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Introduction 

We first discuss the meaning of the word 

‘martingale’. Originally martingale meant a strategy 

for betting in which you double your bet every time 

you lose. Let us consider a game in which the gambler 

wins his stake if a coin comes up heads and loses it if 

the coin comes up tails. The strategy is that the 

gambler doubles his bet every time he loses and 

continues the process, so that the first win would 

recover all previous losses plus win a profit equal to 

the original stake. This process of betting can be 

represented by a sequence of functions which is an 

example of dyadic martingale. Now we give the 

definition of dyadic martingales. For this let 

n
denote the family of dyadic subintervals of the unit 

interval [0, 1) of the form 
1

,
2 2n n

j j  


 
 where n = 0, 1, 

2  and j = 0, 1,  2n-1. 

Definition 1.1 (Dyadic Martingale) (Bañuelos and 

Moore, 1999) 

A dyadic martingale is a sequence of integrable 

functions,  
0n n

f



 from [0, 1) such that: 

 

(i) For every n, fn is 
nF -measurable where 

nF is the -

algebra generated by dyadic intervals of the form 

1
,

2 2n n

j j  


 
, j{0, 1, 2, 2n-1} 

(ii) And the following conditional expectation 

condition for all n  0 holds: 

 

 1 | ,n n nf f F  

where,   1 1

1
|

n
n n n

Q
n

f x f
Q

  F (y)dy, for 

n nQ   and xQn. 

 

A most general type of example of dyadic martingale 

is given by: Let fL1[0, 1) and Qn be a dyadic interval of 

length 
1

2n
 on [0, 1). Define fn(x) =  

1

nQ
n

f y dy
Q
 , xQn 

where |Qn| is length of Qn. Then  
1n n

f



 is a dyadic 

martingale on [0, 1). We now prove that the functions so 

defined are a dyadic martingale. 

For this, we note that 
0F = {[0, 1), }, 

1F  = {[0, 1), 

, [0, 1/2), [1/2, 1)} and so on. We have fn(x) = 

 
1

nQ
n

f y dy
Q
 , xQn and this is the average of f on Qn. 

Consequently, fn is constant on each of these nth 

generation dyadic intervals Qn = 
1

,
2 2n n

j j  


 
 where n = 0, 

1, 2 and j = 0, 1,  2n-1. Thus for all  , the set 

{x[0, 1): fn(x) > } belongs to 
nF . Hence for each n, fn 

is 
nF  measurable. This shows that the first condition is 

satisfied. Next, we show that the expectation condition is 

also satisfied. Here: 

 

    1 1

1
|

n
n n n

Q
n

f x f y dy
Q

  F  

 

where, xQn and |Qn| = 
1

2n
. Let Qn+1,1 and Qn+1,2 be the 

(n + 1)th generation dyadic intervals such that Qn = 

Qn+1,1 Qn+1,2. Using that fact that fn+1 is constant on 

Qn+1,1 and Qn+1,2, we have: 
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1,1 1,2

1,1 2,1

1,1 1,2

1,1 1,2

1 1

1 1

1 1,1 1 1,2

1,1 1,2

1,1 1,2

1
|

1

1

1 1 1

1

1

n n

n n

n n

n n

n

n n n
Q Q

n

n n
Q Q

n

n n n n

n

n n
Q Q

n n n

Q Q
n

Q
n

f x f y dy
Q

f y dy f y dy
Q

f y Q f y Q
Q

Q f y dy Q f y dy
Q Q Q

f y dy
Q

f y dy
Q

f

 

 

 

 

 


 

   

 

 





  
  

  
 

 
  
  









 

 





F

 .n x

 

 

Hence the functions fn(x) =  
1

nQ
n

f y dy
Q
 , xQn is 

dyadic martingale. 

Burkholder and Gundy (1970) proved {x: Sf(x) < 

}
. .a e

 {x: lim fn exists} where 
. .a e

  means the sets are 

equal upto a set of measure zero. From this result, we 

observe that dyadic martingales {fn} behave 

asymptotically well on the set {x: Sf(x) < }. But what 

can be said about the asymptotic behavior of dyadic 

martingales on the complement of this set? Its behavior 

is quite pathological on the set {x: Sf(x) = }. In 

particular it is unbounded a.e. on this set. In order to 

study the asymptotic behavior of the sequence of 

dyadic martingales, the martingales inequalities are 

helpful. These inequalities provide sub-Gaussian type 

estimates for the growth of the dyadic martingales. 

We derive these estimates for a regular sequence and 

a tail sequence of dyadic martingales. Asymptotic 

behavior of the martingales is studied through the law 

of the iterated logarithm of martingales (Stout, 1970). 

There is law of the iterated logarithm for various other 

contexts such as for harmonic functions, independent 

random variables, lacunary trigonometric series 

(Ghimire and Moore, 2014; Bañuelos et al., 1988). 

We now state our main results: 

 

 Inequality 1. For a dyadic martingale {fn} and  > 0 

we have: 

 

    
2

2
1

0,1 : sup 6exp .
2

m
m

x f x
Sf







 
   
 
 

 

 

 Inequality 2. For a dyadic martingale {fn}, with  > 

0 and, n fixed positive integer we have: 

      
2

2
0,1 : sup 12exp .

8
m

m n
n

x f x f x
S f








 
    

  
 

 

 

Preliminaries 

We first fix some notations, give some definitions 

which will be used in the course of the proof. 

Definition 2.1 

For a dyadic martingale,  
0n n

f



, we define: 

 

(i) The increments: dk = fk - fk-1, So fn(x) =  
1

n

kk
d x

 + 

f0(x) 

(ii) The quadratic characteristics or square function: 

   2 2

1

n

n kk
S f x d x


  

(iii) the limit function: S2f(x) =    2 2

1
lim

n

n kkn
S f x d x


  

(iv) the tail square function: 

 

      
2

2 2

1

.n n k

k n

S f x S f x d x


 

     

 

The martingale square function is a local version of 

variance and can also be understood as a discrete 

counterpart of the area function in Harmonic Analysis. 

From the definition, we note that for any x, yQn, we 

have    2 2

n nS f x S f y . But the martingale tail square 

function,  2

nS f x  may not be equal to  2

nS f y . For 

more about martingales (Neveu and Speed, 1975). 

Definition 2.2 (Hardy-Littlewood Maximal Function) 

Let  p nf L , 1  p  . Then Hardy-Littlewood 

Maximal function associated to f, denoted by Mf, is 

defined as: 

 

 
 

 
 ,0

1
sup ,

, B x rr

Mf x f y dy
B x r

   

 

where, B(x, r) is the ball with center at x and radius r. 

Proof of the Main Results 

We first prove a Lemma. This Lemma is also known 

as Rubin's Lemma (Pipher, 1993). The proof of this 

Lemma can also be found in (Chang et al., 1985). Here 

we give a proof of the Lemma using a different 

approach. Our proof is more analytic than the original 

probabilistic approach. We will use this Lemma in the 

proof of our inequalities. 
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Lemma 3 

For a dyadic martingale  
0n n

f



, with f0 = 0: 

 

   
1

2

0

1
exp 1.

2
n nf x S f x dx

 
  

 
  

 

Proof of Lemma 3 

We claim that: 

 

     
1

2

0
0 0

1
exp

2

n n

k k

k k

g n d x d x dx
 

 
  

 
   

 

is a decreasing function of n, Let Qnj be an arbitrary nth 

generation dyadic interval. We have  
0

n

kk
d x

  = fn(x) 

and fn is constant on Qnj. Using this we have: 

 

 

   

       

       

2 1 1
2

0 0 0

2
2 2

1 1

0 0 0

2
2 2

1 1

0 0 0

1

1
exp

2

1 1
exp exp

2 2

1 1
exp exp .

2 2

nj

nj

nj

nj

n n n

k k
Q

j k k

n n n

k k n n
Q

j k k

n n n

k k n n
Q

j k k Q

g n

d x d x dx

d x d x d x d x

d x d x d x d x dx

 

  

 

  

 

  



 
  

 

   
     

  

    
      

   

  

  

   

 

 

Let 
 1n j

Q

  and 

 1n j
Q


 be the dyadic subintervals of 

Qnj. Suppose dn+1 takes the value  on 
 1n j

Q

 . Then by 

the expectation condition, dn+1 takes the value - on 

 1n j
Q


 . This gives: 

 

   

   1 1

2

1 1

2 2

2 2

1

2

1

2

1

1
exp

2

1 1
exp exp

2 2

1 1 1
exp exp

2 2 2

1
2exp

2 2 2

1
2exp cosh .

2 2

nj

n j n j

n n
Q

Q Q

n

n

n

d x d x dx

dx dx

e e 

   

   






 

 

 









 
 

 

   
       

   

    
        

    

  
  

 

 
  

 



 

 

 

Now using the elementary fact that cosh x 

2

2

x

e , 

we have: 

     

   

   

 

2 22
2

1
0 0 0

2
2

0 0 0

2
2

0 0 0

1 1
1 exp 2exp exp

2 2 2 2

1
exp

2

1
exp

2

.

n

nj

n

nj

n

nj

n n

k k n
j k k Q

n n

k k nj

j k k Q

n n

k k
Q

j k k

g n d x d x

d x d x Q

d x d x dx

g n

 


  

  

  

      
        

      

  
   

  

 
  

 



  

  

  

 

 

Let Q11 and Q12 be the dyadic subintervals of Q0. 

Assume that d1 takes value  on Q11 so that it takes 

value - on Q12: 

 

     

 

1
2

1 1
0

1
1

2 22
1

0
2

2 2

2

2

2 2

1
1 exp

2

1 1
exp exp

2 2

1 1 1 1
exp exp

2 2 2 2

1
exp

2 2

1
exp cosh

2

1 1
exp exp

2 2

1.

g d x d x dx

dx dx

e e 

   

   



 

 



 
  

 

   
       

   

   
       

   

 
  

 

 
  

 

   
    

   





 

 

 

Since g(n) is decreasing and g(1)  1 we conclude: 

 

   
1

2

0
0 0

1
exp 1.

2

n n

k k

k k

d x d x dx
 

 
  

 
   

 

Hence: 

 

   
1

2

0

1
exp 1.

2
n nf x S f x dx

 
  

 
  

 

This completes the proof. 

Remark 4 

Note that if we rescale the sequence {fn} by , then 

Lemma 3 gives: 

 

   
1

2 2

0

1
exp 1.

2
n nf x S f x dx 

 
  

 
  

 

This shows that this lemma is an inhomogeneous type 

inequality. We won't need this fact in the sequel. 
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Proof of Inequality 1 

Fix n. Let  > 0,  > 0. Then for every m  n: 
 

   
1 1

, , .
2m

m n m m mQ
m

f x f y dy x Q Q
Q

    

 

Fix x: Then 
1

sup
m n 

|fm(x)|  M |fn|(x) where Mfn is the 

Hardy-Littlewood maximal function of fn. Then using 

Jensen's inequality we have: 
 

    

  

   

exp exp

1
exp

.

m

m

m

m n
Q

m

n
Q

m

f x

y
f x f y d

Q

f y dy
Q

M e x


 



  
  

  
  







  

 
Using the Hardy-Littlewood maximal estimate, we 

have: 
 

    
 

  
     

  

   

1

1

1

0

2 2
12

2

0

0,1 : sup

0,1 : sup

0,1 :

3
exp

3
exp exp .

2 2

m

m

m
m n

f x

m n

f

n

n n n

x f x

x e e

x M e x e

f y dy
e

S f f y S f y dy
e

 

 









 


 

 



 

  

  



   
    

   





 

 
Using Lemma 3 we have: 

 

 

   
  

   
  

   

   

2
1

2

0

2
2

: 0

2
2

: 0

2
1

2

0

2
1

2

0

exp
2

exp
2

exp
2

exp
2

exp
2

2.

n

n

n n

n n
y f y

n n
y f y

n n

n n

f y S f dy

f y S f y dy

f y S f y dy

f y S f y dy

f y S f y dy




















 
 

 

 
  

 

 
   

 

 
  

 

 
   

 













 

 
So: 

 

    
2

2

1

6
0,1 : sup exp .

2
m n

m n

x f x S f
e





 

 
    

 
 

Choose 
2

nS f






 . With this , the above inequality 

becomes: 

 

    
2

2
1

0,1 : sup 6exp .
2

m
m n

n

x f x
S f




 



 
   

  
 

 

 

Note that for the dyadic martingale {fn}: 

 

       2 2 2 2

1 1

.
n

n k k

k k

S f x d x S f x d x


 

     

 

Consequently: 

 

2 2

1 1
.

22 n
SfS f



 
  

 

Recall the continuity property of Lebesgue 

measure: If {En} is a sequence of sets with En  En+1 

for all n and E = 
1

n

n

E




, then |E| = lim
n

|En|. Using this 

we get: 

 

    
2

2
1

0,1 : sup 6exp .
2

m
m

x f x
Sf







 
   
 
 

 

 

This completes the proof of the first inequality. 

Proof of Inequality 2 

Fix n. Define a sequence {gm} as follows: 

 

 
   

0, ;

, .
m

m n

if m n
g x

f x f x if m n


 

 
  (1) 

 

We first show that {gm} is a dyadic martingale. 

Clearly for every m, gm is measurable with respect to the 

sigma algebra 
mF : Let m > n. Then using the fact that fm 

is constant on the cube Qm we have: 

 

      

   

   

   

 

1 1

1

1

1
|

1 1

1

.

m

m m

m

m m m n
Q

m

m n
Q Q

m m

m n
Q

m

m n

m

E g x f x f x dx
Q

f x dx f x dx
Q Q

f x dx f x
Q

f x f x

g x

 





   

 

 

 





 



F
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Thus we have  1 |m mE g  F  = gm. This shows that {gm} 

is a martingale. Then applying the inequality 1 for this 

martingale, we get: 

 

    
2

2
1

0,1 : sup 6exp .
2

m
m

x g x
Sg







 
   
 
 

 

 

But, gm(x) = 0 for m  n. Hence: 

 

    
2

2
0,1 : sup 6exp .

2
m

m n

x g x
Sg







 
   
 
 

 

 

Again: 

 

       

   

       

   

 

 

2
2 2

1

0 0

2

1

2

1

2

1

1

2

1

2 .

k k k

k k

k k

k n

k n k n

k n

k k

k n

k

k n

n

S g x d x g x g x

g x g x

f x f x f x f x

f x f x

d x

S f x

 



 

















 



 

    

   

     

   





 









 

 

This gives: 

 

    
2

2
0,1 : sup 6exp .

2
m

m n
n

x g x
S f








 
   

  
 

 

 

i.e.: 

 

      
2

2
0,1 : sup 6exp

2
m n

m n
n

x f x f x
S f








 
    

  
 

 (2) 

 

Clearly: 

 

         : : supn m n
m n

x f x f x x f x f x 


      

 

So we have: 

 

         : : sup .n m n
m n

x f x f x x f x f x 


      

 

Consequently: 

    
2

2
: 6exp .

2
n

n

x f x f x
S f






 
   

  
 

 (3) 

 

By the triangle inequality we have: 

 

            

       

sup sup

sup .

m n n m
m n m n

n n m
m n

f x f x f x f x f x f x

f x f x f x f x

 



    

   
 

 

This gives: 

 

    
       

: sup

: sup : sup
2 2

m
m n

n n m
m n m n

x f x f x

x f x f x x f x f x



 



 

 

   
       
   

 

 

Therefore: 

 

    
       

: sup

: : sup .
2 2

m
m n

m n m
m n

x f x f x

x f x f x x f x f x



 





 

   
        
   

 

 

Then using (2) and (3) in the above inequality we get: 

 

    
2 2

2 2

2

2

: sup

2 2
6exp 6exp

2 2

12exp .
8

m
m n

n n

n

x f x f x

S f S f

S f



 





 



 

      
       
       

    
      
   

 
 

  
 

 

 

Thus: 

 

    
2

2
: sup 12exp .

8
m

m n
n

x f x f x
S f








 
   

  
 

 

 

This completes the proof of inequality 2. 
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