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Abstract: Let x, y  X, where X is an inner-product space. We say x is 

orthogonal to y if x, y = 0. When we move to general normed spaces there 

are many possibilities of extending the notion of orthogonality. Since 1934, 

different types of orthogonality relations in normed spaces have been 

introduced and studied. In this study, we enlist some properties of Birkhoff's 

orthogonality and Carlsson's orthogonality along with it we introduce two 

new particular cases of Carlsson's orthogonality and check some properties of 

othogonality in relation to these particular cases in normed spaces. 
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Introduction 

Let X * be dual space of a normed space X and SX 

denotes the unit sphere of X given by SX = {x  X: ||x|| = 

1}. The Hermite-Hadamard's inequality defined in 

(Mihai et al., 2018) is given by: 
 

     
   

.
2 2

b

a

f a f ba b
b a f f t dt b a

 
    

 
  

 
We briefly describe the content of this paper: Section 

1 contains the review of various properties and 
characterizations of Birkhoff orthogonality in normed 
linear spaces. Section 2 contains Carlsson orthogonality 
in classical sense and in HH-sense with the help of p-HH 
norm. Section 3 includes the main results of our research 
by introducing new cases of Carlsson orthogonality 

verifying some properties of the inner-product space in 
relation of these orthogonalities. 

There are different orthogonality relations studied in 

the general normed linear space since from 1934. The 

Robert orthogonality condition which was introduced by 

Robert in 1934 is known as the first orthogonality 

defined in general normed spaces (Birkhoff, 1935). 

Robert orthogonality implies both Birkhoff orthogonality 

introduced by (Birkhoff, 1935) and isosceles 

orthogonality introduced by (James, 1945). Generalizing 

the Isosceles, Robert and Pythagorean orthogonalities in 

the normed space, (Carlsson, 1962) introduced a new 

type of orthogonality. After that numerous notions of 

orthogonality have been introduced. Kikianty and 

Dragomir (2010) introduced p-HH-norms (1  p <) and 

some notions of orthogonality have been introduced by 

utilizing 2-HH-norm, which are closely related to the 

classical Pythagorean orthogonality and isosceles 

orthogonality. Kapoor and Prasad (1978) proved 

uniqueness property of isosceles orthogonality. 

Mizuguchi (2017) let (X, ||||) be a real normed space. 

For any vector x, y  X, we say that x is orthogonal to y 

(xBy) in the sense of Birkhoff if: 

 

x x y for all     

 

James was the first who did a comprehensive study of 

the properties of Birkhoff orthogonality and therefore 

Birkhoff orthogonality is also known to as Birkhoff-

James orthogonality. James (1945) introduced Isosceles 

and Pythagorean orthogonality proved that if for every x 

it is possible to find a vector y in a two dimensional 

subspace containing x such that xBy; then the space is 

necessarily an inner product space (Dragomir and 

Kikianty, 2010). If X is an inner product Space, then B 

coincide with the standard orthogonality in inner product 

space. It is obvious that Birkhoff orthogonality is 

homogeneous; however, it is in general, neither 

symmetric nor additive. 

Definition (Martini and Spirova, 2010) 

A hyperplane of a normed linear space X is any 

proper closed linear subset H which is not properly 

contained in a proper linear subset of X, or any 

translation x + H of such a linear subset H. 

If {yn} is a sequence converging to y, x is 

orthogonal to {yn}, then xy. Hence for any x, the set 
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of all y with xy is closed. for any element of a 

normed linear space there is at least one hyperplane H 

through the origin with xH. 

Properties of Birkhoff Orthogonality 

The following are the main properties of Birkhoff 

orthogonality (Alonso, 1997): 

 

(i) Birkhoff-James orthogonality is not symmetric in 

general; however, if dim X  3 then it is 

symmetric if and only if X is an inner product 

space. For dim X = 2 Birkhoff orthogonality is 

symmetric if and only if X has a norm whose 

spheres are regular hexagon 

(ii) It has the properiy of right and left-existence 

(iii) It is right (left) unique if and only if the space is 

smooth (strictly convex) 

(iv) It is always homogeneous 

(v) Right additivity implies smoothness and conversely 

(vi) It can always be extended by the right: If xBy, 

then there exist a closed hyperplane P  X such 

that y  H and xBH 

(vii) On the basis homogeneity, the Birkhoff-James 

orthogonality can always be extended by the left if 

dim X = 2 and in case of dim X  3, the property is 

a characteristic of inner product space and can be 

stated, equivalently, as follows: 

X is an inner product space if and only if for every 

x  X there exist a closed hyperplane H  X such 

that PBx 
 

A real normed linear space of dimension ( 3) is an 

inner product space if and only if B-orthogonality is 

symmetric. 

Characterization of Birkhoff Orthogonality 

Theorem 1.1 (Alonso, 1997) 

Let x, y  X, where X is a normed space, then xBx 

+ y,  X * with |f(x)| = ||f || ||x|| where, 
 

 

f y

f x
   . 

Corollary 1.2 

Let x, y  X, where X is a normed space. Then xBy, 

 f  X *\{0}: |f(x)| = ||f || ||x||. 

Definition (Semi-Inner Product, (Demalya et al., 

2019)) 

A semi-inner product defined on a real normed space 

X is a mapping of X  X into R such that if for any x, y  

X there corresponds a real number (x, y) such that the 

following properties hold: 

 

(i) (x + y, z) = (x, z) + (y, z) for all x, y, z  X 

(ii) (x, y) = (x, y) for all   , x  X 

(iii) (x, x) > 0 for all x  0 

(iv) (x, y)2  (x, x)(y, y) for all x, y  X 
 

Every normed space X, where the norm on X is 

defined by ||x|| =  ,x x  is a semi-inner product space 

and norm of any normed linear space can be generated 

with the help of semi-inner product in infinitely many 

ways (Alonso, 1997). Birkhoff orthogonality can also be 

characterized with the help of semi-inner product.    

Giles (1967) added homogeneity in the second variable 

in the definition of semi- inner product, namely: 
 

   , ,x y x y for all     

 

Let x, y  X, where X is a normed space and (.,.) be a 

semi inner product generating the norm of normed linear 

space X. Then x is said to be orthogonal to y in the sense of 

Lummer relative to semi inner product (.,.) if (.,.) = 0 and 

written as xLy. Dragomir and Kikianty (2010) proved the 

following characterization of Birkhoff orthogonality. 

Theorem 1.3 (Alonso, 1997) 

Let x, y  X, where X is an inner-product space. Then 

xBy iff xLy relative to some semi inner product which 

generate the norm of X. 

Theorem 1.4 (Alonso, 1997) 

Let x, y  X, where X is an inner-product space. Then 

the following statements are equivalent: 
 

(i) xBy 

(ii) for every semi- inner product (.,.) generating the 

norm of X, there is n inequality: 
 

   ,  0 ,     0 .y x y y x y for all          

 

Theorem 1.5. (Birkhoff, 1935) 

Let X be a normed linear space. Then Birkhoff 

orthogonality is homogeneous in X. 

Definition 

A normed space X is said to be strict convex (or rotund) 

if for every x, y  X with ||x|| = ||y|| = 1) x + y < 2, for x  y. 

A normed space with such a norm is called a strictly 

convex normed space (or rotund space). 

Theorem 1.6. (Alonso, 1997) 

Let X is normed space with dim X  3. Then X is an 

inner product space iff Bifkhoff orthogonality is 

symmetric in X. 

If Birkhoff orthogonality is symmetric in a strictly 

convex normed space X with dim X  3. Then the space 



Prakash Muni Bajracharya and Bhuwan Prasad Ojha / Journal of Mathematics and Statistics 2020, Volume 16: 133.141 

DOI: 10.3844/jmssp.2020.133.141 

 

135 

is an inner product space. Therefore the assumption on 

dimension of the space in relation to above theorem can 

not be omitted. To study about the symmetry of Birkhoff 

orthogonality, James provided an example of radon in 

the paper (James, 1945), on which the Birkhoff 

orthogonality is symmetric. 

Existence 

For the existence property of Birkhoff orthogonality 

we have the following result. 

Theorem 1.7 (Right Existence, (Alonso, 1997)) 

Let x, y  X, where X is a normed space. Then there 

exist a real number  such that xB x + y and such number 

 satisfies || 
|| ||

|| ||

y

x
. If xB x + y and xB x + y, then xB 

x + y holds for any real number between  and . 

Remark 

In the above theorem along with continuity of 

Birkhoff orthogonality imply that; for every any x, y  

X, there exists a closed interval [, ] such that for each 

number   [, ], xB x + y holds. 

Theorem 1.8 (Birkhoff, 1935) 

Let x, y  X, where X is a normed space with x  0. If: 

 

 

 

1
lim || || || ||

|| ||

1
lim || || || || ,

|| ||

x

x

nx nx y
x

nx y nx
x









   

   

 

 

then  and  are the smallest largest values of the scalar 

 such that xB (x + y). 

If xB (x + y) and yB  y x  , the relationship 

between the scalars  and   is given in the following 

theorem. 

Theorem 1.9 (James, 1945) 

Let x, y  X, where X is a normed space. If xB (x + 

y) and yB  y x   then | | 1   and Birkhoff 

orthogonality is symmetric iff for any zero vectors x, y 

and scalars ,  such that xB (x + y) and yB  y x  , 

the inequality  0 holds. 

Theorem 1.10 (Left Existence, (Alonso, 1997)) 

Let x, y  X, where X is a normed space.   : (x 

+ y)Bx and ||x + y|| = inf {||x + y||:  } . Moreover, 

if x + yBx and x + yBx, then x + yBx holds for any 

number between  and . 

Note 

For any closed hyperplane H through origin, if xBy 

(yBx respectively) holds for each y  H, then we say 

that x is Birkhoff orthogonal to H and denoted by xH 

(H is Birkhoff orthogonal to y, HBy, resp). 

Theorem 1.11. (Spiorava and Martini, 2007) 

Let x  X, where X is a normed space. Then there 

exists a hyper-plane H  X such that xBH. 

Theorem 1.12. (Spiorava and Martini, 2007) 

A Banach space X is reflexive if and only if for 

any hyperplane H  X there exist a vector x  X \{0} 

such that xBH. 

Theorem 1.13. (Birkhoff, 1935) 

If the dimension of a normed space X is greater or 

equal to 3 and H be a hyperplane of X, then the 

following conditions are equivalent: 

 

(i) H  X, x  X\{0}: HBx. 

(ii) x  X,  H  X: HBx. 

(iii) The normed space X is an inner product space. 

 

Uniqueness 

For the uniqueness property of Birkhoff orthogonality 

Alonso (1997) proved the following results. 

Definition (Birkhoff, 1935) 

An orthogonality in the sense of Birkhoff-James is 

right-unique iff for no elements x( 0) and y there is 

more than one number  for which xx + y and left-

unique iff for no elements x( 0) and y there is more 

than one number  for which (x + y)Bx. Moreover, if 

the orthogonality is symmetric, then it is right unique 

iff it is left unique. 

Theorem 1.14. (Alonso, 1997) 

For any normed linear space X in which Birkhoff 

orthogonality is unique on the left if and only if X is 

strictly convex. 

Theorem 1.15 (Alonso, 1997) 

In any normed linear space X, the following 

statements are true: 

 

(i) If the Birkhoff-James orthogonality is unique on 

the left in X *, them it is unique on the right in X 

and for reflexive normed space, the reciprocal 

result is also true 

(ii) If the Birkhoff-James orthogonality is unique on 

the right in X *, then it is unique on the left and if 
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the space weekly compact, the reciprocal result 

is also true 

 

It is obvious that every Minkowski space is reflexive 

and its unit sphere SX = {x  X: ||x|| = 1} is compact. In that 

case the uniqueness of Birkhoff orthogonality on the left (as 

well as on the right) in a Minkowski space is equivalent to 

the uniqueness of Birkhoff orthogonality on the right (as 

well as on left) in X * (Spiorava and Martini, 2007). 

Additivity 

To determine the additivity and uniqueness 

properties of Birkhoff orthogonality are closely 

related, (Alasno et el., 2012) use the above theorem and 

the following result. 

Theorem 1.16 (Alonso et al., 2012) 

For any normed linear space X, the Birkhoff-James 

orthogonality in X is additive on the right if and only 

if X is smooth. 

Theorem 1.17 (Alonso, 1997) 

Let X be a normed linear space with dim X  2: 

 

(i) For dim X = 2, the Birkhoff-James orthogonality is 

additive on the left in X iff X is strictly convex. 

(ii) For dim X _ 3, the Birkhoff-James orthogonality is 

additive on the left in X iff X is an inner product space 

 

Theorem 1.18 (Alonso et al., 2012) 

Any normed space X with dim X  3 is an inner product 

space if and only if Birkhoff orthogonality is l.a.b. 

Carlssion Orthogonality 

Carlsson (1962) gave the definition of orthogonality 

in a new pattern which is applicable in an arbitrary 

normed space as follows: 

Definition 

In a normed linear space X: 
 

2

1

|| || 0,
m

k k k

k

x y a b x c y


     

 

where, m  2 and ak, bk, ck are real numbers such that: 
 

2 2

1 1 1

1, 0.
m m m

k k k k k k k

k k k

a b c a b a c
  

      

 
The Pythagorean and Isosceles orthogonalities 

introduced by James in (Dragomir and Kikianty, 2010) 

are the particular cases of Carlssion orthogonality. The 

Carlssion orthogonality has the following properties: 

(i) It has the property of non-degeneracy, 

simplification and continuity 

(ii) Carlsson orthogonality is symmetric in some cases 

(for instance, Pythagorean and isosceles 

orthogonalities) are not symmetric in other cases; 

however, the example xy(C) when ||x + 2y|| = ||x-

2y|| shows that, it may not be symmetric in all cases 

(iii) It is either homogeneous or additive to the left if 

and only if the underlying normed space is an inner 

product space 

(iv) It is existent to the right and to the left 

(v) With regards to uniqueness, Carlsson orthogonality 

is non-unique when the space is non-rotund; in 

particular, Pythagorean orthogonality is unique, but 

Isosceles orthogonality is unique iff the underlying 

normed space is strictly convex 

 

Definition. (Dragomir and Kikianty, 2012) 

A normed linear space (X, ||.||) is uniformly convex if, 

given ϵ > 0 there exists  > 0 such that 
2

x y
< 1-, 

whenever ||x-y||  ϵ and x, y  SX. The function: 

 

  inf 1 : , ,|| ||
2

X

x y
x y S x y

 
     

 
 

 

is called the modulus of uniform convexity of the space 

(X, ||.||). 

Carlsson Orthogonality in HH-Sense 

Dragomir and Kikianty (2012) introduced Carlsson 

type orthogonality in terms of the 2-HH-norm, which 

generalizes the previous definition of Carlsson's 

orthogonality. 

Definition: p-HH- norm (1  p < ) on 2  

For any x, y  X: 

 

    
1

1

0
, 1

p p

p HH
x y t x ty dt


    

 

Some new notation of orthogonality have been 

introduced by using the 2-HH norm, which are closely 

related to Pythagorean and Isosceles orthogonality. The 

results are summarized in (Dragomir and Kikianty, 

2012) as follows: 

Let X be a normed space: 
 

(i) A vector x  X is HH-P-orthogonal to y  X ( 

denoted by xHH-Py) if and only if: 
 

   
1 2 2 2

0

1
1 || || || ||

3
t x ty dt x y     
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(ii) A vector x  X is HH-I-orthogonal to y  X 

(denoted by xHH-Iy) iff: 
 

   
1 12 2

0 0
1 1t x ty dt t x ty dt       

 
(iii) The homogeneity (or additivity) of the HH-P(and 

HH-I) orthogonality characterizes inner product 

space (Dragomir and Kikianty, 2012) 
 

Definition. HH-C-Orthogonality (Dragomir and 

Kikianty, 2012) 

Let x and y be two vectors in X and t  [0, 1]. Suppose 

that (1-t)xty(C) almost everywhere on [0, 1] i.e: 
 

2

1

0
m

i i i

k

x y  


   

 

for some m, n  N and real numbers i, i, i such that: 
 

2 2

1 1 1

1 0.
m m m

i i i i i i i

k k k

and      
  

      (1) 

 
Then: 

 

 
1 2

0
1

1 0
m

i i i

k

t x t y dt  


     (2) 

 

A normed space (X, ||.||), x  X is said to be HH-C- 

orthogonal to y  X (we denote it by xHH-Cy if and only 

if x and y satisfies (2) with conditions (1). 

It can be shown that the HH-C- orthogonality is 

equivalent to the usual orthogonality in any inner product 

space. HH-P-orthogonality is a particular case of HH-C- 

orthogonality which is obtained by choosing m = 3, 1 = -

1, 2 = 3 = 1, 1 = 2 = 1, 3 = 0, 1 = 3 = 1 and 2 = 0. 

Similarly, HH-I-orthogonality is also a particular case 

of HH-C-orthogonality. The following propositions 

follows by the definition of Hh-C-orthogonality; and we 

omit the proof. 

Theorem 2.1. (Dragomir and Kikianty, 2012) 

HH-C-orthogolality satisfies the non-degeneracy, 

simplification and continuity. 

With regard to symmetry, HH-C-orthogonality is 

symmetric in some cases, for example, HH-P- and 

HH-I-orthogonalities are symmetric (Dragomir and 

Kikianty, 2012). 

Example 1. (Dragomir and Kikianty, 2012) 

HH-C-orthogonality is not symmetric. 

Proof 

Define 
2HH C

x y


  to be: 

   
1 12 2

0 0
1 2 1 2 .t x ty dt t x ty dt       

 

In 2  with l1-norm, x = (2; 1) is HH-C2-orthogonal 

to 
1

, 1
2

y
 

  
 

 but 
2HH C

y x


 . 

Therefore we may conclude that HH-C-orthogonality is 

neither additive nor homogeneous depending on the fact 

that HH-P- and HH-I-orthogonalities are neither additive 

nor homogeneous (Dragomir and Kikianty, 2012). 

Main Result 

Roberts (1934), Pythagorean and Isosceles 

orthogonalities have been generalized by Carlsson in 1962 

(Dragomir and Kikianty, 2012). These orthogonalities are 

obtained by assigning particular values of constants in a 

generalized Carlsson's orthogonality. In this section we 

will show how isosceles, Robert and Pyhagorean 

orthogonalities can be derived from the Carlsson 

orthogonality and obtain two new orthogonality relations 

for the Carlsson orthogonality. 

Isosceles Orthogonality 

A vector x in X is isosceles orthogonal the vector y in 

X if and only if ||x + y|| = ||x-y||. 

Proof 

We have: 

 
2

2

1

2 2

1 1 1 2 2 2

0

0.

k k k

k

a b x c y

a b x c y a b x c y



 

    


 

 

Put a1 = 
1

2
, a2 = 

1

2


, b1 = b2 = 1, c1 = 1 and c2 = -1. 

Then: 

 
2 2

1 1 1 2 2 2

2 2

2 2

0 || || || ||

1 1
|| || || || .

2 2

|| || || || .

|| || || || .

a b x c y a b x c y

x y x y

x y x y

x y x y

   


   

   

   

 

 

Now: 

 
2

1 1 1 2 2 2

1

2
2 2 2

1 1 2 2

1

2
2 2 2

1 1 2 2

1

1 1
1 1 1 1 1.

2 2

1 1
1 1 0.

2 2

1 1
1 1 0.

2 2

k k k

k

k k

k

k k

k

a b c a b c a b c

a b a b a b

a c a c a c








        


      


      






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Robert Orthogonality 

A vector x  X is orthogonal to the vector y  X if 

and only if ||x + y|| = ||x-y|| for all real . 

Proof 

We have: 

 
2 2

1 1 1 2 2 2|| || || || 0.a b x c y a b x c y     

 

Put a1 =
1

2
, a2 = 

1

2


, b1 = b2 = 1, c1 =  and c2 = -. 

Then: 

 
2 2

1 1 1 2 2 2

2 2

2 2

0 || || || ||

1 1
|| || || ||

2 2

|| || || || .

|| || || || .

a b x c y a b x c y

x y x y

x y x y

x y x y

 

 

 

   


   

   

   

 

 

Now: 

 
2

1 1 1 2 2 2

1

2
2 2 2

1 1 2 2

1

2
2 2 2 2 2

1 1 2 2

1

1 1
1 1 0.

2 2

1 1
1 1 0.

2 2

1 1
0.

2 2

k k k

k

k k

k

k k

k

a b c a b c a b c

a b a b a b

a c a c a c

  

 








          


      


      







 

 

Pythagorean Orthogonality 

A vector x in X is Pythagorean orthogonal the vector 

y in X if and only if: 

 
2 2 2|| || || || || || .x y x y    

 

Proof 

We have: 

 
3

2

1

2 2 2

1 1 1 2 2 2 3 3 3

|| || 0

|| || || || || || 0.

k k k

k

a b x c y

a b x c y a b x c y a b x c y



 

      


 

 

Put a1 = -1, a2 = a3 = 1, b1 = b2 = 1, b3 = 0 and c1 = -1, 

c2 = 0, c3 = 1. Then: 

 

 

2 2 2

1 1 1 2 2 2 3 3 3

2 2 2

2 2 2

0 || || || || || ||

1 || || || || || ||

|| || || || || || .

a b x c y a b x c y a b x c y

x y x y

x y x y

     

    

   

 

 

Now: 

3 3 3
2 2

1 1 1

1, 0, 0.k k k k k k k

k k k

a b c a b a c
  

      

 

I. Particular Case of Carlsson Orthogonality 

A vector x in X is orthogonal the vector y in X if and 

only if: 

 
2 2 2 22 || || || || 2 || || || || .x y i x iy x y i x iy        

 

Proof 

We have: 

 
4

2

1

2 2

1 1 1 2 2 2

2 2

3 3 3 4 4 4

|| || 0

|| || || ||

|| || || || 0.

k k k

k

a b x c y

a b x c y a b x c y

a b x c y a b x c y



 

   

    



 

 

Put a1 = b1 = c1 = 1, a2 = 
2

i
, b2 = 1, c2 = i, a3 = -1, b3 

= 1, c3 = -1, a4 = 
2

i
, b4 = 1 and c4 = -i. Then: 

 

 

2 2

1 1 1 2 2 2

2 2

3 3 3 4 4 4

2 2 2 2

2 2 2 2

2 2 2 2

0 || || || ||

|| || || ||

|| || || || 1 || || || ||
2 2

|| || || || || || || || .
2

2 || || || || 2 || || || || .

a b x c y a b x c y

a b x c y a b x c y

i i
x y x iy x y x iy

i
x y x y x iy x iy

x y i x iy x y i x iy

   

   

        

          

       

 

 

Now: 
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4
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1

4
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1

2 2
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k
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i i
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i i
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





   


              

   


         

   


          







 

 

II. Particular Case of Carlsson's Orthogonality 

A vector x in X is orthogonal the vector y in X if and 

only if: 
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2 2
2

21 1 1
2 || || .

2 2 2
x y x y x y x       

 

Proof 

We have: 

 
4

2

1

2 2

1 1 1 2 2 2

2 2

3 3 3 4 4 4

|| || 0

|| || || ||

|| || || || 0.

k k k

k

a b x c y

a b x c y a b x c y

a b x c y a b x c y



 

   

    



 

 

Put a1 = a2 = 1, a3 = 
1

2


, a4 = 

1

2


, b1 = 1, b2 = 1, b3 

= 2 , b4 = 2 , c1 = 
1

2
, c2 =

1

2


, c3 = 1 and c4 = 0. Then: 
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2 2
2 2
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2
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|| || || ||
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Now: 

 
4

1 1 1 2 2 2 3 3 3 4 4 4

1

4
2 2 2 2 2

1 1 2 2 3 3 4 4

1

4
2 2 2 2 2

1 1 2 2 3 3 4 4

1
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k
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k
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k
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





   

   
            

   

 
        

   

 
        







 

 

Properties of Orthogonality Relation of Type (I) 

Orthogonal relation ||x + y||2 + i ||x + iy||2 = 2 ||x-y||2 + 

i ||x-iy||2 satisfies non-degeneracy, simplification and 

continuity: 

 

(i) Non-degeneracy: xx  x = 0. 

Proof 

We have: 

 
2 2 2 22 || || || || 2 || || || || .x y i x iy x y i x iy        

If xx, then: 

 

   

     

22 2 2

2 2 2

2
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8 || || 0

0.

x i x i x x i x i

x i i i x i i i x

x

x

     

      

 

 

 

 

(ii) Simplification: If xy  xy. 

Proof 

We have: 

 

 
22 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 || || 2 || || || ||

2 | | || || | | || ||

2 | | || || | | || ||
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x y i x i y

x y i x i y

x y

 

 

   

   

 

      

   

   

   

   

 

 

 

(iii) Continuity: If (xn), (yn)  X, such that xn  yn for 

every n 2 , xn  x, yn  y, then x  y. 

Proof 

Let (xn), (yn)  X, such that xn  yn. Then: 

 

 

2 2 2 2

2 2 2

2

2 2

2 || || || || 2 || ||

|| || ,

.

n n n n n n n n

n n

x y i x iy x y i x iy

x y i x iy x y

i x iy x x y y

x y

      

     

    

 

 

 

Properties of Orthogonality Relation of Type (II) 

The orthogonality relation: 

 
2 2

2
21 1 1

2 || ||
2 2 2

x y x y x y x       

 

satisfies non-degeneracy, simplification and continuity: 

 

(i) Non-degeneracy: xx  x = 0. 

Proof 

If xx, then by definition we have: 

 
2 2

2
21 1 1

2 || ||
2 2 2

|| || 0

0.

x x x x x x x

x

x

     

 

 

 



Prakash Muni Bajracharya and Bhuwan Prasad Ojha / Journal of Mathematics and Statistics 2020, Volume 16: 133.141 

DOI: 10.3844/jmssp.2020.133.141 

 

140 

(ii) Simplification: xy  xy. 

Proof 

If xy, then by definition we have: 

 
2 2

2
21 1 1

2 || || .
2 2 2

x y x y x y x       

 

If  , then: 
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2
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 
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   

  

 

 

 

(iii) Continuity: If (xn), (yn)  X, such that xn  yn for 

every n  , xn  x, yn  y, then xy. 

Proof 

Let (xn); (yn)  X, such that xn  yn for all n. Then: 
 

 

2 2
2

2

2 2
2

2

1 1 1
2 || ||
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2

2 2 2

|| || ,
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      
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   

 

 

 

(iv) Homogeneity: If xy, then xy holds for any 

real number ,  . 

Proof 

If xy, then we have: 

 
2 2

2
21 1 1

2 || || .
2 2 2

x y x y x y x       

 

Now: 

 
2 2

2
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2 || || 0
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1 1 1 1
, ,
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1
2 , 2 , 0

2

2 2 , 0.

x y x y x y x

x y x y x y x y

x y x y x x

x y
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       

     



      

     

    

  

 

Therefore the given orthogonality is homogeneous 

if and only if the space is an inner product space. 

Conclusion 

Carlsson (1962) introduced a more general type of 

orthogonality and also proved that Isosceles, Robert and 

Pythagorean orthogonalities are special cases. The most 

interesting thing here is that all three particular cases may 

not have common properties of inner-product space. There 

are some common properties like non-degeneracy, 

simplification and continuity, but some properties may be 

different in different particular cases. For instance, Robert 

orthogonality is homogeneous and symmetric. On the other 

hand (Alonso, 1997), Isosceles and Pythagorean 

orthogonalities are either homogeneous or additive if and 

only if the norm is induced by an inner-product. In this 

article we introduced two new special case of generalized 

Carlsson's orthogonality namely of type (I) and type (II) and 

we check some properties of inner-product spaces in 

relation to these orthogonalities. We proved that 

orthogonality relation of type (I) satisfies non-degeneracy, 

simplification and continuity; however, the orthogonality 

relation of type (II) satisfies these three properties as well as 

homogeneity iff the norm is induced by an inner-product. 
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