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Abstract: Bi-directional Grid Constrained (BGC) Stochastic Processes 

(BGCSP) become more constrained the further they drift away from the 

origin or time axis are examined here. As they drift further away from the 

time axis, then the greater the likelihood of stopping, as if by two hidden 

reflective barriers. The theory of BGCSP is applied to a trading environment in 

which long and short trading is available. The stochastic differential equation of 

the Grid Trading Problem (GTP) is proposed, proved and its solution is 

simulated to derive new findings that can lead to further research in this area 

and the reduction of risk in portfolio management. 
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Introduction 

Bi-directional Grid Constrained (BGC) Stochastic 

Processes (BGCSP) are described as Itô diffusions in 

which the further they drift from the origin or time axis, 

then the more they will be reflected back to the origin. 

Definition 1.1. (SDE of BGC Stochastic Process) 

For a complete filtered probability space (Ω,,{}t0, 

ℙ) and a BGC function Ψ(x): ℝ  ℝ, x ∈ ℝ, then the 

corresponding BGC Itô diffusion is defined as follows: 
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where, sgn[x] is defined in the usual sense as: 
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and f(Xt,t), g(Xt,t) and Ψ(Xt,t) are convex functions. 

The drift function f(x): ℝ  ℝ and the diffusion function 

g(x): ℝ  ℝ, x ∈ ℝ, in the limit, they approach the typical 

constant expressions for the drift and diffusion coefficients: 

 

   lim , lim .
x x

f x g x 
 

   (1.2) 

To visualize the impact of the BGC function Ψ(Xt,t) 

in (1.1), 1000 Itô diffusions were simulated both with 

and without BGC, with zero drift coefficient µ and unit 

diffusion coefficient σ, as shown in Fig. 1. 

The zero drift in (a) is constrained in (b) the more it 

deviates from the origin, causing the hidden reflective 

upper barrier and hidden reflective lower barrier to 

emerge, together with horizontal bands to form due to 

the discretization effect of BGC. 
BGCSP have applications by solving problems 

involving the constraining of stochastic processes within 
two reflective barriers (often times hidden and not 
predefined) and that an event occurs when the barriers are 
hit. In the context of mathematical, quantitative (quant) and 
computational finance and algorithmic trading, we define 
an application of BGCSP by the following definition. 

Definition 1.2. [Bi-Directional] Grid Trading (BGT) 

BGT is the simultaneous placement of a Long and 
Short trade at every grid width g level at, above and 
below the initial price rate R0 and the corresponding 
taking profit of each trade at the nearest Take Profit level 
(also of width g) without any predetermined stop losses. 
This definition is illustrated in Fig. 2. 

As the BGCSP evolves over time, it will collect (i.e., 
close) many winning trades and also hold on to some losing 
trades, which should become profitable over time. It is 
remarkable how such a simple trading strategy can generate 
profits most of the time due to frequent periods of low 
volatility (i.e., diffusion σ). However, when a strong trend 
emerges, this strategy accumulates large losses and so the 
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trades need to be closed down before they exceed the 
account’s current capital or balance level. When the losing 
trades grow too far in terms of either total count or in terms 

of magnitude, then the trading account can become ruined, 
inducing a stopping time. We call this the Grid Trading 
Problem (GTP). 

 

 
 (a) (b) 

 
Fig. 1: Itô Diffusions with and without BGC 

 

 

 

Fig. 2: Illustration of BGCSP in trading R = Rate, T = Time, W = Winning trades, L = Losing trades, P = Profit, E = Equity. (a) 

Horizontal blue lines represent when Long Trades occur and horizontal red lines represent when Short trades occur. The 

arrows represent the movement of the rate Rt over time t. (b) Dotted lines depict trades in profit and closed at their nearest 

Take Profit (TP). Solid lines depict trades that are held in loss until they reach their TP, closed down when loss becomes ‘too 

large’ or finally if an account is ruined 
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Literature Review 

BGC stochastic processes are relatively new 

(Taranto and Khan, 2020a-d). To the best of the authors’ 

knowledge, there is no additional formal academic 

definition of BGC stochastic processes nor grid trading 

available within all the references on the subject matter 

(Mitchell, 2019; DuPloy, 2008; 2010; Harris, 1998; 

King, 2010; 2015; Markets, 2017; Work, 2018). These 

secondary sources are not rigorous journal papers but 

instead informal blog posts or software user manuals. 

Even if there were any academic worthey results found 

on grid trading, there is a general reluctance for traders 

to publish any trading innovation that will help other 

traders and potentially errode their own trading edge. 

Despite this, grid trading can be expressed 

academically as a discrete form of the Dynamic Mean-

Variance Hedging and Mean-Variance Potfolio 

Optimization problem (Schweizer, 2010; Biagini et al., 

2000; Thomson, 2005). There are many reasons why a 

firm would undertake a hedge, ranging from minimizing 

the market risk of one of its client’s trades by trading in 

the opposite direction, through to minimizing the loss on 

a wrong trade by correcting the new trade’s direction 

whilst keeping the old trade still open until a more 

opportune time (Stulz, 2013). In the case of grid trading, 

it can be considered as a form of hedging of multiple 

positions simultaneously over time, for the generation of 

trading profits whilst minimizing the total portfolio loss. 

Methodology 

Derivation of Continuous Grid SDE 

Theorem 3.1 

For a Bi-Directional grid trading constrained Itô 

process with a given grid width g, value ν per grid width, 

drift (direction) µt and variance (risk) σt, then the change 

in equity E over time t is: 
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Proof 

In the discrete time framework t ∈ 


of Fig. 2, one 

can see that the equity Et at any time t is comprised of the 

initial equity E0, plus the sum of all the winning trades 

Wt, minus the sum of any losing trades Lt. We can 

elaborate how the progression can evolve over time, in 

the worst case scenario of a strongly trending market, as 

shown in Fig. 2b. 

We can now derive the general formula for Et, 

where ν is the value per grid width, g >0 is the grid 

width, giving: 
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 (3.1) 

 
where, n is the grid level reached by the price Rt at 

time t. However, the markets do not trend indefinitely 

and so Lt in (3.1) needs to be replaced with a 

stochastic process. In a continuous time stochastic 

framework t ∈ ℝ+, (3.1) becomes: 
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2

t

t
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E
    (3.2) 

 

where, Et = E0 at t = 0 as an initial condition and adopting 

the simplest of 1-Dimensional Itô Diffusion processes: 
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1

,t tn t dt dW
g
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noting that now we highlight that n is a function of t where: 
 

 µt is The drift (or direction) over time 

 σt is The diffusion (or volatility) over time, which 

are random and assumed independent of µt over time 

 Wt is A Wiener Process (or Brownian motion) as 

t t tdW dt with   (0,1) 

 
We note that (3.2) is essentially a non-standard 

Geometric Brownian Motion (GBM). The reason why 

we have not expressed it as a Arithmetic Brownian 

Motion (ABM) is that we require the equity Itô diffusion 

to be modelled as products of random factors and not 

sums of random terms. GBM involves independently and 

identically distributed ratios between successive factors. 

Furthermore, we require 0,t

t

dW
t

E
    as trading 

systems seek to exponentially compound E over time 

and an Et = 0 equates to ruin or bankruptcy. In fact, since 

our drift and diffusion terms are non-constant over time, 

then our non-standard GBM is actually a form of a more 

generalised Itô Processes. Finally, we note that (3.2) does 

not appear at first glance to be a GBM as it does not exhibit 

an explicit dWt term, even though it is implied due to (3.3). 

Substituting (3.3) into (3.2) expands to: 
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where, 2 2
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completing the proof.  

It is worthwhile noting at this stage, setting aside the 

constants ν and g, that since Γ1(t,µt,σt) and Γ2(σt), then 

(3.5) is not a standard simple linear SDE and that there is 

some convolution of 2

t within the deterministic 

component dt with the σt within the random component 

dWt. This means that we would expect to see some 

relatively complex interactions from the underlying 

distribution samples. For example, negative σt values 

becoming positive due to 2

t , skewing the results 

towards Et  0 due to the negative sign before 2

t , 

which supports to a certain extent why Et has a 

tendency to almost surely approach 0 over time 

(subject to certain drift and diffusion conditions set 

out in the results and discussion sections). 

Solution of Continuous Grid SDE 

Theorem 3.2 

For a Bi-Directional grid trading constrained Itô 

process with a given grid width g, value ν per grid width, 

drift (direction) µt and variance (risk) σt, then the equity 

E over time t has the solution: 
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Proof 

Recall that (3.5) is a GBM whose well known 

(Oksendal, 1995) general solution is of the form: 
 

2

0 exp .
2

t
t t t tS S t W


 

  
     

  
 (3.7) 

 
We are now in a position to solve the bi-directional 

grid trading SDE (3.5) by substituting Γ1 and Γ2. 

Making use of a change of variable s, substituting the 

expressions for Γ1 and Γ2, we know that the solution 

of a standard GBM is: 
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which completes the proof. 

Results and Discussion 

Profitable Path Analysis 

Undertaking a sensitivity analysis of the parameters 

µt, σt, ν and g as shown in Fig. 3, one finds that the 

model for Et is more sensitive to µt and σt than it is to ν 

and g, noting that µt, σt, ν, g ∈ ℝ. 

We also note that most of the simulations resulted in 

a positive profit in Et due to the impact of grid trading on 

the imput Rt, one such typical scenario plotted in Fig. 5 

using the MT4 trading platform which supports the 

theoretical model, in the first half where Et grows almost 

linearly. Specifically, the values ν > 1, g > 1 results in 

most simulations producing positive Et. Hence, we 

choose ν = 1 = g, simplifying (3.6) to: 
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Plotting (4.1) in Fig. 3 shows the general theoretical 

nature of grid trading’s potential if it is stopped early 

enough and restarted to minimize the risk of the losing 

trades. We see that the greatest Et value not only occurs 

when Rt is range bound (having low volatility or 

diffusion σt), but also when Rt is trending with relatively 

small drift µt and relatively high diffusion σt values. 

Ruin Path Analysis and Stopping Times 

Having presented scenarios that show that grid 

trading can be very profitable, it is now beneficial to 

present scenarios that show that grid trading can also 

lead to ruin. As the trades are accumulated, one will 

begin to collect profitable trades as the Balance grows 

linearly, whilst the Equity dips down, highlighting the 

existence of losing trades that are carried and not closed. 

Ruin occurs when an investor’s account Equity Et at time 

t, which is the difference between the Balance Bt and 

Profit Pt at time t (Et = Bt-Pt) is reduced to zero or if their 

equity is too low (close to zero) to prevent any new 

trades to be placed due to brokerage rules. 

We know that the grid loss accumulation process that 

grows via the triangular number series, grows faster with 

smaller and smaller values of the grid width g. A sensitivity 

analysis was undertaken for g ∈ (0,1) and is shown in Fig. 

4, showing the transition from ruin to profitability, 

highlighting the importance of having g sufficiently large. 
This risk of ruin occurs in grid trading systems in the 

long term if and when it becomes ‘too grid-locked’ with 
too many losing trades. To break a grid-lock, the 
underlying Itô diffusion Rt needs to have range bound 
movement for an extended period of time so that the 
winning trade total can be greater than the losing trade 
total. If this doesn’t occur, such as during strong trends 
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with low volatility, then the Itô diffusion’s equity will 
eventually become ‘ruined’, which we relate to a 

stopping time, as shown in the second half of Fig. 5. This 
scenario in MT4 also supports the theoretical model. 

 

   
 
Fig. 3: Sensitivity analysis of various values of µt, v and g the stochastic model for Et is relatively insensitive to v and g is more 

influenced by the drift µt and the diffusion t and specifically their interrelationship. Most simulations resulted in exponential 

growth of Et, noting that Rt = f(µt, t) whilst Et = f(Rt, v, g) for some function f. 
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Fig. 4: The transition from ruin to profit (a) to (d) increase g from 0.6 to 0.9 showing the main states are displayed. They show that 

the simulations become increasingly profitable as the grid width g is increased. (a') to (b') are the corresponding figures for 

(a) to (b) respectively with the natural logarithm applied. We note that the most profitable simulations (highest pealos) are 

unstable and lead to ruin. Nevertheless, as g is increased, ruin occurs later and later in time 
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Fig. 5: Sample negative growth path of a grid trader in MT4 blue line = balance, green line = equity = balance + open profit if the 

system that is in profit ans is not closed down early enough (such as halg way over the time above), then there will be 

numerous losing trades accumulated that will lead to ruin (unless the favour able conditions arlse that detailed in Fig. 4.) 

 

Conclusion 

A SDE was proposed as the novel theorem of Bi-

Directional Grid Constrained Trading stochastic 

processes and its solution was provided as the proof. 

From this theoretical model, a number of important 

properties of grid trading were uncovered through Monte 

Carlo simulation of the SDE and accompanying 

sensitivity analysis. It was shown that the grid width g 

and the profit P per grid width have a relatively minor 

impact on the equity over time Et and that the drift µt and 

diffusion σt have the most impact. This research has 

shown that it is the interrelationship between µt and σt of 

the underlying price rate Rt that determines whether Et is 

profitable at any point in time t. It has also been shown 

that whilst strong trends either up or down are the enemy 

of Bi-Directional grid trading strategies, so long as σt is 

relatively large, then there will be sufficient counter-trend 

fluctuations that better ensure that the system can grow in 

Et, albeit not eliminating the risk of ruin. This research also 

paves the way for future work on the stochastic 

optimization of these SDEs. This forms a rich framework to 

further study such stochastic processes in their own right, 

but can also lead to applications in quantitative finance, 

funds management, investment analysis and banking risk 

management. This paper will be leveraged in future 

research as we focus on deeper mathematical and statistical 

properties and the potential benefits of grid trading. 
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