→ (2, 0.3, 0.6, 2) 1000 0.062 0.036 0.036 1.000 0.854 0.622 

(1, 0.3, 0.6, 2) 500 0.055 0.025 0.032 0.400 0.491 0.123 

→ (1, 0.1, 0.6, 2) 1000 0.062 0.036 0.036 0.749 0.848 0.258 

(1, 0.3, 0.6, 2) 500 0.055 0.025 0.032 0.702 0.592 0.179 

→ (1, 0.3, 0.1, 2) 1000 0.062 0.036 0.036 0.987 0.827 0.425 

(1, 0.3, 0.6, 2) 500 0.055 0.025 0.032 0.573 0.652 0.172 

→ (1, 0.2, 0.3, 2) 1000 0.062 0.036 0.036 0.952 0.950 0.354 

(1, 0.3, 0.6, 2) 500 0.055 0.025 0.032 0.480 0.496 0.994 

→ (1, 0.3, 0.6, 1) 1000 0.062 0.036 0.036 0.965 0.994 1.000 

(1, 0.3, 0.6, 1) 500 0.047 0.025 0.037 0.670 0.736 0.998 

→ (1, 0.3, 0.6, 2) 1000 0.036 0.031 0.058 0.999 0.998 1.000 
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Table 5: Sizes and powers for Poisson INAR model 

(, ω)  size   power 

→ (, ω) n ˆ score

nT  ˆ res

nT  ˆ squares

nT  ˆ score

nT  ˆ res

nT  ˆ squares

nT  

(0.3, 3) 500 0.131 0.028 0.038 0.989 0.997 0.069 

→ (0.5, 3) 1000 0.138 0.037 0.036 1.000 1.000 0.122 
(0.3, 3) 500 0.131 0.028 0.038 1.000 1.000 0.154 
→ (0.7, 3) 1000 0.138 0.037 0.036 1.000 1.000 0.342 
(0.3, 3) 500 0.131 0.028 0.038 0.998 0.726 0.781 
→ (0.3, 5) 1000 0.138 0.037 0.036 1.000 0.768 0.994 
(0.3, 3) 500 0.131 0.028 0.038 0.995 0.467 1.000 

→ (0.3, 1) 1000 0.138 0.037 0.036 1.000 0.611 1.000 

(0.7, 3) 500 0.130 0.029 0.047 1.000 1.000 0.060 
→ (0.5, 3) 1000 0.145 0.024 0.038 1.000 1.000 0.081 
(0.7, 3) 500 0.130 0.029 0.047 1.000 0.999 0.162 
→ (0.3, 3) 1000 0.145 0.024 0.038 1.000 1.000 0.353 
(0.7, 3) 500 0.130 0.029 0.047 0.998 1.000 0.812 
→ (0.7, 5) 1000 0.145 0.024 0.038 1.000 1.000 0.996 
(0.7, 3) 500 0.130 0.029 0.047 0.901 1.000 1.000 

→ (0.7, 1) 1000 0.145 0.024 0.038 1.000 1.000 1.000 

(0.3, 7) 500 0.116 0.022 0.039 1.000 0.998 0.084 
→ (0.5, 7) 1000 0.116 0.038 0.041 1.000 1.000 0.116 
(0.3, 7) 500 0.116 0.022 0.039 0.964 0.996 0.187 
→ (0.7, 7) 1000 0.116 0.038 0.041 1.000 1.000 0.485 
(0.3, 7) 500 0.116 0.022 0.039 1.000 0.718 0.513 
→ (0.3, 10) 1000 0.116 0.038 0.041 1.000 0.761 0.880 
(0.3, 7) 500 0.116 0.022 0.039 0.999 0.859 0.454 
→ (0.3, 5) 1000 0.116 0.038 0.041 1.000 0.896 0.828 

 

4. Conclusion 

In this study, we considered the Poisson QMLE-

based CUSUM tests using score vectors and residuals 

and compared their performance for INGARCH(1,1) 

and INAR(1) models through a simulation study. We 

deduced the limiting null distribution of the score 

vector-based CUSUM test under certain conditions. 

Our findings in the simulations showed that the QMLE-

based CUSUM test using score vectors can serve as a 

promising alternative to the MLE-based CUSUM tests 

when the underlying distribution is unspecified. 

Moreover, the residual-based CUSUM of squares test 

and residual-based CUSUM test are suitable for the 

detection of the zero proportional change and parameter 

change in INAR models, respectively. 
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