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Introduction  

Let us consider the quasilinear second-order 

parabolic partial differential equations: 
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under the initiation conditions: 
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where the u(t,x) is the unknown function,  > 0 is a real 

number and f(t,x) = f is a given function. The term b(t, x, 

u, u) is a measurable function of four arguments. 

The matrix aij(t,x,u) is a measurable elliptical matrix l 

 l size such that there is a number :  0  and: 
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for almost every [ , ]t T 0  and lx R . Or we will 

consider a more restrictive condition: 
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Definition 

A real-valued function u(t,x) is called a weak solution 

to the parabolical partial differential Equation (1) if the 

integral identity: 
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  (3) 

 

holds for almost every [ , ]t T 0 , lx R  and for all ,

qv W 1 0 .  

The main object of this paper is the regularity 

properties of the solutions to the quasilinear parabolical 

partial differential Equation (1) under the conditions that 

its coefficients belong to the certain functional classes 

and functional spaces. 

The conditions of linear growth: 
 
1. b(t, x, y, z) is a measurable function of its arguments 

and  l

locb L R 1  

2. Function b(t, x, y, z) t [0, T] satisfies inequality: 

 

 , , , ( ) ( ) ( )b t x u u x u x u x      
1 2 3

 (4) 
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for almost everywhere and almost every t [0, T], 

where the functions ( )PK A 2

1 , ( )PK A 2
 and 

( )p lL R 3
. 

3. The increase of function b(t, x, y, z) satisfies the 

inequality: 

 

   

 

, , , , , ,
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b t x u u b t x v v

x u v x u v 

   

    4 5

, (5) 

 

almost everywhere and almost every t [0, T], 

where the functions ( )PK A 2

4 , ( )PK A 5
. 

 

Here we introduce the class of form-bounded 

functions PK according to formula-definition: 
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where a h D A
 

  
 

1

2  and >0 is a form-boundary and c() 

 R1. 

The general information on the partial differential 

equations and the existence of their solutions can be 

found in the extensive literature on the conditions on 

their coefficients under which there are the solutions of 

these equations in a specific functional space (Adams 

and Hedberg, 1996; Gilbarg and Trudinger, 1983; 

Ladyzenskaja et al., 1968; Nirenberg, 1994; Veron, 

1996; Yaremenko, 2017a; 2017b). O. Ladyzhenskaya, N. 

Uraltseva, O.A. Solonnikov developed the Ennio de 

Giorgi's method (DeGiorgi, 1968) for establishing a 

priory estimation of the solution of such equations. 1960 

J. Moser enhance the maximum principle and created a 

new method of studying the regularity of the solutions of 

elliptic differential equations and Harnack’s inequality 

under the assumption that the coefficients are bounded 

measurable and satisfy a uniform ellipticity condition, 

these results were summarized in the work of 

Ladyzenskaja et al. (1968).  

A Lebesgue space Lp (Rl, dlx) for 1< p <  can be 

defined as a set of all real-valued measurable functions 

defined almost everywhere such that the Lebesgue 

integral of its absolute value raised to the p-th power is a 

finite number with its natural norm: 
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The dual or adjoint space of Lp (Rl, dlx) for 1< p <  

has a natural isomorphism with Lq (Rl, dlx), where 

p q
 

1 1
1  or 

p
q

p


1
. 

We will use the inequality: 
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where ( ), ( ),p l q lf L R g L R    0  and its consequence: 
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The f  Lp yields f | f |p-2 Lq that justify the last 

equation (Gilbarg and Trudinger, 1983; Ladyzenskaja et al., 

1968). 

Let us denote  ,p l l

kW R d x  given Sobolev space for 

1< p <  with a natural norm: 
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The dual space of  ,p l l

kW R d x  for 1< p <  is 

 ,q l l

kW R d x  and the dual space of  ,p l l

kW R d x  for 1< p 

<  and 
p q
 

1 1
1  is  ,q l l

kW R d x , Sobolev spaces are 

reflexive (Fijavz et al., 2007). 

Let us consider a linear parabolic equation as an 

exemplar: 
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under the conditions , :      0  such that: 
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and linear perturbation-potential ( , ) : .l l

kb t x R R   

In traducing the notations: 
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and assuming ( )b a b PK A

 1  for some  < 1 we 

obtain: 
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according to the KLMN-theorem, there is a preserving 

C0- semigroups of L- contraction nt
e
  , n
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such that A b   2
. Assuming A is Laplace operator 

A =  we are obtaining an estimation: 
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The operator B b1
 of the domain 

   ; ;locD B u L u L b u L     1 1 1

1  is A1-bunded with 

relative bound zero namely    D B D A1 1  and: 

 

   ,B h A h k h h D A   1 1 11 1 1
 

 

holds for all  > 0 and k() < . There are s > 0 and (s) 

< 1 such that  (s) ,

s

tAB e h dt h h D A   1

1 111
0

. The 

operator A1 + B1 of the domain D(A1) generates C0- 

semigroup tT1
 consistent with   exptT t A b     

such that 
 log (s)

exp , .
(s)

tT t t
s
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The Estimation of the Solutions to the 

Equation (1) 

For almost every t  [0, T], let us consider the integral 

identity: 
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where functions ,( , ) pu t x W 1 0  and ,

qv W 1 0 .  

For t  [0, T] identity (6) can be rewritten as: 
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Let us put ( ) ( )
p

v u u 
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 and estimate: 
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From (1) under the conditions (4) we obtain (6). 

Next, we estimate every term separately: 
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p
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Applying a form-boundary condition to ,w w
p
 1

2
 

w w
p
 1

2
, we have: 
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22 22
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using Young and Holder inequalities are obtaining: 
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Thus, we have obtained an estimation: 
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In case of p = 2 there is the next estimation: 
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The Smoothness of the Weak Solutions to 

the Quasilinear Second-Order Parabolic 

Partial Differential Equation (1) 

Definition 

A real-valued function ,( , )u t x V 2

1 0  such that 

max ( , )vrai u t x    is called a weak bound solution to the 

quasilinear second-order parabolic partial differential 

Equation (1) if the identity: 
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holds for all functions ,v W 2

1 0  such that 

max ( , )vrai v t x   ,  ,t T 0 .  

For arbitrary function ,v W 2

1 0  such that 

max ( , )vrai v t x   ,  ,t T 0  from that definition of the 

weak solution we are obtaining  
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Let u(t,x) be a weak solution. We denote ( , )
h

v t x  the 

average of function v(t,x) at t by formulae: 
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we transform: 

 

,

T T T

t h t t hh
u v dt u v dt u v dt        

0 0 0

 

 

since: 

 

( ) ( ) ( ) ( )

T T h

hh
u t v t dt u t v t dt



 
0 0

 

 

where the function v(t,x) is tautological equals zero over 

t  0 and T  t  T-h. 

Remark 

The order of averaging and differentiation by x are 

interchangeable. 

Let us rewrite (6) as: 
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Since in the last equality the function ,v W 2

1 0  is 

arbitrary, we can assume that v = uh next integrating with 

respect to t, we are passing to the limit as h  0 and are 

obtaining: 
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For an arbitrary function ,v V 2
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hv u , where uk(t,x)  max[u(t,x)-k,0] and we 

denote the set of points Pk(t) = {xRl: u(t,x)>k, t[0, 
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From    a b a b  
2 2 2

2 , we obtain: 
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Lemma 1 
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by integrating with respect to time, we have: 
 

 

 

, ,....,

, ,....,

|

,

,

, , , , .

t

t

h h t h h

t

ij
t i j l j h

t

ij h h

i j l j ih

t

h h h h

t

t

h h h h

t

u u u u d

a u
x

d

a u u u
x x

b b u u d

f f u u d t t T

 











  

 
 

  


  
  
   

  

   












2

2

1 2 1 1 2

1

2

1

1

1 2

2

2

1 2 1 2

1

2

1 2 1 2

1

2 2

1

1

1 2

1

2

0

 

 

Let pass to limit as ,h h 1 20 0  we obtain: 
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h h

h h h h

u u u u
x

a u a u
x x

b b f f

 




  



    
    
       

    

 

1 2 1 2

1 2

1 2

1 2 1 2

1 1

0
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We denote ( ) ( , ) ( , )hx u u t h x u t x      then: 

 

 
, ,....,

, ( , ) ( , )

, ( , ) ( , )

, ( , ) ( , )

, ( , ) ( , )

, ( , ) ( , ) ,

h

h

ij

i j l j ih

h

h

u u t h x u t x
dt

u u t h x u t x

a u u t h x u t x dt
x x

b u t h x u t x dt

f u t h x u t x dt





















    
 
    

  
   

   

  

  









1  

 
and we have: 
 

, ,....,

,

, ,

, ,

h

h h

h ij h h h

i j l j i

h h

u
dt u u dt

h

a u u dt b u dt
x x

f u dt


 

 

 

 






 

  
    

   

 

 

 



2

1

 

 
Applying Holder inequality and previous 

considerations, we have obtained: 
 

( )
( ) ,

lh L R h
u

dt h
h









 

2

2

0
0  

 
that proves the lemma. 

A Priori Estimation of the Solution to (1) 

Let us assume that ellipticity condition and (4), (5) 

are satisfied and all weak solutions u(t,x) of the ,V 2

1 0  are 

bounded, we will show that 
,

u H




 2  for certain  >0 

and estimate the norm 
( )

u


.  

Assume ,u V 2

1 0  for arbitrary element ,W 2

1 0 , we 

have tautology (6) and we obtain an estimation: 
 

 

( ), ( ) |

( ), ( ) ( ), ( )
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u

u u d
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b d f d

 

   



 


 

 



 

2

1

2 2

1 1

1

 

 

since for arbitrary element ,W 2

1 0 , the following 

condition is executed: 
 

, , ,

t t

t t

b d u u d          
2 2

1 1

1 2 3
 

 
so: 
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, ,

t

t

t

t

t
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i j l j it

t

t

t

t

u u u d

a u d
x x

u u d

f d

          

 

      

 



   

 


 

   











2

2

1

1

2

1

2

1

2

1

1

1 2 3

 

 

let us put     , , ( , ) ,t x t x u t x u   
2 2 and integrate by 

parts, we are obtaining  
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( ) |
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K
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u

u

d
u
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u
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3

2
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where the K() is a cube in Rl with an edge length of . 

Next, we estimate: 
 

   

 

,

,

u u u u

u u

     

   


  

 
   

 

2 2

1 1

2 22 2
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1 1
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  ,a c

     

    



   

2 2
2 2

1 1

2
2 2 2

 

 

similarly: 

 

   

  

,u u

a c u

     

    

 

   

2 2

3 3

1
2 2

 

 

and: 

 

u u u u


 
    

 

2 22 2 2 2

12

1

1 1

2
. 

 

These we have had the following inequality: 
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,
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K

t

K
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K
t
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2
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2

1

2

2 2

2

1

2

1 1

1 2 3

2

4

 

 

where K, K1, K2, K3 are positive constants depended on 

the initial conditions and constants , 1,.., 4 are 

arbitrary constants, such that: 

 

 

 

,

u u

a c

u u

   


    


 


 
  

 

 
    

 
  
    

  

2 22 2

12

2
2 2 2

2

2 222 2 2

12

1

1 1

2

1

1

1 12

2

 

 

it is possible to presume с 2 , where с  is a constant. 

Thus we have obtained a prior estimation for the solution 

to the equation (1).  

Let us assume the function ,u V 2

1 0  is a solution to the 

equation (1) then for an arbitrary element , ( , )l lv W R d x 2

1 0  

such that max ( , )vrai v t x   ,  ,t T 0 , we have an 

integral equality: 

 

, ,....,

, ,....,

( ), ( ) | ( ), ( ) ( ), ( )

,

,

, , .

t

t

t

t

ij

i j li j

t

ij

i j l i j

t t

u v u v u v d

a u v d
x x

a u v d
x x

b v d f v d

       





 





   

  
  

  

  
  

   

 







 

0

0
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0 0

 

 

We put v u  and obtain: 

 

, ,....,

, ,....,

( ) | ( )

,

,

, , .

t

t

t

ij

i j li j

t

ij

i j l i j
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f u d b u d

   





 







  
  

  

  
  

   

 







 

2 2

0

0

10
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0 0

1

2

 

 

The right part can be estimated similarly to previous 

considerations with an application of Holder and Young 

inequalities.  

The elliptic condition can be presented as: 
 

,...,

l

ij i j

ij l

a R      


   
2 2

1

 

 

so form  
,...,

, ij i j

ij l

B a  


 
1

 defines a certain metric and 

,...,

ij i j B B
ij l

a   



1

, where the norm 
B

  is generated by 

the form B. Then there is a constant   such that 

B
    so the estimation 

,...,

ij i j

ij l

a    



1

 is true. 

Thus, we have obtained that there is a constant C1 

such that: 
 

, ,....,

, .ij

i j l i j

a u u C u u
x x

  
  

   
 1

1

 (11) 

 

Theorem 1 

Assuming that the Cauchy’s problem: 
 

( , , ) ( , , , ) ( , ),k

ij

i j

u u a t x u u b t x u u f t x
t x x


   

     
    

 

 

   , ,u x u x 00  
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under the form-bounded of b  and max
jk

i

a
vrai

x


 


 

conditions has a solution ,u W 2

1 1 , then the solution 

belongs ,W 2

2 1 .  

The Existence of the Solution to the 

Parabolic Partial Differential Equation (1) 

Theorem 2 

The quasi-linear parabolic partial differential 

Equation (1) under the conditions (4), (5) has the 

solution from   , lW T R2

1 0 . 

Proof 

To prove the existence of the solution to (1) we 

construct the sequence of approximate solutions 

  ,mu t x , , ,....m  1 2  to the equation: 

 

( , , ) ( , , , ) ,ij

i j

u u a t x u u b t x u u f
t x x


   

     
    

 

 

as       ,
m

m

m i i

i

u t x c t x


 
  
 


1

, where the elements {n(x)} 

, ,....n  1 2  form the basis of  lW R2

1
 with the properties 

 ,i j ij    and max ,
l i ix i

R

c     . The functional 

coefficients  m

nc t  of       ,
m

m

m i i

i

u t x c t x


 
  

 


1

 are 

determined by: 
 

, ,....,
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, , , , , ,...,

t m n m n

ij m n n n

i j l j i

u u

a u b f n m
x x

  

  


 

 
   

 


1

1 2
 

 
and initial conditions: 
 

    , , , ,...,m

n nc u x n m 
0

0 1 2 . 

 

From the initial conditions for t  [0,T] we are 

obtaining , , ,...,m

nc const n m 1 2 , from ellipticity 

follows uniformly boundedness of the solutions over t  

[0,T], to show this we multiply the Equation (1) by m

nc  

and a sum of n up to m then we obtain the inequality: 
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t t

m m m m
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u t u a u d u d
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c u d
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.

t
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t t
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f d d

  

 
  

   

 



 

0

2 2

3

0 0

1

2 2

 

 

We will apply the following lemma. 

Lemma 2 

Let  ( )t  be a positive absolute continuous function 

such that ( ) 0 0  and for almost all  ,t T 0  holds the 

inequality: 

 

( ) ( ) ( ) ( )
d

t c t t F t
d
    (12) 

 

where the ( ) ( )c t and F t  are positive integratable on  , T0  

functions. Then: 

 

( ) exp ( ) ( ) ,

t t

t c d F d    
 

   
 
 
0 0

 (13) 

 

and: 

 

( ) ( )exp ( ) ( ) ( )

t t
d

t c t c d F d F t
d
    

 
   

 
 
0 0

. (14) 

 

Since ( )lu L R 2

0
 there is an estimation: 
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m
m

n m
t T t T

n
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2 2

0 0
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Functions    ( , ), ( ) , , , ,....m m

n nc t u t x x m n 1 2  are 

continuous on  , T0 . On the interval  ,t t t  , we can 

estimate: 
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( )

( )

( )

( , , ) .

t t

n m

t

t t
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t t t t

n

t t

c const u d

c const u a u d

c const f d d

Const n l t

 

 

   







 



  

 
   

 

 





 

2

2 2

3

 

 

Thus, constants ( , , )Const n l  depend on , ,n l  but do 

not depend on m under the condition m n  so: 

 

 ( ) ( ) .m m

n n n
t

c t t c t t 


     
0
0  

 

Applying the diagonal method we are obtaining that 

the sequence ( ) , , ,....m i

nc i  1 2  converges uniformly on 

[0,T] to a certain continuous function ( ), , ,....nc t n 1 2  for 

every n. The sequence of functions ( ), , ,....nc t n 1 2  

determines the function u(t,x) as a L2(Rl)-weak uniformly 

on [0,T] limit of the functional sequence 

      ,
m

m

m i i

i

u t x c t x


 
  
 


1

 that converges to 

     , i i

i

u t x c t x





1

. To show the weak convergence we 

consider the equality: 
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and apply estimation:  
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u u v const v  
 

   

   
    

   
 

1

22

1 1

 

 

Let s be large enough number so for any fixed real 

number  there is inequality: 
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n s
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1

22
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and for large enough m(i) the first sum also less that 


2
 

for all t [0,T].  

Let us show that the function u is a solution to the 

Cauchy problem for (1). For arbitrary function 

   
m

m

i i

i

v d t x



1

, where the  m

id t  are arbitrary 

continuous functions with bounded weak derivatives, we 

consider the equality; 
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The 
m  is the set of functions um and 

m
m

  , the set 

 is dense in W 2

1
. Passing to the limit as m we obtain: 
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for any function v. 

Let us assume 
mv u    then we have: 
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and: 



Mykola Yaremenko / Journal of Mathematics and Statistics 2020, Volume 16: 76.89 

DOI: 10.3844/jmssp.2020.76.89 

 

86 

 

 

 

   

   

, ,....,

( ), ( )

( ), ( )

,

, ,

| , | ,

t
m t m

m m

t

ij m m

i j l j i

t t

m m

t t t t

m t m t m

u u
d

u u

a u u d
x x

b u d f u d

u u function u

  


   

 

   

 



 

 

    
 
   

 
 

 

   

    





 

0

10

0 0

2

0 0

1
0

2

 

 

we fix the function  and pass to the limit as m obtain: 
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In the last inequality, we put v = u and have: 
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Since 

mv  for arbitrary m therefore for arbitrary 

function 
m

m
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, we have: 
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Since the set  is dense in W 2

1
 therefore for any  >0 

and any function , we can put v = u- and estimate: 
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We pass to the limit as 0 have: 
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Since the set  is dense in W 2

1
, from the last 

inequality, the estimation: 
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is true for arbitrary W  2

1
, which means that function 

u W 2

1
 is a solution to (1). 

Remark 

The monotonousness can be proven as: 
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The Regularity of the Solution to the Cauchy 

Problem for the Parabolic Equation (1) 

Theorem 3 

Assume that there is a sequence of parabolic partial 

differential equations: 
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and each equation satisfies the conditions of the existence of 

the solution (1) with the same coefficients’ restrictions for 

all values of the parameter , ,.....,z  1 2 . Let us denote the 

sequence of the weak solutions ,
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1 0 , , ,.....z  1 2  to the 

Cauchy problems for the Equations (15) under initial 
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are satisfied, these equations mean that the coefficient of 

(15) converge to the coefficients (1) and additional 

condition: 
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is executed.  

Then the sequence of the weak solution ,

zu V 2

1 0 , 

, ,.....z  1 2  to the Cauchy problems for the equations (15) 

under the initial conditions  ,z zu x  00  converges to the 

weak solution to the Cauchy problem for the equation (1) 

under the initial condition  ,u x u 00  in ,V 2

1 0 .  

Proof 

The proving will be accomplished according to the 

schema: 
 

 compose the integral identity for the solution u(t,x) 

to the Cauchy problem for the equation (1) under the 

initial condition u(0,x) = u0 and for the sequence of 

the weak solutions ,

zu V 2

1 0 , , ,.....z  1 2 to the Cauchy 

problems for the equations (15) under the initial 

conditions  ,z zu x  00  

 subtract integral identity for the solution ,
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1 0 , 

, ,.....z  1 2  from the integral identity for the solution 

u(t,x), the results of these subtractions are written as 

the integral identity for the differences vz = u-uz  

 obtain the priory estimations for the differences vz = 

u-uz  

 apply the priory estimations to substantiate the 

passing to the limit lim z

z
v
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for an arbitrary ,

qW 1 0 , after the subtraction, we are 

obtaining the equation: 
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ij ij
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t

z z z
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z
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Let us estimate the term 
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t

z
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x x
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, since: 
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ij ij
z

i j l

t

z
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therefore: 

 

 
, ,....,

lim ( , ) ( , ) ,

t

z

ij ij
z

i j l j i
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x x

   




 
   

 


10

0 , 

 

applying the notation vz = u-uz and fact ,

zv W 2

1 0 , we 

have had: 
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, ,....,

( , ) ,

t

z z

ij
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z z
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1
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From the conditions we have: 

 

lim ( , ) ( , ), ,

t

z

z
f f d   


   

0

0  

 

Since: 

lim ( , , , ) ( , , , ) , ,

t

z

z
b u u b u u d   


     

0

0  

 

and zv  , we obtain: 

 

( , , , ) ( , , , ) ,z z z z z

z z z z

z z

z z

b u u b u u v

v v v v
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4 5

2 2
2

42

2 2
2

52

1 1

2

1 1

2

 

 

so: 

 

  ( )z z z z zv v v v c v      
2 2 22

4 4
 

 

similarly, the term containing 5 can be estimated. After 

reducing similar terms, we obtain the statement of the 

theorem.  
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