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Abstract: The area under the Receiver Operating Characteristic 

(ROC) curve (AUC) is a summary measure when comparing two 

ROC curves. However, this summary measure is less informative 

when two ROC curves cross and have the same AUCs. In order to 

detect differences between ROC curves and to be able to tackle the 

problem of exchangeability of the labels between two diagnostic tests 
within subject, an alternative permutation test based on between-

subject permutations of the labels of the subjects within each 

diagnostic test is proposed for assessing a change in the AUCs in a 

continuous matched pair of data from two diagnostic test procedures 

having both non-diseased and diseased subject in each of the test. The 

Wilcoxon signed rank test statistic was modified as a permutation test 

under the null hypothesis of equality of AUCs. An algorithm for 

carrying out complete enumeration of all the distinct permutations of 

the paired test results was developed which provides exact p-values. 

Using simulated data, the proposed test compares in statistical power 

to the modified sign test proposed by Braun and Alonzo but the 

proposed test has better operating characteristics, that is greater 
statistical power to detect a crossing alternative and is less 

conservative in test size and in the range of parameters of at least 0.8 

of AUCs on the average with a correlation of at least 0.4 and small to 

moderately large sample sizes. Similarly in applying real life data, the 

proposed test has the more likelihood of rejecting null hypothesis of 

equality of AUC1 and AUC2 at nominal level of 0.05 with the proposed 

test having a p-value of 0.0312 against the Braun and Alonzo’s test 

with a p-value of 0.0387. This is because the proposed test is modified 

to adjust for the presence of zero differences in values and considers 

the signs of values as well as the absolute ranks of values. Also the 

estimates of AUC1 and AUC2 for the two diagnostic tests are 0.668 and 
0.887 respectively showing that AUC2, that is 2hour 100g Oral Glucose 

Tolerance Test (OGTT) is superior to AUC1 (2hour 70g OGTT) at a time 

that the specificity is greater than 0.7. 

 

Keywords: Permutation Test, Exchangeability, Asymptotic 

Approximation, Algorithm, Two Diagnostic Test Procedures, Area Under 

the ROC Curve (AUC), Modified Wilcoxon Signed Rank Test, Receiver 

Operating Characteristic (ROC) Curve 
 

Introduction 

Nonparametric inference for a difference in Areas 
Under the Curve (AUCs) for paired studies was first 
proposed by DeLong et al. (1988). They developed a 

conventional fully nonparametric approach to compare 
two correlated AUCs of two diagnostic tests for paired 
samples of subjects by using the asymptotic theory of 
generalized U statistics (Hoeffding, 1948) and used the 
jackknife to estimate the covariance of the 2 U-statistics 
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all lead to an asymptotically normal test statistic. The 
test by DeLong et al. is limited by the fact that the AUC 
has an unbiased non-parametric estimator called the 
indicator variable that requires the comparison of all 
the number of subjects responding positive and 
negative. Other nonparametric inference procedures 
include those based upon an analysis of variance of 
jackknife pseudo-values (Dorfman et al., 1992; Song, 
1997) and bootstrap-based methods (Campbell, 1994; 
Moise, 1988). However, these methods are valid for 
large sample size, so that computational time could 
be long and their test of difference in AUC is not 
valid in small samples. A competing nonparametric 
approach that is valid for small sample size is 
permutation test. Permutation based procedures are 
specific to hypothesis testing. A permutation 
procedure constructs a permutation sample space, 
which consists of the equally likely permutation 
samples. The permutation samples are created by 
interchanging the units of the data that are assumed to 
be “exchangeable” under the null hypothesis. The 
permutation sample space is the exact probability 
space of the possible arrangements of the data under 
the null hypothesis given the original sample. This 
natural permutation test is characterized by 
exchanging the paired units when two diagnostic test 
procedures are to be compared with paired data. 
Three permutation tests for paired Receiver Operating 
Characteristic (ROC) studies currently exist: One 
proposed by Venkatraman and Begg (1996), one from 
Bandos et al. (2005) and the other from Braun and 
Alonzo (2008). However, Venkatraman and Begg 
(1996) and Bandos et al. (2005) proposed a 
permutation tests concerning correlated Receiver 
Operating Characteristic (ROC). The test of     
Bandos et al. (2005) directly tests for an equality of 
AUCs, the test of Venkatraman and Begg (1996) is 
more general and tests for equality of the underlying 
ROC curves, while the test by Braun and Alonzo 
(2008) compares the ROC curves but is designed to 
have increased power of detecting a difference in 
AUCs. As a result, the test of Venkatraman and Begg 
is less powerful for testing equality of AUCs but more 
general in testing for the equality of the overall ROC 
curves. While the test by Venkatraman and Begg is 
specifically designed to detect any differences between 
two ROC curves at every operating point, the test of 
Braun and Alonzo is designed to detect differences in 
AUCs. By comparison, the statistical power of the 
permutation test by Bandos et al. (2005) is more than 
the nonparametric approach employed by DeLong et al. 
(1988) in terms of when the AUCs are large, small 
sample sizes and moderate correlation between 
diagnostic test procedures. Meanwhile, the estimator 
proposed by DeLong et al. (1988) possesses an 
upward bias which on the one hand results in an 
improved (compared to the unbiased estimator) type I 
error of the statistical test for equality of the AUCs 

when AUCs are small, but on the other hand results 
in loss of statistical power when AUCs are large 
(Bandos, 2005; Bandos et al. 2005). Bandos et al. 
(2005) compared the performance of their test to that 
of DeLong et al. (1988) via simulation and found that 
the permutation test had greater power than the 
nonparametric test developed by DeLong et al. 
(1988) when there was moderate correlation between 
diagnostic tests, large AUCs and small sample sizes. 
The permutation tests by Bandos et al. as well as 
Venkatraman and Begg requires exchangeability of 
the two diagnostic test procedures within the non-
diseased and diseased labels of subjects. These 
permutation tests require that both diagnostic tests are 
exchangeable within subject and require an 
appropriate transformation, such as ranks, because the 
measurements of test results are on different scales. 
This means that both of these tests assume the same 
condition of exchangeability of the diagnostic results 
under the null hypothesis, but differ with respect to 
their sensitivity to specific alternatives and the 
availability of an asymptotic version.  

We propose an alternative permutation test that 

does not require data transformation due to the 

presence of zero differences or tied absolute values of 

differences which makes test results to be taken on at 

most the ordinal scale and exchangeability of two 

diagnostic test procedures rather requires between 

subjects permutation of the non-diseased and diseased 

labels of subjects within a given diagnostic test 

procedure. This permutation test is based on the works 

of Braun and Alonzo (2008) that in their work used 

sign test as their permutation test. While sign test 

considers the direction of units measured, our test 

considers both the direction and magnitudes of the 

units of interest. In an effort to assess a difference in 

AUCs of the two diagnostic tests, an algorithm for 

computing the exact permutations of the test statistic 

will be implemented. In the next section, we propose 

our permutation test and show that it is equal to 

modified Wilcoxon signed rank test statistic. In section 

3, we shall also present an algorithm for computing the 

exact distribution of the permutation test. In section 4, 

we describe the simulation and real life data, apply the 

proposed test on the data and present the results. In 

section 5, we discuss the result of the simulation in 

terms of the operating characteristics of the proposed 

test, compare the test size and power of our test and a 

competing test as well as compare the power of the two 

tests using real life data. In section 6, we make our 

summary and conclusions.  

Proposed Permutation Test 

The proposed method discussed here is a 
permutation test designed to compare the AUCs of two 
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diagnostic test procedures given as AUC1 and AUC2 

having a total number of n subjects and where subject 

labels are exchangeable within each diagnostic test 

under null hypothesis. Since an issue in a permutation 

test is to choose a test statistic that discriminates 

between the null and alternative hypothesis and given 
the fact that a popular choice is a test statistic developed 

in asymptotic theory, we therefore modify for use, 

Wilcoxon signed rank test statistic. 

The procedure is such that a total number of N
 
non-

diseased subjects and M diseased subjects each received 

both diagnostic tests. Let the test results of diagnostic 

tests 1 and 2 for the non-diseased subject be Xi1 and Xi2 

where i = 1,…,N. Also let the test results of diagnostic 

tests 1 and 2 for the diseased subject be Yj1 and Yj2 

where j = 1,…,M. Also let X = {(X11, X12), (X21, X22),…, 

(XN1, XN2)} denotes pairs of vector of measurement on 

non-diseased subjects and let Y = {(Y11, Y12), (Y21, 

Y22),…, (YM1, YM2)} be the pairs of vector of 

measurement on diseased subjects. Therefore the 

difference in AUCs given as AUC = AUC2- AUC1 is 

estimated non-parametrically as: 
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where, Q(Xim, Yjm) = Sij2 - Sij1 = Sijm and Sijm = A(Yjm > 

Xim) +  
1

2
 A(Xim > Yjm); m = 1,2: 
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Consider according to Hanley and McNeil (1982), 

that this indicator function is: 
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 (2) 

In other to test the null hypothesis H0: AUC2- 

AUC1 = 0, we combine N and M subjects to have a 

total of n subjects and let S1 = {S11, S12,…, S1N, S1,N+1, 

S1,N+2…., S1n} be n measurements arising from 

diagnostic test 1 while the subscripts p = 1,2,..,N 

shows test results for the non-diseased subjects while 
q = N +1, N +2,….,n shows test results for the 

diseased subjects. Based on this arrangement within 

diagnostic test 1, we compare every subject’s test 

result to every other subject’s test result. Thus: 

 

   1 1 1 1 1

1
;

2
pq q p p qR A S S A S S if p q      (3) 

 

This implies that every diseased subject is 

compared to all non-diseased subjects and all (M-1) 

other diseased subjects. Similarly, every non-diseased 

subject is compared to all diseased subjects and all (N-

1) other non-diseased subjects. Also let S2 = {S21, 

S22,…, S2N, S2,N+1, S2,N+2…., S2n} be n measurements 

arising from diagnostic test 2 while the subscripts p = 

1,2,..,N shows test results for the non-diseased subjects 

while q = N +1, N +2,….,n shows test results for the 

diseased subjects. Similarly within diagnostic test, 2, we 

compare every subject’s test result to every other 

subject’s test result, that is: 
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1
; .

2
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Given the above definitions, therefore Rpq = 1- Rpqm; 

m = 1,2.
  

To test the null hypothesis that AUC = 0, which is 

similar to testing the null hypothesis that the difference 

between paired samples is a distribution that is 

symmetric around zero, we adopt the transformation in 

Equation 2 whose indicator function is [1,0.5,0] and 

adjust for the presence of ties (zero difference) from the 

diagnostic pairs and disease status[0,1] and map to [1,0,-

1]. Given the specifications above, we generalize the 

estimate of AUC as: 
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Note that Qpq is the difference between the sample 

pairs of S1 being measurements arising from diagnostic 

test 1 and S2 being measurements arising from 

diagnostic test 2. This is based on the exchangeability 

of the diseased and non-diseased labels of the subjects 

within each diagnostic test. The indicator function Tpq 
takes value 1 at the calibrated cut-off point c of a given 

diagnostic test if subject test result p is non-diseased 

and subject test result q is diseased. It takes -1 if 

subject test result p is diseased and subject test result q 

is non-diseased. Values of 0 represents cut-offs at 

which both subject test results p and q are diseased or 

non-diseased. Recall that the AUC is equivalent to 

two-sample Wilcoxon test statistic (Pardo and   

Franco-Pereira, 2017) and can be used to carry out test 

of symmetry around zero for paired samples. Based on 

that finding, the Equation 5 above which is the 
modified Wilcoxon Signed rank test statistic is 

equivalent to difference in AUCs and can be used as a 

test statistic for the test of symmetry around zero. This 

proposed test statistic is more powerful than the 

modified sign test statistic (Oyeka, 2009) proposed by 

Braun and Alonzo (2008) for comparing correlated 

ROC curves as it utilizes both the signs, Tpq and the 

absolute ranks of Qpq.  

When both diagnostic tests results are measured 

continuously, testing the hypothesis that AUC = 0 is 
equal to testing the null hypothesis that r(Qpq) is a 

symmetric distribution around zero. We therefore test 

the null hypothesis that AUC = 0 by computing AUC 
= 0 for every permutation of Tpq, the signs of the rank of 

|Qpq|. Given that our permutation of Tpq requires 
exchanging the labels of non-diseased subject’s test 

results p and diseased subject’s test result q, it is the 

same as permuting among the subjects, the vector of test 

results of diseased/non-diseased labels. Therefore, the 

link between the true diseased status of a given subject 

as well as its test results arising diagnostic tests 1 and 2 

are dislodged under this type of permutation 

arrangement. This permutation test is therefore valid if 

either one of the AUC of the diagnostic tests is equal to 

t, where t is a number in between 0.5 and 1 inclusive.  

An Algorithm for Computing the Exact 

Distribution of the Permutation Test,  

Ŵ(AÛC) 

To ensure that the probability of a type I error is 

exactly α, thus obtaining exact p-values, an algorithm 

for obtaining exact permutation distribution of the test 

statistic, AÛC, is presented by implementing it in Intel 
Visual FORTRAN. This software package is to be used 
because it can carry out sampling without replacement, 

which increases the power of the permutation test. For a 

complete enumeration of all the paired permutations of 

the two diagnostic test results, the required number of 

permutations is given by: 
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n

n
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Therefore a paired sample design with n pairs has 

2N+M possible permutations of the variates with each 

permutation occurring with probability 2-N+M. 

Since S1 = {S11, S12,…, S1N, S1,N+1, S1,N+2…., S1n} and 

S2 = {S21, S22,…, S2N, S2,N+1, S2,N+2…., S2n} are n 

measurements arising from diagnostic tests 1 and 2 

respectively where the subscripts p = 1,2,..,N  represents 
test results for the non-diseased subjects and q = N +1, N 

+2,….,n representing test results for the diseased 

subjects, we consider AUC given in (5) as the test 
statistic and test the null hypothesis H0: AUC1 = AUC2 

versus H1: AUC1  AUC2.  

Suppose the test statistic AUC and it is required that 
difference in AUCs should be computed for all pairs 

arising from diagnostic test 1 and 2, we therefore for 

simplicity replace our test statistic AUC with W. Let W 
= (W1, W2, W2,…, Wm) be m distinct values of the test 

statistic W. The probability distribution of the test 

statistic W under the null hypothesis is given by: 
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where, fl is the frequency of occurrences of Wl. Given a 

particular value of n and significant level , c being the 
critical value is in correspondence to the closest of α. 

The distinct occurrences of W are therefore all ordered 

in an increasing order of size. If the point occupied by 

the observed value of W is h, then the left and right side 

of the probability distribution of W has level of 

significance given as: 
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And: 
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Since the alternative hypothesis suggests a two sided 

test, the left and right side are added up. Therefore, for a 

symmetric distribution of W around zero: 
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Since permuted subjects labels are represented by S1 

and S2 from diagnostic test 1 and 2 respectively, let {1, 

1,…, n} be a set of all distinct permutations resulting 
from S1 and S2 pairs from diagnostic test 1 and 2 such 

that s is the sth permutation.  
The steps involved in the permutation test are 

defined as follows: 

 

1. Calculate the Test Statistic, W1 for the original 

observations 1 

2. Obtain a distinct permutation s 
3. Calculate the Test Statistic for the distinct 

permutation, s that is W(s)  
4. Go back to Steps 2 and 3 and repeat for s = 

2,3,…,2n, n = N + M = sample size  
5. Now build the empirical cumulative probability 

distribution as: 
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0 1

1

1

1

1

1
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n

s sn
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 (10) 

 

6. Given the empirical cumulative probability 

distribution p̂ , if p0  , we reject H0 

 

These steps compute the empirical cumulative 

probability distribution of W under the null hypothesis. 

An Algorithm for Calculating the Exact 

Distribution of Ŵ 

The test statistic Ŵ is computed for each permutation 

in the complete enumeration of the distinct 

permutations. The distribution of the test statistic is 

obtained by tabulating the distinct values of the statistic 

against their probabilities of occurrence in the complete 

enumeration, bearing in mind that all the permutations 

are equally likely. The paired permutation is constructed 

by letting Ssm represent the paired test results of subjects 

in the two diagnostic tests 1 and 2, where s = 60; m = 
1,2. See appendix A1 for the algorithm. 

Examples  

a. Simulation Description and Implementation  

Test results from two diagnostic test procedures were 
simulated for the purpose of comparing the test sizes 

and statistical power of the proposed permutation test 

for various underlying AUC differences, different 

sample sizes and correlations between two diagnostic 

test procedures as follows. In other to generate data, we 

assumed and drew two continuous measurements for 

each non-diseased subject from a bivariate normal 

distribution centered at X = 0, with both measurements 
having a marginal variance of 1.0. So that for mth 

diagnostic test, we have 20 1.0; 1,2.m mx x
and m     

Since two ROC curves taken from measurements 

with same variances cannot cross each other, we drew 

two continuous measurements for each diseased subject 

from a bivariate normal distribution centered at Y, with 
both measurements having a marginal variance of 1.0 

for diagnostic tests procedures having non-crossing 

ROC curves. The values in Y are directly determined 
from AUC1 and AUC2 particularly from the Hanley and 

McNeil (1982) equation of AUC. We assume unequal 

variances such as 1 2

2 21.0 3.0
y y

and    for diagnostic 

tests procedures with crossing ROC curves. We also 

assume the correlation for all the scenarios to be  = 
0.25, 0.5 and 0.75. 

A total of 10000 replications are computed for a 

given case while the sample sizes of 20,40,60 and 80 are 

considered and used in obtaining both the type I error 

(test size) and statistical power are obtained for sample 

sizes 20, 40,60 and 80. A nominal significance level of 

5% was used in determining the region of rejection for 

the tests. The exact values are compared with the 

asymptotic 95% confidence interval (0.036, 0.064) 

around a significant level of 5% is on the basis of 10000 

simulation in each case.  
From AUCs and variances values for both non-

crossing and crossing ROC curves, the values of mean 

of diagnostic test results denoted as X and Y for non-

diseased and diseased subjects respectively are obtained 
from the Hanley and McNeil (1982) equation of AUC 

while the variance-covariance matrix is constructed.  

The main essence of data simulation is to evaluate 

the ability to control Test size (Type I error) and to 

achieve higher statistical power for the proposed 

permutation test as compared to other tests. To know the 

Test size (type I error) and statistical power of the 

normal approximation (asymptotic pattern) and exact 

values of various AUCs that are involved, how 

correlated subjects’ test results are across diagnostic 

tests at different sample sizes. Here equal correlation is 
assumed for non-diseased and diseased subjects across 

the two diagnostic test results that are continuous while 

non-crossing as well as crossing of ROC curves are 

similarly considered. We compared the size and power 

of the permutation test to another method in terms of 

their exact permutation and their normal 

approximation. Because of enormous time required to 

implement the exact permutation procedure, the 

comparisons done here are limited to sample sizes that 

are small. In comparing the test size and statistical 

power of the proposed test in relation to a competing 
method, six tables were obtained as well as four 
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scenarios showing the ROC curves with varying AUCs. These are presented below.    

 
Table 1: Comparison of test size for the proposed test and that of Braun and Alonzo in terms of exact and asymptotic methods with 

different area and non-crossing ROC curves.  

   = 0.25     = 0.50     = 0.75 

  -------------------------------------------- --------------------------------------------- ------------------------------------------ 

  MWSRT  B & A  MWSRT  B & A  MWSRT  B & A 

  --------------------- -------------------- -------------------- -------------------- -------------------- --------------------- 

AUC1 AUC2 EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY 

0.6 0.7 0.046 0.045 0.043 0.036 0.047 0.043 0.046 0.044 0.049 0.044 0.038 0.035 

0.6 0.8 0.050 0.047 0.047 0.043 0.054 0.050 0.052 0.050 0.056 0.050 0.054 0.050 

0.7 0.8 0.065 0.063 0.064 0.060 0.075 0.068 0.072 0.071 0.085 0.079 0.079 0.074 

0.7 0.9 0.092 0.088 0.091 0.087 0.113 0.107 0.111 0.110 0.142 0.132 0.140 0.135 

0.8 0.9 0.127 0.122 0.123 0.120 0.168 0.160 0.165 0.164 0.221 0.204 0.220 0.220 

0.6 0.7 0.039 0.036 0.039 0.034 0.043 0.038 0.042 0.038 0.042 0.038 0.041 0.040 

0.6 0.8 0.046 0.045 0.043 0.049 0.049 0.045 0.045 0.043 0.050 0.045 0.046 0.045 

0.7 0.8 0.062 0.059 0.060 0.057 0.069 0.064 0.063 0.060 0.081 0.073 0.078 0.077 

0.7 0.9 0.086 0.083 0.085 0.082 0.110 0.102 0.107 0.105 0.136 0.124 0.136 0.129 

0.8 0.9 0.126 0.120 0.125 0.122 0.171 0.159 0.170 0.170 0.223 0.201 0.222 0.220 

0.6 0.7 0.032 0.030 0.030 0.026 0.034 0.038 0.032 0.032 0.032 0.030 0.030 0.026 

0.6 0.8 0.036 0.034 0.028 0.023 0.040 0.042 0.036 0.034 0.044 0.042 0.042 0.041 

0.7 0.8 0.053 0.050 0.051 0.047 0.064 0.072 0.060 0.060 0.075 0.072 0.074 0.073 

0.7 0.9 0.080 0.075 0.078 0.073 0.104 0.122 0.102 0.100 0.137 0.132 0.132 0.130 

0.8 0.9 0.122 0.115 0.120 0.118 0.174 0.179 0.171 0.172 0.231 0.228 0.227 0.217 

0.6 0.7 0.022 0.020 0.021 0.020 0.026 0.031 0.022 0.020 0.023 0.021 0.022 0.022 

0.6 0.8 0.026 0.023 0.021 0.018 0.032 0.040 0.032 0.031 0.032 0.029 0.031 0.031 

0.7 0.8 0.039 0.035 0.036 0.034 0.034 0.037 0.034 0.032 0.070 0.057 0.065 0.063 

0.7 0.9 0.029 0.023 0.025 0.022 0.026 0.024 0.025 0.022 0.042 0.039 0.041 0.040 

0.8 0.9 0.022 0.019 0.022 0.017 0.020 0.017 0.018 0.015 0.022 0.020 0.021 0.018 

Sample sizes of 10 for both non-diseased and diseased subjects were simulated 

 
Table 2: Comparison of Test size for the proposed test and that of Braun and Alonzo in terms of exact and asymptotic methods with 

different area and crossing ROC curves 

   = 0.25     = 0.50     = 0.75 

  ----------------------------------------------- --------------------------------------------- ---------------------------------------------- 

  MWSRT  B & A  MWSRT  B & A  MWSRT  B & A 

  ------------------- --------------------- --------------------- -------------------- ---------------------- ------------------- 

AUC1 AUC2 EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY 

0.6 0.7 0.050 0.047 0.048 0.037 0.053 0.048 0.048 0.046 0.052 0.048 0.050 0.045 

0.6 0.8 0.054 0.050 0.050 0.047 0.058 0.054 0.055 0.054 0.061 0.059 0.057 0.053 

0.7 0.8 0.068 0.066 0.064 0.060 0.080 0.076 0.076 0.074 0.090 0.087 0.086 0.083 

0.7 0.9 0.097 0.093 0.093 0.080 0.120 0.119 0.116 0.116 0.142 0.139 0.141 0.140 

0.8 0.9 0.132 0.128 0.131 0.130 0.174 0.173 0.173 0.168 0.218 0.208 0.215 0.214 

0.6 0.7 0.042 0.040 0.040 0.037 0.045 0.038 0.042 0.040 0.045 0.041 0.044 0.043 

0.6 0.8 0.046 0.044 0.044 0.040 0.050 0.048 0.045 0.044 0.053 0.046 0.053 0.052 

0.7 0.8 0.065 0.063 0.065 0.063 0.075 0.066 0.072 0.072 0.083 0.082 0.080 0.076 

0.7 0.9 0.094 0.088 0.093 0.087 0.115 0.109 0.115 0.110 0.141 0.138 0.138 0.134 

0.8 0.9 0.136 0.127 0.134 0.132 0.178 0.173 0.176 0.174 0.224 0.218 0.222 0.220 

0.6 0.7 0.036 0.032 0.034 0.030 0.037 0.035 0.033 0.032 0.040 0.037 0.038 0.036 

0.6 0.8 0.040 0.038 0.037 0.034 0.045 0.037 0.043 0.042 0.046 0.042 0.036 0.033 

0.7 0.8 0.058 0.055 0.055 0.052 0.069 0.059 0.064 0.062 0.082 0.076 0.075 0.074 

0.7 0.9 0.087 0.086 0.085 0.083 0.112 0.108 0.112 0.110 0.140 0.137 0.138 0.136 

0.8 0.9 0.129 0.125 0.126 0.122 0.182 0.175 0.189 0.185 0.232 0.227 0.230 0.224 

0.6 0.7 0.026 0.023 0.023 0.020 0.026 0.022 0.025 0.023 0.027 0.023 0.025 0.022 

0.6 0.8 0.029 0.024 0.027 0.022 0.035 0.033 0.034 0.032 0.038 0.035 0.033 0.030 

0.7 0.8 0.044 0.038 0.043 0.041 0.060 0.058 0.058 0.054 0.071 0.068 0.070 0.067 

0.7 0.9 0.073 0.069 0.072 0.070 0.104 0.100 0.102 0.100 0.141 0.136 0.135 0.133 

0.8 0.9 0.022 0.020 0.019 0.016 0.039 0.028 0.037 0.027 0.034 0.029 0.028 0.022 

Sample sizes of 10 for both non-diseased and diseased subjects were simulated 
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Table 3: Comparison of Test size for the proposed test and that of Braun and Alonzo test with same area and non-crossing ROC 
curves in term of their asymptotic approximation test 

   p = 20, q = 20 p = 40, q = 40 p = 60, q = 60 p = 80, q = 80 
   ------------------------- ------------------------- ------------------------- ------------------------------ 
 AUC1 AUC2 B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.0 0.6 0.6 0.056 0.049 0.052 0.049 0.051 0.050 0.049 0.047 
 0.7 0.7 0.052 0.048 0.050 0.048 0.051 0.049 0.048 0.046 
 0.8 0.8 0.050 0.046 0.050 0.048 0.050 0.049 0.049 0.048 
 0.9 0.9 0.039 0.044 0.048 0.046 0.048 0.049 0.048 0.047 
0.25 0.6 0.6 0.053 0.049 0.052 0.050 0.053 0.052 0.053 0.050 
 0.7 0.7 0.052 0.049 0.051 0.050 0.050 0.048 0.051 0.050 
 0.8 0.8 0.048 0.047 0.049 0.048 0.050 0.050 0.050 0.049 
 0.9 0.9 0.044 0.045 0.047 0.048 0.050 0.050 0.051 0.049 
0.5 0.6 0.6 0.051 0.050 0.050 0.050 0.051 0.050 0.050 0.048 
 0.7 0.7 0.048 0.048 0.050 0.050 0.049 0.050 0.047 0.046 
 0.8 0.8 0.045 0.046 0.049 0.050 0.050 0.051 0.048 0.046 
 0.9 0.9 0.041 0.041 0.047 0.049 0.050 0.051 0.049 0.047 
0.75 0.6 0.6 0.044 0.047 0.038 0.042 0.046 0.046 0.045 0.046 
 0.7 0.7 0.043 0.045 0.037 0.041 0.043 0.044 0.042 0.043 
 0.8 0.8 0.037 0.041 0.038 0.040 0.042 0.045 0.044 0.046 
 0.9 0.9 0.025 0.036 0.035 0.039 0.037 0.039 0.035 0.038 

 
Table 4: Comparison of Test size for the proposed test and that of Braun and Alonzo test with same area and crossing ROC curves 

in terms of their asymptotic approximation test 

   p = 20, q = 20 p = 40, q = 40 p = 60, q = 60 p = 80, q = 80 
   ------------------------- ------------------------- ------------------------- ------------------------------ 
 AUC1 AUC2 B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.0 0.6 0.6 0.057 0.054 0.055 0.054 0.052 0.052 0.051 0.051 
 0.7 0.7 0.055 0.052 0.054 0.053 0.052 0.051 0.048 0.049 
 0.8 0.8 0.033 0.037 0.032 0.035 0.049 0.050 0.047 0.046 
 0.9 0.9 0.020 0.028 0.021 0.025 0.045 0.046 0.044 0.045 
0.25 0.6 0.6 0.054 0.052 0.053 0.055 0.051 0.050 0.052 0.054 
 0.7 0.7 0.053 0.052 0.052 0.053 0.053 0.054 0.052 0.053 
 0.8 0.8 0.040 0.045 0.050 0.051 0.050 0.052 0.049 0.048 
 0.9 0.9 0.019 0.023 0.039 0.043 0.043 0.044 0.043 0.044 
0.5 0.6 0.6 0.052 0.054 0.050 0.052 0.051 0.053 0.053 0.054 
 0.7 0.7 0.050 0.051 0.049 0.051 0.050 0.052 0.052 0.055 
 0.8 0.8 0.045 0.047 0.047 0.049 0.046 0.049 0.053 0.054 
 0.9 0.9 0.020 0.023 0.034 0.036 0.037 0.040 0.039 0.040 
0.75 0.6 0.6 0.047 0.050 0.050 0.055 0.050 0.054 0.051 0.053 
 0.7 0.7 0.045 0.048 0.046 0.049 0.047 0.050 0.049 0.050 
 0.8 0.8 0.037 0.040 0.037 0.042 0.038 0.041 0.040 0.044 
 0.9 0.9 0.015 0.024 0.026 0.035 0.032 0.039 0.038 0.040 

 

Table 1 (Fig. 1) and Table 2 (Fig. 2) examine the 

comparison of Test size of the proposed permutation test 

and Braun and Alonzo’s permutation test in terms of their 

exact and asymptotic methods for assessing a difference 

in AUC for two continuous diagnostic test procedures 

when the areas are different for non-crossing and crossing 

ROC curves respectively. Since large computational time 
was needed for carrying out the computation of exact 

permutation, the comparisons shown in Table 1 (Fig. 1) 

and Table 2 (Fig. 2) are limited to sample sizes that are 

small where result indicates that good agreement exists 

between the exact and normal approximation test. Table 1 

(Fig. 1) and Table 2 (Fig. 2) shows that even with small 

sample size of 10 for each of non-diseased and diseased 

subjects, the normal approximation test is adequate while 

the exact permutation test required a little computer time 

to conduct. Subsequent Tables 3 to 6 considered 

simulating the operating characteristics of the normal 

approximation test for large sample sizes since the exact 

permutation test results are essentially equivalent. 

In Table 3 (Fig. 3), we compared and presented the 

estimates for continuous data of the test size of the 

proposed asymptotic normal approximation test and 
normal approximation test proposed by Braun and 

Alonzo (2008). In Table 4 (Fig. 4) where the areas are 

same with crossing ROC curves, the test size is the 

statistical power, since the proposed method is designed 

to detect a difference in AUCs but formally test the null 

hypothesis for the equality of AUCs subject to 

exchangeability. In Table 3 (Fig. 3) and Table 4 (Fig. 4) 

where the AUCs are same, for moderately large sample 

sizes such as 40 to 60 with non-crossing ROC curves 
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having at least moderately high correlation between 

diagnostic tests, the proposed test showed a less 

conservative test size compared to Braun and Alonzo’s 

test. This effect is especially evident with smaller 

sample sizes. In Table 4 (Fig. 4) when the AUCs are the 

same with crossing ROC curves, the test size of the 
proposed test is very close to that of the Braun and 

Alonzo’ test since both tests is for detecting a difference 

in AUCs. Therefore the two methods are not advisable 

to be used to detect crossing ROC curves when the 

AUCs are the same. The closeness of the test size and 

the nominal level of significance suggests that two 

permutation tests (proposed test as well as Braun and 

Alonzo, 2008) which in comparison provide an 
asymptotic normal approximation of test of equality of 

AUCs are comparable in statistical power.  
 
Table 5: Comparison of power for the proposed test and that of Braun and Alonzo’s test in terms of their approximations with 

different area and crossing ROC curves.  

  p = 20, q = 20 p = 40, q = 40  p = 60, q = 60 p = 80, q = 80 
   = 0.0   = 0.25   = 0.5   = 0.75 
  -------------------------- ---------------------------- ----------------------------- -------------------------- 
AUC1 AUC1 B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.6 0.7 0.076 0.071 0.082 0.086 0.090 0.102 0.180 0.200 
0.6 0.8 0.142 0.135 0.179 0.183 0.213 0.236 0.544 0.575 
0.7 0.8 0.251 0.240 0.332 0.339 0.422 0.450 0.880 0.883 
0.7 0.9 0.403 0.387 0.535 0.541 0.655 0.680 0.937 0.954 
0.8 0.9 0.476 0.459 0.566 0.572 0.656 0.673 0.996 0.998 
0.6 0.7 0.079 0.076 0.087 0.090 0.092 0.106 0.197 0.215 
0.6 0.8 0.154 0.145 0.194 0.201 0.232 0.257 0.593 0.624 
0.7 0.8 0.277 0.267 0.366 0.375 0.459 0.489 0.914 0.926 
0.7 0.9 0.452 0.437 0.587 0.595 0.705 0.735 0.983 0.987 
0.8 0.9 0.537 0.532 0.612 0.621 0.822 0.820 0.995 0.998 
0.6 0.7 0.084 0.081 0.093 0.102 0.101 0.118 0.275 0.289 
0.6 0.8 0.174 0.167 0.221 0.227 0.265 0.293 0.777 0.801 
0.7 0.8 0.323 0.313 0.423 0.435 0.524 0.552 0.979 0.988 
0.7 0.9 0.531 0.520 0.623 0.631 0.874 0.831 0.993 1.00 
0.8 0.9 0.542 0.535 0.724 0.753 0.924 0.953 0.993 0.994 
0.6 0.7 0.091 0.088 0.115 0.135 0.125 0.162 0.375 0.406 
0.6 0.8 0.205 0.202 0.350 0.386 0.410 0.480 0.914 0.923 
0.7 0.8 0.410 0.401 0.534 0.542 0.896 0.892 1.00 1.00 
0.7 0.9 0.671 0.663 0.695 0.724 0.811 0.856 0.998 1.00 
0.8 0.9 0.118 0.137 0.226 0.286 0.526 0.586 0.623 0.685 

 
Table 6: Comparison of power for the proposed test and that of Braun and Alonzo in terms of their approximations with different 

area and non-crossing ROC curve 

  p = 20, q = 20 p = 40, q = 40  p = 60, q = 60 p = 80, q = 80 
   = 0.0   = 0.25   = 0.5   = 0.75 
  -------------------------- ---------------------------- ----------------------------- -------------------------- 
AUC1 AUC1 B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.6 0.7 0.076 0.068 0.081 0.081 0.088 0.093 0.119 0.201 
0.6 0.8 0.142 0.129 0.184 0.180 0.239 0.244 0.612 0.613 
0.7 0.8 0.261 0.245 0.368 0.352 0.469 0.475 0.920 0.921 
0.7 0.9 0.414 0.391 0.568 0.562 0.711 0.715 0.985 0.985 
0.8 0.9 0.429 0.421 0.589 0.589 0.702 0.725 0.994 0.994 
0.6 0.7 0.076 0.071 0.081 0.082 0.090 0.096 0.219 0.222 
0.6 0.8 0.153 0.139 0.198 0.198 0.256 0.263 0.665 0.668 
0.7 0.8 0.288 0.270 0.393 0.389 0.510 0.520 0.952 0.952 
0.7 0.9 0.466 0.446 0.619 0.616 0.767 0.771 0.987 0.987 
0.8 0.9 0.479 0.466 0.634 0.635 0.787 0.786 0.996 0.998 
0.6 0.7 0.077 0.070 0.084 0.090 0.096 0.107 0.252 0.258 
0.6 0.8 0.169 0.159 0.226 0.230 0.284 0.300 0.745 0.748 
0.7 0.8 0.330 0.315 0.450 0.450 0.572 0.589 0.978 0.980 
0.7 0.9 0.546 0.538 0.702 0.702 0.828 0.838 0.989 0.989 
0.8 0.9 0.526 0.523 0.332 0.419 0.857 0.847 0.999 0.999 
0.6 0.7 0.082 0.078 0.092 0.097 0.102 0.127 0.309 0.316 
0.6 0.8 0.145 0.135 0.263 0.271 0.336 0.364 0.845 0.846 
0.7 0.8 0.220 0.208 0.347 0.374 0.465 0.487 0.976 0.976 
0.7 0.9 0.117 0.104 0.204 0.451 0.516 0.846 0.997 0.997 
0.8 0.9 0.103 0.116 0.123 0.263 0.330 0.417 0.636 0.638 
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Fig. 1: Different AUCs with not-crossing ROC curves 
 

 
 

Fig. 2: Different AUCs with crossing ROC curves 
 

 
 

Fig. 3: The same AUCs with non-crossing ROC curves  
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Fig. 4: The same AUCs with crossing ROC curves 
 

In Table 5 and 6 when the different AUC is at least 
0.8 with a correlation of ρ≥0.4 having crossing and non-
crossing ROC curves respectively, the proposed 
permutation test has greater statistical power compared to 
the test proposed by Braun and Alonzo (2008). This is 
because the proposed permutation test is less conservative 
in the stated range of parameters. When the correlation is 
less than 0.4 with different AUCs less than 0.8, Braun and 
Alonzo’s test has slightly greater statistical power 
because at this region they test size is slightly high. As 
sample size increases, the operating characteristics of 
the two permutation tests near one another. 

Therefore, in summary our simulations showed for 

the proposed permutation test the test size and nominal 

level of significance are in close agreement for sample 

sizes that are reasonably small. Again, for sample sizes 

that are small with large AUCs and moderate correlation 

between diagnostic tests the proposed test has operating 

characteristics that is better than the permutation test 

proposed by Braun and Alonzo (2008). Finally, the 

statistical power of the proposed permutation test to detect 

crossing ROC curves with same AUCs is near to the 

nominal level of significance. This means that for crossing 

of ROC curves to be detected, the AUCs of the two curves 

must be different under the range of parameters considered. 

The Test size and statistical power of each test were 

computed as the percentage of 10,000 simulations and the 

null hypothesis of AUC = 0 was rejected at a nominal 

significant level of 0.05.We generated the permutation of 

the empirical probability distribution of AÛC in each 

simulation by generating 10,000 random permutations of 

the diseased and non-diseased labels. 

b. Real Life Data Example 

By simple random sampling method, a total of 60 
pregnant women underwent two types of diagnostic 

tests for the in-depth confirmation of Gestational 
Diabetic Mellitus (GDM) such that their test results 
were paired or matched to each other. These diagnostic 
tests are a 75 g Oral Glucose Tolerance Test (OGTT) 
and a 100 g OGTT. The data is used to evaluate the 
feasibility of the proposed permutation test at a 
nominal level of 0.05. The characterization and criteria 
adopted for diagnosing antenatal mothers who 
underwent either 75 g OGTT/100 g OGTT were 2 h 
OGTT characterization while the criteria was ≥ 155 
mg/dl for one to be considered diseased/positive 
(coded 1) for GDM while <155 mg/dl is considered 
non-diseased/negative (coded 0) for GDM. 
Exchangeability of the measured test results is a vital 
condition to achieve result given that these results are 
paired. If the null hypothesis is true, then we can infer 
that the subjects’ test results in diagnostic 1 and 2 are 
exchangeable and so the permutation test is applied on 
raw scores and are not ranked. It showed that there 
exist a number of pairs with tied test results, even 
though the test results are continuous. The null 
hypothesis is that the 2 h 75 g OGTT contributes the 
same diagnostic information or accuracy as the 2 h 100 
g OGTT. That is, AUC1 and AUC2 of the two 
diagnostic tests are equal. The real data if analyzed 
will evaluates the performance of the proposed 
estimates. It will compare the performance of the two 
diagnostic tests in terms of ROC curves between the 
two diagnostic tests and a crossing ROC curve will 
emerge (Fig. 5). The crossing ROC curves will have 
the areas for the two diagnostic test procedures (Fig. 
5). In applying the data, the diagnostic test results need 
to have a bivariate bi-normal distribution. But 
according to Wang (2015), most powerful test does not 
exist for testing bivariate normal distribution. 
Therefore, for each test result, one resorted to checking 
only the univariate normality. 
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Checking for univariate normality of two diagnostic 

test results by Shapiro-Wilk test reveals that the p-

values for the diagnostic tests 1 and 2 for the non-

diseased subjects are respectively 0.6124 and 0.8975 

while that of diseased subjects for the diagnostic tests 1 

and 2 are respectively 0.6345 and 0.8765. The estimates 
of AUC1 and AUC2 for diagnostic tests are 0.668 and 

0.887 respectively. Hence using the proposed 

permutation test, the p-value of 0.0312 is rejected at a 

nominal level of 0.05. Using the Braun and Alonzo’s 

permutation test, the null hypothesis is also rejected 

since the P-value is 0.0387. 

Discussion 

The proposed permutation test can be used to 

compare the performances of diagnostic tests for paired 
sample design. It makes for the conduct of exact 

permutation test and makes for easy to implement 
approximation when the sample size is large. Our test 

which is used in testing the null hypotheses about paired 
ROC curves (in other words, the equality of AUCs) is 

designed to have increased power to detect a difference 
in the AUC. The need for an alternative permutation test 

based on between-subject permutations of the labels of 
the subjects within each diagnostic test for detecting 

differences between ROC curves was necessary so as to 
tackle the problem associated with few existing methods 

which is characterized by the exchangeability of the 
labels between two diagnostic tests within subject. In the 

real sense of it, the proposed test is for assessing a 
change in the AUCs in a continuous matched pair of 

data from two diagnostic test procedures having both 
diseased and non-diseased subject in each of the test. 

Here permutations are made between subjects 
particularly by shuffling the diseased and non-diseased 

labels of the subjects within each diagnostic test 
procedure. According to DeLong et al. (1988), the 

condition for having appropriate test size and increased 
statistical power stipulates the following: That the 

sample size for both the non-diseased and diseased 
subjects must not be more than 60, the average of two 

correlated AUCs must be at least 0.80 as well as the fact 
that the correlation within subjects test results is   0.4. 

At small average AUC, low correlation between 
diagnostic tests and at sample size higher than 60, the 

method by DeLong et al. (1988) has improved test size 
and greater or higher power than our test but these does 

not apply here where there is evaluation involving 
diagnostic tests more so when permutation test is 

required. For small sample sizes, the proposed 
permutation test and that of Braun and Alonzo have 

similar test size and statistical power. According to the 
simulation conducted by Venkatraman and Begg (1996), 

for non-crossing ROC curves, the statistical power of 
DeLong et al. has a higher power than that of 

Venkatraman and Begg. This is because the procedure 
of Venkatraman and Begg is designed to detect 

differences in ROC curves as against detecting 
differences only in AUCs. In other words, when ROC 

curves cross, the power of test is higher because it 
detects difference in ROC curves but if roc curves do 

not cross, DeLong et al.’s test that compare AUCs only 
have higher power. Therefore, Venkatraman and Begg 

(1996) test has lower power for non-crossing ROC 
curves as it detect differences in ROC curves while in 

such scenario, DeLong et al.’s test has higher power as 
it detects differences in AUCs. Our permutation test 

though tests the null hypothesis of equality of AUCs, it 
is designed to detect a difference in AUC as it compares 

the correlation in ROC curves when the ROC curves 
cross each other. While our permutation test formally 

tests a difference in ROC curves and detects a difference 
in AUC, it has higher power than DeLong et al.’s 

conventional test that only detects difference in AUCs. 
Result showed that our proposed test has comparable 

power to the test conducted by Bandos (2005) as well as 
Braun and Alonzo (2008) but has superior operating 

characteristics in some ranges of parameters as well as 
due to the fact that our test is designed to consider the 

value of signs as well as the absolute ranks of values as 
well while the test by Braun and Alonzo considered only 

the signs of values. However, the test by Venkatraman 
and Begg would have been a better option for use 

assuming our primary interest was to detect a difference 
in ROC curves at every operating point. In all our 

simulation result shows that our permutation test is 
slightly conservative but has an excellent power to 

detect a crossing alternative. The test size of the 
permutation test for sample sizes that are small was 

investigated using simulations. The algorithm for 
calculating the exact permutation distribution of AÛC 

enabled us to obtain a normal approximation to the exact 
procedure and this is suitable when the sample size is 

small. The presence of an asymptotic method provides a 
simple and exact approximation to the permutation test 

since exact permutation tests can be computationally 
burdensome if sample size increases.  

Summary and Conclusion 

The Test size and statistical power of each test were 

computed as the percentage of 10,000 simulations and 

the null hypothesis of AUC = 0 were rejected at a 
nominal level of 0.05. Because the proposed 

permutation test is formally for testing the null 

hypothesis of equality of AUC, the rejection rate 

becomes the statistical power when the ROC curves 

cross each other. If the sample size is moderate and 

more especially for small sample sizes in a case of non-

crossing ROC curves having equivalent and large AUC 

given the fact that the correlation between the diagnostic 
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tests are moderate, the test size demonstrated by the 

proposed test is less conservative than the Braun and 

Alonzo test. In practical terms, it is not advisable to 

employ the proposed test in detecting crossing ROC 

curves when the AUCs from crossing ROC curves are 

equal because its rejection rate, talking the power is very 
close to that of Braun and Alonzo test (type I error). The 

proposed test makes provision for an approximate test of 

equality of AUCs due to the fact that the rejection rate is 

very close to the given level of significance. The power 

of the proposed test is greater than that of Bandos et al. 

as well as Braun and Alonzo’s test if the correlation is at 

least 0.4 and the average of AUC is at least 0.80 for 

non-crossing ROC curves since the range of parameters 

of the proposed test is less conservative. The power of 

Braun and Alonzo’s test is greater when the correlation 

is lower and the average AUCs is smaller than this, a 
situation seen at a region where the test size test of this 

competitive test is slightly elevated. As the sample size 

increases, the operating characteristics of these 

comparative tests get closer to each other. In particular, 

when the ROC curves cross, the rejection rate of the 

proposed test is higher when the correlations and 

average of AUCs are higher. Therefore, our simulations 

shows that the test size of the proposed test and the 

nominal value shows close agreement when the sample 

size is reasonably small. In addition, the proposed 

permutation test has better operating characteristics 

when the correlation between diagnostic tests is 
moderate at large average AUC and small sample sizes 

than Bandos et al. as well as Braun and Alonzo’s tests. 

So the proposed test has power close to the significance 

level in detecting when ROC curves cross with equal 

AUCs within the range of parameters considered. This 

means that for the null hypothesis to be rejected, the 

AUCs of the two ROC curves must differ. We presented 

various Tables of comparisons of test size and statistical 

power of the proposed permutation test and that of the 

competing test in an effort to assess a difference in the 

AUCs of two diagnostic tests. In applying the proposed 

test on real data, we saw in the graph of ROC curves 
Fig. 5 that 2 h 100 g OGTT diagnostic test is superior at 

a time that the specificity is greater than 0.7. As soon as 

the specificity decreases, the disparity between the two 

diagnostic tests procedures reduces. In applying the 

proposed permutation test, the diagnostic test results need 

to have a bivariate bi-normal distribution. But according 

to Wang (2015), most powerful test does not exist for 

testing bivariate normal distribution. Therefore, for each 

test result, one resorted to checking only the univariate 

normality. Checking for normality of two diagnostic test 

results by Shapiro-Wilk test reveals that the P-values for 
the diagnostic tests 1 and 2 for the non-diseased subjects 

are respectively 0.6124 and 0.8975 while that of diseased 

subjects for the diagnostic tests 1 and 2 are respectively 

0.6345 and 0.8765. Therefore, the null hypothesis for this 

univariate normal is rejected that the two diagnostic test 

procedures did not contribute similar information or that 

their accuracies are not the same. Hence using the 

proposed permutation test, the P-value of 0.0312 is 

rejected at a nominal level of 0.05. Using the Braun and 

Alonzo’s permutation test, the null hypothesis of AUC = 
0 is rejected also since the P-value is 0.0387. Comparing 

the proposed test and that of Braun and Alonzo’s 

permutation test in terms of their P-values, one will say 
that the proposed test is more powerful since it has the 

more likelihood of rejecting the null hypothesis. These 

results are consistent with the findings obtained by the 

proposed permutation test by Bandos et al. (2005). 

 

 
 

Fig. 5: Crossed ROC curves for two diagnostic tests taken from data on GDM 
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We therefore recommend the use of permutation tests 

for comparing two diagnostic tests that are correlated as it 

provides a more exact results with small sample sizes 

which is the demand of clinical practices. We suggest the 

use our proposed permutation test to generate a 

confidence interval for AUC as a complement to the 
hypothesis test as well as how permutation method can be 
applied if the test statistic is seen as McNemar test. It is 

vital to consider the use of a test statistic that will 

consider the use of absolute ranks as well as absolute 

magnitude of a test statistic that discriminates between the 

null hypothesis and alternative hypothesis. Under the 

present scenario, Wilcoxon signed-ranks test, which is 

our permutation test equivalent to AUC only use the 
absolute rank of Qpq and not its absolute magnitude. 

Future study includes extending the proposed test to 

accommodate the “multiple-reader” setting – a commonly 

used design in which so many readers evaluate selected 

cases using different diagnostic tests. 
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Appendix A1. 

An Algorithm for Calculating the Exact 

Distribution of AÛC 

1: for s1  1,2 do 
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2: AÛC1  
11,sS  

3: if s1  1 then 

4: T1 S1,2 
5: else 

6: T1 S1,1 
7: end if 

8: for s2  1,2 do 

9: AÛC2  
22,sS  

10: if s2  1 then 

11: T2 S2,2 
12: else 

13: T2 S2,1 
14: end if 

15: for s3  1,2 do 

16: AÛC3  
33,sS  

17: if s3  1 then 

18: T3 S3,2 
19: else 

20: T3 S3,1 
21: end if 

22: for s4  1,2 do 

23: AÛC4  
44,sS  

24: if s4  1 then 

25: T4 S4,2 
26: else 

27: T4 S4,1 
28: end if 

29: for s5  1,2 do 

30: AÛC5  
55,sS  

31: if s5  1 then 

32: T5 S5,2 
33: else 

34: T5 S5,1 
35: end if 

36: ………….. 

37: for s60  1,2 do 

38: AÛC60  
6060,sS  

39: if s60  1 then 

40: T60 S60,2 
41: else 

42: T60 S60,1 
43: else if 

44: Compute AÛC 
45: end for 

46: end for 
47: end for 

48: end for 

49: end for 

50: ………….. 

51: end for 

 


