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Abstract: This paper proposes new linear regression models to deal 

with overdispersed binomial datasets. These new models, called tilted 

beta binomial regression models, are defined from the tilted beta 

binomial distribution, proposed assuming that the parameter of the 

binomial distribution follows a tilted beta distribution. As a particular 

case of this regression models, we propose the beta rectangular 

binomial regression models, defined from the binomial distribution 

assuming that their parameters follow a beta rectangular distribution. 

These new linear regression models, defined assuming that the 

parameters of these new distributions follow regression structures, are 

fitted applying Bayesian methods and using the OpenBUGS software. 

The proposed regression models are fitted to an overdispersed 

binomial dataset of the number of seeds that germinate depending on 

the type of chosen seed and root. 
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Introduction 

The binomial distribution is normally used to model 

the number of successes obtained in a finite number of 

experiments. However, in these cases, it is often found 

that the variance of the response variable Y exceeds the 

theoretical variance of the binomial distribution. This 

phenomenon, known as extra-binomial variation 

(overdispersion), can lead to underestimation errors, lost 

efficiency of estimates and underestimation of the 

variance, wich that can in turn generate incorrect 

inferences about the regression parameters or the credible 

intervals (Collet, 1991; Cox, 1983; Williams, 1982). 

There are several approaches to study overdispersed 

binomial datasets. Hinde and Demetrio (1998) 

categorized the majority of overdispersed binomial 

models in two classes: (1) Those in which a more 

general shape for the variance function is assumed, by 

adding additional parameters; and (2) models in which 

it is assumed that the parameter of the distribution of 

the response variable is itself a random variable. In the 

first class, the double exponential family of 

distributions allows the researcher to obtain double 

binomial models, which allow including a second 

parameter, which independently from the mean controls 

for the variance of the response variable and can be 

modeled from a subset of some explanatory variables 

(Efron, 1986). In the second class, the beta binomial 

distribution, results by assuming that the response 

variable follows a binomial distribution and the 

probability parameter of the binomial distribution 

follows a beta distribution. From the parameterization 

of the beta distribution, in terms of its mean and 

dispersion parameter (Jorgensen, 1997), a 

parameterization of the beta binomial beta distribution in 

terms of its mean and dispersion parameters is presented 

in Cepeda-Cuervo and Cifuentes-Amado (2017). 

Despite the versatility of the beta distribution, Hahn 

(2008) proposed the rectangular beta distribution as a 

combination between the beta distribution and the 

uniform distribution, to admit heavier tails than that 

admitted by the beta distribution. After that, Hahn and 

Lopez Martın (2015) introduced tilted beta distribution, 

which has as particular cases the beta rectangular and the 

beta distributions. 
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In this paper, to obtain a good flexibility of the beta 

binomial distribution, we assume that p in the binomial 

Bin(m, p) distribution follows a tilted beta distribution, 

assigning higher probability to tail values of p. Thus, 

we generalize  the  beta  binomial  regression models 

for fitting overdispersed binomial count dataset 

(Cepeda-Cuervo and Cifuentes-Amado, 2017) by 

introducing the tilted beta binomial linear regression 

model. For this, the tilted beta binomial probability is 

defined by assuming that the parameter of the binomial 

distribution follows the mean tilted beta distribution. In 

addition, the beta rectangular binomial models are 

presented as particular cases of the new proposed 

model, by assuming that the parameter of the binomial 

distribution has beta rectangular distribution. The 

proposed models are fitted using Bayesian methods. 

Finally, in order to illustrate of the tilted beta binomial 

model, we fit it to a seed germination count dataset and 

compare it with the rectangular beta binomial model 

and the binomial model, using their DIC values. 

This paper is organized as follows. After the 

introduction, in Section 2, the tilted and the 

reparameterized tilted beta distributions are presented. 

In Section 3, the tilted beta binomial distribution is 

introduced and the rectangular beta binomial 

distribution is presented as a particular case. In 

Section 4, the tilted beta binomial linear regression 

model is defined. Finally, in Section 5, we analyze 

how the proportion of seeds that germinated on each 

of 21 dishes, is influenced by the type of seed and 

root, by fitting a tilted beta binomial linear regression, 

using the OpenBUGS software. The proposed model 

performance is compared with the binomial and beta 

binomial regression models. 

The Tilted Beta Distribution 

In different fields there is often a need to model 

continuous random variables that assume values in a 

bounded interval on a set of explanatory variables. 

Cepeda-Cuervo (2001) proposed the beta regression 

models, where mean and dispersion parameters follow 

regression structures (see also Cepeda and Gamerman 

(2005), Cepeda-Cuervo and Garrido (2015)). If the 

continuous variable Y assumes values in a bounded open 

interval (a, b), a beta regression models can be proposed, 

using the basic transformation (y-a)/(b-a). However, in 

order to admit heavier tails than is possible in the beta 

distribution, Hahn (2008) proposed the rectangular beta 

distribution as a new distribution that, like the beta 

distribution, has as domain the open interval (0, 1). The 

rectangular beta distribution consists of convex 

combination between the beta distribution and the 

uniform distribution U(0, 1). Subsequently Hahn and 

Lopez Martın (2015), proposed the tilted beta 

distribution, consisting of a mixture of the beta 

distribution and the tilted distribution, which has as 

particular cases the beta rectangular distribution and the 

beta distribution. This section presents a 

reparameterization of the tilted beta distribution 

proposed by Hahn and Lopez Martın (2015), in terms of 

the mean and the dispersion parameters of the beta 

distribution μb and ϕ, respectively and the mean of the 

tilted beta distribution μt. The (μt, μb, ϕ, θ)-tilted beta 

binomial distribution results from the convex 

combination between the tilted reparameterized beta 

distribution and the binomial distribution. 

The Tilted Distribution 

A random variable Y follows an inclined distribution 

with a parameter ν (Hahn and Lopez Martın, 2015) if its 

density is given by: 

 

       0,1
| 2 2 2 1 , 0 1c y v v v y I y v         (1) 

 

The mean of Y, denoted μt := E(Y|ν), is equal to μt = 

(2-ν)/3. By reparameterizing (1) in terms of the mean, 

the density function is defined by: 

 

        0,1
| 3 2 1 2 1   1 ,t tc y y I y     

 
  (2) 

 

where, 1/3  μt  2/3, given that the moments, Et(Yn), of 

a random variable Y which follows the density function 

(2) are given by: 
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Their variance, Vt(Y), is given by: 
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Reparameterized Tilted Beta Distribution 

The tilted beta distribution was introduced by 

Hahn and Lopez Martın (2015), as the convex 
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combination between the tilted distribution and the 

beta distribution. If this distribution is obtained from 

the combination of the mean tilted distribution (2) and 

the mean and the dispersion beta distribution, Beta(μb, 

ϕ), the density function of the tilted beta distribution 

is given by (4): 

 

       | , , , | 1 | ,t b t Beta bf y c y f y             (4) 

 

where, 0 < y < 1 and 0  θ  1. The notation Y  BI(μt, 

μb, ϕ, θ) is used to denote that Y follows a tilted beta 

distribution. Since the n-th-moment of Y is given by: 
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the mean and the variance of the tilted beta distribution 

are: 
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The rectangular beta distribution (Hahn, 2008) is a 

particular case of (4) when μt = 0.5 (the slope of the 

tilted distribution is zero). By replacing this value of μt = 

0 in (4), the density function of the tilted beta 

distributions is defined by: 

 

     | , , 1 | , ,Betaf y f y           (8) 

 

where 0 < y < 1. 

(μt, μb, ϕ, θ) - Tilted Beta Binomial 

Distribution 

Let Y|p  Bin(m, p) be a random variable that follows 

the binomial distribution, where p follows the tilted beta 

distribution, p  BI(μt, μb, ϕ, θ). Then Y follows a tilted 

beta binomial distribution with parameters μt, μb, ϕ and θ, 

denoted by Y  BIB(μt, μb, ϕ, θ). The probability of this 

distribution is given by: 
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where, y = 0, 1,..., m; B(,) denotes the beta function and 

   ,bBB
f

 
 denotes the probability function of the beta 

binomial distribution, parameterized in terms of the 

mean and the dispersion parameters. 

The behavior of the (μt, μb, ϕ, θ)-tilted beta binomial 

probability function is illustrated in Fig. 1, for different 

vectors of parameter values. 

The mean and variance of a random variable Y that 

follows the (μt, μb, ϕ, θ)-tilted beta binomial probability 

function are given by: 
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where, μb, Vb denote the mean and variance of the beta 

distribution, respectively and μt, Vt denote the mean and 

variance of the tilted beta distribution. 
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Fig. 1: Density function of the (μt, μb, ϕ, θ)-tilted beta binomial distribution 

 

(μb,ϕ,θ)-Beta Rectangular Binomial Distribution 

Let Y|p  Bin(m, p) be a random variable that follows 

the binomial distribution, where p follows the beta 

rectangular distribution (8). Thus, Y follows the (μb, ϕ, 

θ)-beta rectangular binomial distribution. This density 

function can be obtained as a particular case of the tilted 

beta binomial distribution (9), by replacing μt by 0.5: 
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where, y = 0, 1,...,m. 

From the equations of the mean (6) and variance (7) 

of the tilted beta binomial distribution, setting μt = 0.5, 

the mean and variance of the rectangular beta 

distribution are obtained as: 
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Tilted Beta Binomial Regression Model 

Let Y  BIB(μt, μb, ϕ, θ), i = 1, 2,..., n, be 

independent random variables with tilted beta 

binomial distribution. Let xi = (xi1,..., xis)T, zi = (zi1,..., 

zik)T and wi = (wi1,...,wil)T the covariate vectors of μb, ϕ 

and θ regression structures and  = (β1,..., βs)T, = 

(γ1,..., γk)T and δ = (δ1,..., δl)T the respective regression 

parameter vectors, such that: 
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where B(,) represents the beta function. 

In order to define the Bayesian tilted beta binomial 

regression model, the following a priori distributions are 

assumed for , γ, δ and μt: 

 

 

 

 

 

0,

0,

0,

1 / 3,2 / 3t

N B

N G

N D

U









 

 

Seeds Germination Regression Models 

The dataset analyzed in this section is available in 

Spiegelhalter et al. (2014) and corresponds to the number 

of seeds that germinated from an initial quantity arranged 

in each of 21 dishes organized according to a 2 by 2 

factorial design (2 seed types and 2 root types). These data 

were initially reported by Crowder (1978). The variables 

involved in the experiment are described below: 

 

 y: Number of seeds germinated in each dish. 

 n: Number of seeds initially arranged in each dish. 

 x1: Seed type (1) if it is O. aegyptiaca 75 and (2) if it 

is O. aegyptica 73. 

 x2: Root type (1) if it is bean and (2) if it is 

cucumber. 

In this experiment, there are 21 observations (21 

dishes). Since the variable Y counts the number of 

germinated seeds in each dish, this variable can be 

modeled by a linear regression TBB(μt, μb, ϕ, θ) model, 

which includes all the explanatory variables in each of 

the regression structures. After the process of eliminating 

the explanatory variables, the best model (the model 

with smallest Deviance Information Criteria (DIC) 

value) has the following regression structures: 
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where, i = 1,..., 21. The TBB(μt, μb, ϕ, θ) model was 

fitted to the data using OpenBUGS, a free program used 

for Bayesian regression based on the Gibbs algorithm 

(Spiegelhalter et al., 2003). The posterior parameter 

inferences obtained from a sample of size 100000, 

burn-in of the first 10000 and taking one sample every 

10 iterations to reduce autocorrelation, are 

summarized in Table 1. The DIC value of this model 

is 118.9. The posterior credibility interval for a 

regression parameter is given by real numbers a and b 

such that the posterior probability that the parameter 

estimates lie between a and b is 95%. These real 

numbers were obtained from the posterior sample 

assuming extreme tail samples of 2.5%. 

In Table 1 the M.C. error denotes an estimation of the 

standard Monte Carlo error (ErrorMC), wich measures 

the distance between the posterior estimation of the 

mean and the mean of the posterior distribution, which is 

expected to converge to zero when the number of 

iterations goes to infinity. The Monte Carlo error 

estimates obtained using the OpenBugs software, close 

to zero for all the regression parameters, is given by 

ErrorMC  SD/ Iterations  (Flegal, 2008). The DIC 

value of this model is 118.9. According to Figure 2, 

Pearson’s residuals are close to zero, taking values 

between -0.4 and 0.2 and have no tendency through the 

iterations.  

 
Table 1: Posterior parameter estimates of TBB(μt, μb, α, θ) model 

Parameter Mean S.D. 95% Cred. Interval M.C. Error 

a1 0.2967 1.2900 (-2.31, 2.763) 0.0239 

a2 3.0260 1.5680 (0.5406, 6.552) 0.0363 

b1 -0.6048 3.0300 (-6.604, 5.36) 0.0702 

b2 -8.8400 6.0770 (-23.14, 0.1228) 0.0122 

c1 -0.9004 0.4904 (-1.801, 0.1655) 0.0107 

c2 -0.4582 0.2143 (-0.8892, -0.0497) 0.0047 

c3 1.0240 0.2260 (0.5676, 1.469) 0.0049 

μc 0.4958 0.0956 (0.3416, 0.657) 0.0020 

deviance 115.6000 2.9800 (111.8, 123.1) 0.0642 
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 (a) (b) 

 
Fig. 2: Pearson residuals – Seed germination; (a) Residuals versus iterations; (b) Residual histogram 

 

 
 

Fig. 3: Geweke convergence diagnostic - Seed germination 

 

Chain Convergence in the Tilted Beta Binomial 

Model 

In the parameter estimation process, three posterior 

samples were generated beginning from different starting 

values. In all chains, the autocorrelation is close to zero 

for a lag greater than or equal than 10 and a burn-in 

bigger than 10000. 

To check the convergence of the chains, two 

convergence diagnoses were applied: The Geweke 

diagnostic (Geweke, 1992) and the Brooks-Gelman-

Rubin convergence diagnostic (Brooks and Gelman, 

1998). The Geweke-Brooks plot for the chains of the 

regression parameters can be observed in Fig. 3, where 

the value of the Z statistic versus the number of iterations 

is plotted to determine the burn-in of the chains. This 

figure shows that the statistic remains within the 

acceptance zone for a period of burn-in equal to zero. 

The second method applied is known as the Brooks-

Gelman and Rubin convergence diagnostic. It was 

proposed by Brooks and Gelman (1998) and compares 

within-chain and between-chain variances through the 

estimation of the statistic of scale reduction R. Values of 

R well above 1 indicate that the chains have not 

converged. Figure 4 shows that for the regression 

parameters of this example, the R factor is very close to 

1 after the 1000 iterations. 

Models Comparison 

In order to determine the performance of the 

proposed model, the following models also were fitted to 

the seed germination dataset: Binomial Bin(n, p), beta 

binomial BB(μ, ϕ) and beta rectangular binomial BRB(μ, 

ϕ, θ). The Residual Sum of Squares (RSS), the deviance 

and the deviance information Criterion (DIC) for each of 

these models are given in Table 2, which shows that the 

lowest average of the deviance and the lowest DIC value 

correspond to the tilted beta binomial and the beta 

rectangular binomial models, where the first one presents 

the lowest DIC value and therefore is the best model. 
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Fig. 4: Brooks-Gelman and Rubin convergence diagnostic - Seeds germination 

 
Table 2: Statistics for model comparison - Seeds Germination 

   Deviance 

   --------------------------------------------------------------------------------------- 

Model RSS DIC Mean S.D. Cred. Interval 95% Median 

Bin(n, p)  38.31100 122.5  119.3  2.449  (116.5,125.6)  118.6 

BB(mu, ϕ)  2.49300  120.7  116.5  3.027  (112.7,124.2)  115.9 

BRB(μ, ϕ, θ)  0.32892  120.0  115.9  3.080 (111.9,123.5)  115.5 

TBB(μt, μb, ϕ, θ)  0.32637  118.9  115.6  2.980  (111.8,123.1)  115.0 

 

Conclusion 

In this paper two new distributions are proposed: The 

tilted beta binomial distribution and the beta rectangular 

binomial distribution. From these distributions, assuming 

that their parameters follow regression structures, new 

overdispersion regression models for count data are 

proposed: The tilted beta binomial regression model and 

the beta rectangular binomial regression model. These 

models are fitted using Bayesian methods and in the 

application, show better performance than the beta 

binomial regression models for statistical analysis of the 

seed germination dataset. 

Given that the tilted beta distribution is flexible 

and allows considering varying amounts with greater 

likelihoods than the beta distribution in the extreme 

tail-area events, it permits accommodating different 

relative likelihoods of high versus low extreme tail-

area events. Thus, the proposed tilted beta binomial 

regression model: 

 Defines a more general overdispersion regression 

model than the beta binomial regression model. 
 Allows considering count events with high or low 

likelihood of occurrence and better estimation of 
the regression parameters, credibility (or 
confidence) intervals and statistical inferences in 
the analysis of binomial-type overdispersion data. 

 

In the analysis of seed germination dataset, the proposed 

tilted beta binomial regression model has better 

performance than the binomial and beta binomial regression 

models, in the sense that it has smaller DIC value and 

smaller RSS. Thus, the tilted beta binomial distributions can 

be more robust compared with the usual beta binomial 

distribution, in order to obtain a good flexibility of the 

proportion parameter p in the beta-binomial distribution. 
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Appendix A OpenBUGS code for the TBB 

regression model 

 model { 

 #Likelihood: 

 for (i in 1: N) { 

 zeros [i]<-0 

 zeros [i] ~ dloglik (loglike [i]) 

 loglike [i]<-log (theta [i]  fd_b [i]+(1-theta [i])  

fd_BB [i]) 

 #fd_b: beta function part 

 #fd_BB: loglikelihood for beta binomial part 

 Fd_b [i]<-exp (log (2)+ logfact (n [i])- logfact (n [i]-y 

[i])- logfact (y [i]) 

 +loggam(y [i]+1) + loggam(n [i]-y [i]+1)-loggam(y 

[i]+1+n [i] 

 -y [i]+1)+log (y [i]  (6  mu_c-3)+n [i]  (2-

3mu_c)+1)-log (n [i]+2)) 

 Fd_BB [i]<-exp (logfact (n [i])- logfact (n [i]-y [i])- 

logfact (y [i]) 

 +loggam(phi [i])+loggam(y [i] + mu[i] phi 

[i])+loggam(n [i] 

 -y [i]+phi [i](1-mu[i]))) -loggam(mu[i]  phi [i])-

loggam(phi [i](1-mu[i])) 

 -loggam(n [i]+phi [i])) log (phi [i])<-a [1]+a [2](x2 

[i]+1) 

 logit (mu[i])<-c [1]+c [2](x1 [i]+1)+c [3](x2 [i]+1) 

 logit (the ta [i])<-b[1]+b [2](x2 [i]+1) 

 } 

#Priors: 

 mu_t~ dunif (0.333333, 0.666666) 

 for (i in 1: 2) {a [i] ~ dnorm(0, 0.1)} 

 for (i in 1: 2) {b [i] ~ dnorm(0,0.1)} 

 for (i in 1: 2) {c [i] ~ dnorm(0,0.1)} 

} 


