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Abstract: In this study, a new method is proposed for generating families 

of the sum of the hazard functions for two distributions named the Σh 
distributions. This new family will help in the application of a wider range 

of life time data. Many new distributions, which are members of the family, 

are presented with emphasis on the Σh Exponential-Lomax distribution. 

Details and various statistical properties have been introduced. The 

maximum likelihood estimation for parameters of the Σh Exponential-
Lomax distribution has also been discussed alongside Monte Carlo 

simulation study to assess the accuracy and the performance of the 

estimation procedure. Finally, the Σh Exponential-Lomax distribution has 
been fitted to a real data set to provide variability of its applicability. 
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Introduction 

Probability distributions have been popularly used in 

many areas of the real world situations. These standard 

probability distributions have been used in statistical 

practice for a long time. However, in many practical 

areas, the classical distributions do not provide an 

adequate fit in modeling data. Which creates a clear need 

for the extended version of these classical distributions? 

Serious attempts have been made in this regard to 

propose new families of distributions that extend the 

existing well-known distributions. Among these 

scientists who helped develop these distributions are, 

(Azzalini, 1985) who proposed a method of obtaining 

weighted distributions from independently identically 

distributed (i.i.d.) random variables. Gupta et al. (1998) 
proposed to model failure time data by F*

(f) = [F(t)]θ 
where F(t) is the baseline distribution function and θ is a 
positive real number. This model gives rise to monotonic 

as well as non-monotonic failure rates even though the 

baseline failure rate is monotonic. Later on this trend has 

attracted several authors; see for example (Gupta and 

Kundu, 1999; 2007), among others.  

Eugene et al. (2002) have introduced a general class of 
distributions called the Beta-G distributions which extends 

the distribution of order statistics. This distribution 

generated from the logit of the beta random variable and 

provides great flexibility in modeling not only symmetric 

heavy-tailed distributions, but also skewed and bimodal 

distributions. Another family of distributions, known as 

Kum-G distributions, has been proposed by (Cordeiro and 

Castro, 2011) by using escribe a new family of generalized 

distributions (denoted with the prefix “Kw”) to extend the 

normal, Weibull, gamma, Gumbel, inverse Gaussian 

distributions, among several well-known distributions. 

Another method of generating families of distributions has 

been proposed by (Shaw and Buckley, 2007), which used a 

quadratic transmutation map to generate new probability 

distributions using any baseline distribution (Gupta and 

Kundu, 2009; Shahbaz et al., 2010).  
Alzaatreh et al. (2013), have proposed a general 

method of extending probability distributions using the 
technique that generates the T-X family, one can develop 
new distributions that may be very general and flexible 
or for fitting specific types of data distributions such as 
highly left-tailed (right-tailed, thin-tailed, or heavy-
tailed) distribution as well as bimodal distributions. The 

Beta-G, Kum-G and T-X families of distributions use 
some baseline distribution. 

Two of the functions to characterize the distribution 

of T: The survival function, which is the probability of 
an individual surviving beyond time t and the hazard 
rate, which is approximately the chance an individual 

of age t experiences the event in the next instant in 
time. In reliability, the survival probability is the 

proportion of units that survive beyond a specified time. 

These estimates of survival probabilities are frequently 

referred to as reliability estimates. The survival 

function gives the probability that a subject will survive 

past time t, S(t) = P (T >t) = 1-F(t). 
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For each time interval, survival probability is 

calculated as the number of subjects surviving divided 

by the number of patients at risk. Subjects who have 

died, dropped out, or move out are not counted as “at 

risk” i.e., subjects who are lost are considered 

“censored” and are not counted in the denominator.  

The hazard function “h” has roots in many fields and 
used to determine the onset or relapse of a disease in the 

bio-statistics, the time until a person becomes employed 

in economics, the time until a device fails in reliability 

engineering and the time to death in actuarial science, 

among many other fields and uses. 

In this study, we developed the hazard function “h” of 
the distributions to find that we can have the sum of the 

hazard functions of two distributions by adding the hazard 

function of the first distribution to the hazard function of 

the second distribution. This is to improve the 

characteristics and flexibility of the existing distributions 

and to introduce the extended version of the baseline 

distribution having closed form of the hazard function. 

This proposed family set out on the formation of new 

distributions by incorporating n distributions together. 
This new distribution achieves that the hazard function 

“h” of the emerging distribution is the sum of the 
functions of the hazard distributions used in the 

distribution configuration and this will call the name of 

the new family Σh distributions. 
The paper is structured as follows. The new family of 

Σh distributions is introduced in section 2. Some examples 
related to the Σh distributions are presented in section 3. 
The Σh Lomax-exponential distribution has been explored 
in detail in section 4. Section 5 describes the expressions for 

moments, quantiles, reliability function and random 

number generation for the proposed Σh Lomax-

exponential distribution. In section 6, we have presented 

estimation of the parameters and a real life application 

along with simulation study is given in section 7. 

Finally, in section 8, some concluding remarks are given. 

A New Family Σh Distributions 

Assume we have n variables and each variable has 
probability distribution function fk(x), where k = 1,…,n 
and x > 0. The survival function, which indicates the 
probability that the event of interest has not yet occurred 

by time t, for each x is Sk(x).  

Theorem 2.1 

The probability distribution function, pdf, of the Σh 
distribution is given by: 
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Since the cumulative distribution function, cdf, will be: 
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where, hk(x) is the hazard rate function of distribution 
number k and given as: 
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Proof 

The proof is simple. 

The Hazard Rate Function 

Using “Equation 1” and “Equation 2”, the hazard rate 

function of Σh distribution is: 
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Some Properties 

Proposition 1 

For the pdf of the Σh distributions, we have: 
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It is worth noting that if the value of ( )
1

0 0
n

kk
h

=

=∑ , it 

means the distribution has a peak between x∈(0,∞). 

Proposition 2 

The residual lifetime R(t) of Σh distribution given as: 
 

( )
( )

( )

( )

( )
1

1

n

kk

n

kk

S x tS x t
R t

S t S t

=

=

++

= =
∏

∏
  (7) 

 

Special Case  

If the distributions fk(x), k = 1,…,n are all from the 
exponential family, then: 
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Proposition 3 

The reverse residual lifetime ( )R t  of Σh distribution 

given as: 
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Special Case 

The same for the exponential distributions: 
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Proposition 4: Quantile and Median 

The quantile of the Σh distribution is obtained by 
solving the following equation, with respect to xq: 
 

( ) ,0 1
q

p X x q q≤ = < <   (11) 

 

Thus the quantile of the Σhk distributions can be 

obtained as the following equation: 

 

( )
1

1
n

ii
S x q

=

= −∏   (12) 

 

The value of the median can be found from ‘Equation 

12” by setting the value of q = 0.5. 

Special Sub Distributions of Σh Distributions 

In this section, some special sub-distributions from this 

new family are introduced. Assume the number of 

distributions in the family, there are two. It means for n = 2.  

Σh Weibull-Lomax Distribution 

Suppose that f1(x)∼Weibull(θ, a) and f2(x)∼Lomax(α, 
β), then the Σh Weibull-Lomax distribution has cdf: 

 

( ) ( )1 1 , 0
a

xF x e x x
−α−θ = − + β >    (13) 

 

The density function of Σh Weibull-Lomax distribution 

can be written as: 
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and the hazard rate function of Σh Weibull-Lomax 

distribution is: 
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Σh Weibull-Exponential Distribution 

Suppose that, f1(x)∼Weibull(θ, β) and f2(x)∼exp(α), 
then the Σh Weibull-Exponential distribution has cdf: 
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The density function of Σh Weibull-Exponential 
distribution can be written as: 
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f x e x
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α θβ
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and the hazard rate function of Σh Weibull-Exponential 
distribution is: 

 

( ) 1
h x x
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We have noticed that the linear failure rate distribution 

is a special case of Weibull-Exponential distribution when 

, 2
α

θ β
β

= = , where the cdf is as follows: 
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Σh Gompertz-Lomax Distribution 

Suppose that f1(x)∼Gompertz(γ, b) and 

f2(x)∼Lomax(α, β), then the Σh Gompertz-Lomax 
distribution has cdf: 
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The density function of Σh Gompertz-Lomax 
distribution can be written as: 
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and the hazard rate function of Σh Gompertz-Lomax 
distribution is: 
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Σh Lindley-Lomax Distribution 

Suppose that f1(x)∼Lindley(θ) and f2(x)∼Lomax(α, β), 
then the Σh Lindley-Lomax distribution has cdf: 
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The density function of Σh Lindley-Lomax distribution 
can be written as: 
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and the hazard rate function of Σh Lindley-Lomax 
distribution is: 
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Likewise, we can generate many more flexible 

distributions for number of distributions more than two, 

n > 2. It is notable that as the value of n increased, the 
more complex distributions and more parameters. 

In the next part of this paper we will introduce a 

detailed analysis of one of the family's distributions, this 

is Σh Exponential-Lomax distribution. We will study the 

distribution and its characteristics in an in-depth 

analytical manner, estimate the parameters of the 

distribution using the maximum likelihood method and 

introduce a simulation to study the characteristics of the 

capabilities. Also, we will apply to real data samples 

and compare the results with the Lomax distribution 

and the exponential distribution to show the good of fit 

of the new distribution. 

Σh Exponential-Lomax Distribution 

In this section, we introduce and study the Σh 
Exponential-Lomax distribution (Σh EL). The pdf, cdf, 
reliability and hazard rate functions are defined. 

Suppose that f1(x)∼Exponential(θ) and 

f2(x)∼Lomax(α, β), then the Σh Exponential-Lomax 
distribution has cdf: 
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The density function of Σhk EL Distribution can be 
written as: 
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The hazard rate function of Σh EL is given by: 
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Figure 1 to 3 show the plots of the pdf, cdf and 

hazard rate function for various values of the 

parametersα, θ and β respectively. 
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Fig. 1: The pdf of the Σh Exponential-Lomax for some values of the parameters 
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Fig. 2: The cdf of the Σh Exponential-Lomax for different values of parameters 
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Fig. 3: The hazard function of the Σh Exponential-Lomax for different values of parameters 
 

Proposition 4.1 

For the pdf of the Σh EL, we have: 
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This means that the probability distribution curve 

touches the y axis at the value θ + αβ and then decreases 
continuously and this is illustrated in “Fig. 1”. 
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Proposition 4.2 

For the hazard rate function of the Σh EL (α, θ, β), 
we have: 
 

( ) ( )
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x
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This means that the hazard curve touches the y axis at 
the value θ + αβ and then decreases until it reaches the 

value θ and then it is fixed and does not change by 

increasing the value of x, like shown in “Fig. 3”. 
If θ = 0 is placed in the pdf in “Equation 27” we 

obtain the Lomax distribution as a special case of the 

distribution, also if α = 0 is placed in the distribution 
function in “Equation 27” we get the exponential 

distribution as a special case of the distribution. 

Statistical Properties 

In this section, we have discussed some distributional 

properties of the Σh EL (α, θ, β) given in “Equation 27”. 
These properties include expressions for quantile, 

moment, moment generating function, characteristic 

function and entropy. These properties are discussed in 

the following subsections. 

Quantile, Median and Mode 

The quantile of the Σh EL (α, θ, β) is obtained by 
solving p(X ≤ xq) = q, 0 < q < 1, with respect to xq.  

Thus the quantile of the Σh EL (α, θ, β) can be 
obtained as a nonnegative solution of the following 

nonlinear equation: 
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The median of the Σh EL (α, θ, β) can be obtained 
from equation “Equation 33” at q = 0.5. 

Also, the mode of the Σh EL distribution can be 
obtained by deriving its pdf given in “Equation 6” with 

respect to x and equal it to zero. Thus the mode of the Σh 
EL (α, θ, β) can be obtained as a nonnegative solution of 
the following nonlinear equation: 
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It is not possible to get an explicit solution of the 

“Equation 34” in the general case and therefore 

numerical methods should be used such as bisection 

method or fixed-point method to solve it. 

The Moments 

Moments are necessary and very important in any 

statistical analysis, especially in the applications. It can 

be used to study the most important features and 

characteristics of the distribution (e.g., tendency, 

dispersion, skewness and kurtosis). 

The rth moments of the Σh EL (α, θ, β) is introduced 
by the following theorem. 

Theorem 5.1 

The rth moments of a random variable X ∼ Σh EL (α, 
θ, β) is given by: 
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Proof 

The rth moment of the positive random variable X 
with probability density function f(x): 
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So: 
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The same to find I2: 
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By substitution from “Equation 37” and “Equation 

38” in “Equation 35” and “Equation 36”.  

Moment Generating Function 

In this subsection we derive the moment generating 

function of Σh EL (α, θ, β) as infinite series expansion.  

Theorem 5.2 

The moment generating function Mx(t) of a random 
variable X ∼Σh EL (α, θ, β) is given by: 
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Proof 

The Moment Generating Function of the positive 

random variable X with probability density function f(x) 
is given by: 
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Using series expansion of etx, we obtain: 
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Substituting from “Equation 35” into “Equation 40”, 

we get Mx(t) in “Equation 39”.  

Characteristic Function 

The characteristic function is a unique function which 

characterize any probability distribution.  

Theorem 5.3 

Suppose that the random variable X have the Σh EL 
(α, θ, β), then characteristic function, Φx(t), is: 
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

− − + + + 
+ 



∑ ∑

∑

  (41) 

 

where, i = 1−  and t∈R. 

Proof 

The proof is simple. 

Rényi Entropy  

Entropy is used to measure the variation of the 

uncertainty of the random variable X. If X has the 
probability distribution function f(⋅) Rényi entropy 

(Rényi, 1961) defined by: 
 

( )( )
0

1
ln

1
H f x dx

δ

δ

δ

∞

=   − ∫   (42) 

 

Theorem 5.4 

The Rényi entropy of a random variable X∼Σh EL (α, 
θ, β) is given by: 
 

( )
( ) ( )

( )1

0 0

11
ln 1 ,

1

1

k

i

k

i k

i i k
H

i i

i k

δ

δ

δ θ α

δ β α

α

∞

+

= =

 − Γ − − 
= −  

− Γ   

> +

∑∑   (43) 

 

Proof 

Suppose X has the pdf in “Equation 6”. Then, one can 
calculate: 
 

( ) ( )

( ) ( )

0 0

0
0

1 1

1 1

x

i iix

i

f x dx e x dx

e x dx
i

δδ αθ

δ
αθ

β

δ
β

∞ ∞
−

−

∞
−

−

=

   = − +   

 
= − + 

 

∫ ∫

∑ ∫
  (44) 

 
Let: 

 

( )

( )
( )

( )
( )

0

0
0

0
0

1

1
!

1
!

iix

k

i

k

k

ik

k

I e x dx

ix
x dx

k

i
x x dx

k

αθ

α

α

β

θ
β

θ
β

∞
−

−

∞
∞

−

=

∞
∞

−

=

= +

−

= +

−

= +

∫

∑∫

∑ ∫

  (45) 

 
and let: 
 

( )
( ) ( )

( ) ( )

( )

*
0

1

1
1 1

1

1 1

ik

k

I i x x dx
i

i k k

i

α

β α β
β α

α

β α

∞
−

+

= − +
−

Γ − − Γ +
=

Γ

∫
  (46) 

 
from “Equation 46” in “Equation 45” we get: 
 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

1

0

1

0

1 1

1

1

k

k

k

k

k

k

i i k k
I

k i

i i k

i

θ α

β α

θ α

β α

∞

+

=

∞

+

=

− Γ − − Γ +
=

Γ + Γ

− Γ − −
=

Γ

∑

∑

  (47) 
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By substitute “Equation 47” in “Equation 42”, we get 

on “Equation 43”. 

Shannon Entropy 

Entropy measures the uncertainty of a random 

variable X. Shannon (1948), defined the entropy of a 
random variable X.  

Theorem 5.5 

The Shannon entropy of a random variable X ∼Σh EL 
(α, θ, β), is given by: 

 

( )( )
( ) ( ) ( )( ) ( )( )

( ) 1

ln

1 ln 1 ln

H E f x

E x E x E x

Where E x

θ α β θ αβ θβ

µ

= −   

= + + + − + +

′=

  (48) 

 

And by put E(ln(1+ βx)), E(ln(θ + αβ + θβx)) in 
“Equation 48” can be obtained numerically. 

Order Statistics 

In statistics, the kth order statistic of a statistical 
sample is equal to its kth smallest value. Together with 

rank statistics, order statistics are among the most 

fundamental tools in non-parametric statistics and 

inference. For a sample of size n, the nth order statistic 
(or largest order statistic) is the maximum, that is, X(n) = 

max (X1, X2,…, Xn) and the smallest order statistic) is the 

minimum, that is, X(n) = min (X1, X2,…, Xn). 

The sample range is the difference between the 

maximum and minimum. It is clearly a function of the 

order statistics: 

 

( ) ( ) ( )1 2 1
, ,...,

n n
Range X X X X X= −  

 

We know that if X(1), X(2),…, X(n) denotes the order 

statistics of a random sample X1, X2,…, Xn from a 

continuous population with cdf FX(x) and pdf fX(x). Then 
the pdf of X(k) is given by: 

 

( )
( )

( ) ( )
( ) ( ) ( )

1!
1

1 ! !k

k n k

X X XX

n
f x f x F x F x

k n k

− −

   = −   − −
 (49) 

 

Since, 0 < [1-FX(x)]
n-k
 < 1 we obtain. 

After applying binomial expansion, we got: 

 

( )
( )

( ) ( )
( ) ( ) ( )

0

!
1

1 ! !k

n k ii

XX

i

n kn
f x f x f x

ik n k

∞
− −

=

− 
 = −   − −  

∑  (50) 

 

for k = 1, 2,…, n. The pdf of the kth order statistic for Σh 
EL (α, θ, β) is given by: 

( )
( )

( ) ( )
( ) ( )

( )( )

( ) ( )

1

0

!
1

1 ! !

1 1 1

k

x

X

n k i
i ax

i

n
f x x e x

k n k

n k
e x

i

αθ

θ

θ αβ θβ β

β

− +
−

∞ − −
−

−

=

= + + +
− −

−    × − − +      
∑

 (51) 

 

Therefore, the pdf of the largest order statistic X(n) is 

given by: 

 

( )
( ) ( ) ( )

( )
[

( )

1

1 1

1

n

x

X

n k i
ax

f x n x e x

e x

αθ

θ

θ αβ θβ β

β

− +
−

− −
−

−

= + + + −

 +  

 (52) 

 

and the pdf of the smallest order statistic X(1) is given by: 

 

( )
( ) ( ) ( ) ( )

( )

1

1

1
nn x

X
f x n x e x

αθ
θ αβ θβ β

− +−

= + + +   (53) 

 

The rth order moment of X(k) for Σh EL (α, θ, β) is 
obtained by using: 

 

( )( ) ( )
( )
( )

0

.

k

r r

k k X
E x x f x dx

∞

= ∫   (54) 

 

where, 
( )
( )

k
X
f x  is presented in “Equation 51”. 

Maximum Likelihood Estimation (MLE) 

Assume x1,…,xn be a random sample of size n from 
Σh EL (α, θ, β) then the likelihood function can be 
written as: 

 

( ) ( ) ( )
( )1

1

, , 1i

n

x

i i

i

L x e x
α

θ
α θ β θ αβ θβ β

− +
−

=

 = + + +
  ∏   (55) 

 

By accumulation taking logarithm of “Equation 55” 

and the log-likelihood function can be written as: 
 

( ) ( ) ( ) ( )

( )

1 1

1

, , 1 ln 1

ln

n n

i i

i i

n

i

i

l x x

x

α θ β θ α β

θ αβ θβ

= =

=

= − − + +

+ + +

∑ ∑

∑

  (56) 

 

The MLEs of α, θ and β are obtained by maximizing 

“Equation 56”. The derivatives of “Equation 56” 

“Equation 55” wrt the unknown parameters are given as: 

 

( )
1 1

ln 1
n n

i

i i i

l
x

x

β
β

α θ αβ θβ
= =

 ∂
= − + +  

∂ + + 
∑ ∑   (57) 

 

( )
1 1

1n n

i

i

i i i

l x
x

x

β

θ θ αβ θβ
= =

 ∂ +
= − +  

∂ + + 
∑ ∑   (58) 
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( )
1 1

1
1

n n

i i

i ii i

l x x

x x

α θ
α

β β θ αβ θβ
= =

 ∂ +
= − + +  

∂ + + + 
∑ ∑   (59) 

 
The likelihood equations are given as: 

 

0, 0 0,
l l l

and
α θ β

∂ ∂ ∂
= = =

∂ ∂ ∂
 

 

gives the maximum likelihood estimator ( )ˆ ˆˆ ˆ , ,ϕ α θ β
′

=  of 

ϕ = (α, θ, β)'. As n → ∞ the asymptotic distribution of 

the MLE ( )ˆ ˆˆ , ,α θ β  for the Σh Exponential-Lomax 

Distribution is given as: 
 

11 12 13

21 22 23

31 32 33

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ

v v v

N v v v

v v v

α α

θ θ

ββ

     
     
     
     

     

∼   (60) 

 
where: 
 

2 2 2

2

2 2 2

1

2

2 2 2

2

l l l

l l l
v E

l l l

α α θ α β

θ α θ θ β

β α β θ β

−

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= −  

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂  

  (61) 

 
where: 
 

2
2

2

1

n

i i

l

x

β

α θ αβ θβ
=

 ∂
= −  
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∑   (62) 
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( )
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2

1

1n
i

i
i
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x
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∑   (63) 
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2 2

1

2

1

1

n

i

i i

n

i

i
i
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x

x

x

α β β α β
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θ αβ θβ

=

=

 ∂ ∂
= =  
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∑
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2
2

2

1

1
n

i

i i

l x

x

β

θ θ αβ θβ
=

 ∂ +
= −  

∂ + + 
∑   (65) 

 

( )

2 2

2

1

n

i
i

l l

x

α

θ β β θ θ αβ θβ=

 
∂ ∂  = = −

 ∂ ∂ ∂ ∂ + + 

∑  (66) 

 

( )
2 2

2

2

1 1

1
1

n n

i i

i ii i

l x x

x x

α θ
α

β β θ αβ θβ
= =

   ∂ +
= + −   

∂ + + +   
∑ ∑   (67) 

 

In relation to the asymptotic variance-covariance 

matrix of the ML estimators of the parameters, it can 

be approximated by numerically inverting the above 

Fisher's information matrix F. Thus, the approximate 

100(1-γ)% two sided confidence intervals for α, θ and 

β can be, respectively, easily obtained by: 

 

ˆ ˆ ˆ/2 / 2 /2

ˆ ˆˆ ,Z Z and Zγ α γ γθ β
α σ θ σ β σ± ± ±  

 

where, Zγ is the γth upper percentile of the standard 

normal distribution. 

Numerical Studies 

In this section, an extensive Monte Carlo 

simulation study is carried out to assess the 

performance of estimation method. We have also 

considered a real-life dataset to investigate the 

applicability of the Σh EL (α, θ, β) model. 

Simulation Study 

A Monte Carlo simulation study is carried out for 

samples of sizes 20, 50, 80, 100 and 200, drawn from 

Σh EL (α, θ, β) distribution. The samples have been 

drawn for α = 2.5, θ = 0.5 and β = 0.2 and maximum 

likelihood estimators for the parameters α, θ and β are 

obtained. The procedure has been repeated for 10000 

and the mean and Root of Mean Square Error (RMSE) 

for the estimates are computed. 

 
Table 1: Average estimates of Σh EL (α, θ, β) model parameters and RMSE 

 Estimates   RMSE 

 ----------------------------------------------------------- ------------------------------------------------------------ 

n α θ β α θ β 

20 2.397 0.547 0.186 0.297 0.296 0.393 

50 2.451 0.523 0.191 0.224 0.272 0.374 

80 2.473 0.513 0.206 0.211 0.263 0.356 

100 2.491 0.508 0.196 0.126 0.131 0.198 

200 2.496 0.506 0.198 0.081 0.093 0.121 
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The results are summarized in “Table 1”, we have 
found that the simulated estimates are closed to the true 
values of the parameters and hence the estimation 
method is adequate. We have also observed that 
estimated Root of Mean Square Errors (RMSEs) 
consistently decreases with increasing sample size. 

The Wheaton River data 

“Table 2” shows the data are the exceedances of 
flood peaks (in m

3
/s) of the Wheaton River near Carcross 

in Yukon Territory, Canada. The data consist of 72 
exceedances for the years 1958-1984, rounded to one 
decimal place. For more details about the source of the 
data may refer to (Akinsete et al., 2008). 

In order to assess the performance of the Σh 

Exponential-Lomax distribution we have computed 

various measures for Exponential (E), Lomax (L), 

Transmuted Exponential (TE) and Transmuted Lomax 

(TL) distributions. The estimated values of parameters 

alongside the Standard Errors (SEs) for various 

distributions are given in “Table 3”. Estimated pdf 

and cdf of the Exceedances of Wheaton River flood 

data are plotted over empirical density and 

distribution functions respectively and presented in 

the upper panels of “Fig. 4 and 5”. “Table 4” provides 

the log-likelihood, Akaike's Information Criterion 

(AIC), corrected Akaike's Information Criterion 

(AICc), Bayesian Information Criterion (BIC) and the 

Hannan Quinn Information Criterion (HQIC). From 

“Table 4”, we can see that the Σh Exponential-Lomax 

distribution is good to the data as it has smallest 

values of the criterion. 
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Fig. 4: Estimated pdfs for the data set 
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Fig. 5: Estimated cdfs for the data set 
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Table 2: Exceedances of Wheaton River flood data 

1.7 5.3 1.4 22.1 0.6 7.3 9.0 14.1 5.6 11.9 1.5 16.8 

2.2 0.7 18.7 1.1 2.2 22.9 1.7 9.9 30.8 21.5 2.5 5.3 

14.4 1.9 8.5 2.5 39.0 1.7 7.0 10.4 13.3 27.6 27.4 9.7 

1.1 13.0 25.5 14.4 0.3 0.1 20.1 10.7 4.2 36.4 1.0 27.5 

0.4 12.0 11.6 1.7 15.0 1.1 0.4 30.0 25.5 2.7 27.1 2.5 

20.6 9.3 14.1 37.6 11.0 0.6 2.8 3.6 3.4 64.0 20.2 27.0 

 
Table 3: MLEs of the parameters and respective SEs for selected models 

Distribution Parameter Estimate SE 

Σh EL (α, θ, β) α 17.26000 0.012 

 θ 0.00015 0.023 

 β 0.05700 0.041 

ED θ 0.08190 0.053 

LD α 123.18000 0.067 

 β 0.00067 0.042 

TED θ 0.07500 0.098 

 λ -0.16700 0.107 

TLD α 79.31000 0.084 

 β 0.00100 0.057 

 λ 0.15300 0.112 

 
Table 4: MLEs and the measures -2l(.), AIC, AICc, BIC and HQIC for data 

Distribution -2l(.) AIC AICc BIC HQIC 

Σh EL (α, θ, β) 495.660 501.660 502.013 508.490 504.340 

ED 504.256 506.256 506.342 508.533 507.162 

LD 509.501 513.501 513.675 518.054 515.313 

TED 503.930 507.930 508.104 512.484 509.743 

TLD 508.351 514.351 514.704 521.181 517.070 

 
Table 5: Goodness-of-fit tests for data  

Distribution D
n
 2

n
W  2

n
A  2

n
U  L

n
  

Σh EL (α, θ, β)  0.140 0.229  1.450  17.750  1.195 

ED  0.142 0.231   1.459  17.790  1.206 

LD  0.160 0.556  3.322  18.011  1.820 

TED  0.182 0.419   2.872  17.981  1.601 

TLD  0.160 0.525   3.040  17.980  1.723 

 

The measures of goodness of fit typically 

summarize the discrepancy between observed values 

and the values expected under the model the new 

family achieves more flexibility in the process of 

goodness of fit when apply on real data than the 

goodness of fit of each distribution that make up the 

family and this will be evident upon application. 

The goodness of fit tests are used to measure how 

compatible a random sample with a theoretical 

probability distribution function. The most popular 

nonparametric goodness-of-fit tests, namely; the 

Kolmogorov-Smirnov D
n
, Cramérvon Mises 2

n
W , 

Anderson Darling 2

n
A , Watson 2

n
U and Liao-Shimokawa 

L
n
 tests statistics (Al-Zahrani, 2012). 

 “Table 5” indicates that the test statistics D
n
, 

2

n
W , 2

n
A , 2

n
U  and L

n
 have the smallest values for the data 

set under Σh Exponential-Lomax distribution model with 

regard to the other models. The proposed model offers a 

smart alternative to the above distributions.  

Concluding Remarks 

In this study, we presented a new family of 

distributions called the Σh distributions. This family 

may help in the application of a wider range of life time 

data. We have examined and investigate the 

characteristics of that family and presented a number of 

distributions for that sample. We also analyzed the Σh 

Exponential-Lomax distribution as a distribution of 

that family’s distributions. Where we studied the 

properties of that distribution by calculating both 

generating functions, quantiles, random number 

generation, Rényi and Shannon entropy, the order 

statistics and estimated the parameters of the 

distribution using the maximum likelihood method. A 
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simulation to study the characteristics of the capabilities 

has been introduced and as the results of that simulation, it 

showed that the values of the approximations to the initial 

values also that those values are characterized by 

consistency as the value of RMSE decreases with the 

large sample size. Also, the parameters of the model 

were estimated on real data samples and compare the 

results with the Lomax distribution and the exponential 

distribution to show the good of fit of the new 

distribution to show the proposed distribution is a better 

good of fit from these distributions. 

We can strongly say, the basic motivation behind 

investigating in practice using this new family is, this 

family verifies that the sum hazard function of the 

distributions arising from it is suitable for applying to 

different types of hazard functions. Considering the 

special case (Exponential-Lomax distribution) introduced 

in “Equation 28” in this study; note that the resulting 

hazard function is the sum of the two hazard functions of 

both the Lomax distribution and the exponential 

distribution and thus this fits into three of the hazard 

function patterns as follows: 

 

• The fixed hazard rate, in case that Lomax 

parameters = 0 (the distribution will be exponential) 

• The decreasing hazard rate, when the parameter of 

the exponential = 0 (the distribution will be Lomax) 

 

Then also, the hazard rate that decrease to a certain 

extent increase the value of X and then be fixed at a 

certain value (Lomax exponential distribution). 

By the previous clarification, it is proved that this 

family has a hazard rate that fits different types of hazard 

functions upon applications. 

For further work, we can use this distribution with 

life time data under censored data. Also, other estimation 

methods can be used such as Bayesian or least squares. 
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