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Abstract: In this study, the nonparametric standard logistic density 

estimator, introduced by Abo-El-Hadid (2018), is extended to the bivariate 

case. The multiplicative standard logistic distribution is used as a kernel 

function to derive the bivariate kernel estimator. The statistical properties of 

the resulting estimator are studied, which are: The asymptotic bias, variance, 

Mean Squared Error (MSE) and Integrated Mean Squared Error (IMSE); 

also, the optimal bandwidth is obtained. A simulation study is introduced to 

investigate the performance of the proposed estimator with other estimators. 

We also apply the proposed estimator to a real data set to estimate the 

bivariate density of the planted and productive areas of wheat in Egypt.  
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Introduction 

In many situations, there are, more than one random 

variable of interest; hence we are needed to extend the 

density function of one random variable to those of two or 

more random variables. 

Rosenblatt (1956) introduced a univariate nonparametric 

estimator of the density function f(x), which called the 

kernel density estimator: 
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where, n is the sample size; K(∎) and ℎ are the univariate 

kernel function and the bandwidth respectively, where the 

univariate kernel function K(∎) is assumed to be a density 

function. This kernel density estimator in (1) is extended 

to the multivariate case by Epanechnikov (1969).  

Duong and Hazelton (2003) used plug-in methods for 

selecting the bandwidth matrix for bivariate kernel 

density estimation. The performance of their 

methodology is compared with existing plugin techniques 

via numerical study.  

Santhosh and Srinivas (2013) used Diffusion process 

based on adaptive kernel to model joint distributions of 

peak flow and volume that characterize a flood data 

extracted from daily streamflow records pertaining to 

stations in India, United Kingdom, Canada and United 

States. The performance of the D-kernel is compared 

with that of kernel density estimation using Gaussian 

kernel, The D-kernel is shown to be effective when 

compared to Gaussian kernel. 

Cañón-Tapia (2013) suggested using the bivariate 

Gauss kernel to study the spatial distribution of volcanic 

vents. The suggested bivariate Gauss kernel is compared 

with Fisher kernel and it is found that both kernels can 

be used to obtain the same general description of 

volcanic distribution.  

Bandyopadhyay and Modak (2018) introduce 

estimators based on the product of a univariate classical 

kernel and a univariate gamma kernel and compare their 

performances in terms of the mean integrated squared 

error. Two astronomical data sets are used to demonstrate 

the applicability of this estimator.  

The rest of this paper is organised as follows: In 

section 2 the suggested bivariate logistic kernel estimator 

and its statistical properties are introduced. In section 3 

the optimal bandwidth is obtained. a simulation study is 

introduced in section 4. Real data application is 

introduced in section 5.  

The Suggested Bivariate Logistic Density 

Estimator 

Let the joint probability density function of the two 

random variables X1, X2 be f(x1, x2). The bivariate 

kernel density estimator given by Epanechnikov (1969) 

takes the form: 
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where, h is the smoothing parameter under the assumption 

that the bandwidth is the same for both X1, X2. 𝒦 is 

bivariate kernel function, which for simplicity considered 

as a multiplicative kernel (Silverman, 1986):  
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where, K denotes a univariate kernel function. Then: 
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Using the multidimensional form of Taylor’s 

theorem for the  th order of kernel function, 

Epanechnikov (1969) proved that the bias of  1 2
ˆ ,f x x  is 

as follows (Härdle et al., 2004): 
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Then for the 2nd order kernel function: 
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where, o(ℎ2) is a higher order term than 2 of ℎ.  

Also, Epanechnikov (1969) found that the variance 

takes the following form: 
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where, R(K) = ∫K2(∎)d∎.  

In this study, we suggest use the standard logistic 

distribution as a kernel function. The univariate standard 

logistic distribution takes the form (Evans et al., 1993): 
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Where: 

  0E v   (11) 
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Also as proved by Abo-El-Hadid (2018): 
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Then the suggested multiplicative kernel 𝒦 is as follows: 
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Then E(u) = 0:  
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Using the multiplicative kernel in (14), the suggested 

bivariate logistic kernel density estimator is as follows: 
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The bias of the above estimator is obtained by 

substituting from Equation (15) into Equation (7): 
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And substitute from Equation (16) into Equation (8) 

yields that the approximated variance is: 
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Combining Equation (18) and Equation (19), then the 

asymptotic mean squared error MSE is: 
 

 
 

   
2

8 4 2 2
1 2

1 2 1 2 1 22 2 2

1 2

,
ˆ , , ,

36 324

f x x h
MSE f x x f x x f x x

nh x x

   
         

 

 
Then the integrated mean squared error IMSE is as 

follows:  
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The Optimal Bandwidth 

In this section, the optimal smoothing parameter is 

derived, that minimize the IMSE: 
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Then: 
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The optimal smoothing parameter in (22) depends on 

the unknown term 
   

2
2 2

1 2 1 2

2 2

1 2

, ,f x x f x x

x x





  
 

   
  , to 

overcome this problem, the multiplicative standard logistic 

distribution is used as a reference distribution. Then: 
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Substituting (28) into (22), the optimal bandwidth is: 
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Simulation 

In this section, the performance of the proposed 

bivariate logistic kernel estimator is evaluated via 

simulation. The suggested estimator was compared with: 
 

 The multiplicative Gaussian kernel estimator: 
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 The multiplicative Epanechnikov kernel:  
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Random samples were generated from: Bivariate 

logistic distribution (Gumbel, 1961). The size of the 

random samples is n{10,50,100,500,1000}. Then the 

following measures of error are computed: 
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The values of the above goodness of fit measures are 

given in the following Table 1. 

From the above error measures in Table 1, it is 

obvious that the performance of all estimates improved 

as the sample size increases. It is also noted that the 

worst estimate according to the criteria of error is the 

multiplicative Epanechnikov estimator, followed by 

the multiplicative Gaussian estimator, while the 

suggested bivariate logistic estimator overcomes the 

other estimators. 

Application  

Agriculture is an important sector of the Egyptian 

economic development sectors. Wheat is a major crop and 

one of the main pillars of the Egyptian economics. Egypt 

is the largest consumer and the largest importer of wheat 

in the world. This wheat is mainly used in the production 

of Egyptian bread. hence, wheat is a product of utmost 

importance to Egypt and reforming the bread program is 

a top priority for the Egyptian government. 
Therefore, this study focuses on studying the joint 

probability density function of wheat cultivated areas in 
the governorates of Egypt and the productivity of those 
governorates (27 governorates).  

 
Table 1: Simulation results  

n  Estimator  MSE MAE MAPE  

10  Multiplicative Gaussian  0.159167  0.322847  0.567504 

 Multiplicative Epanechnikov  0.175300  0.34694  0.624018 

 Suggested logistic  0.156474  0.295652  0.523707 

50  Multiplicative Gaussian  0.155581  0.309598  0.563726 

 Multiplicative Epanechnikov  0.171997  0.331276  0.623491 

 Suggested logistic  0.145774  0.281742  0.512723 

100  Multiplicative Gaussian  0.151168  0.308198  0.551917 

 Multiplicative Epanechnikov  0.168923  0.329561  0.607196 

 Suggested logistic  0.137271  0.271262  0.49482 

500  Multiplicative Gaussian  0.140966  0.282875  0.524303 

 Multiplicative Epanechnikov  0.155848  0.304107  0.581337 

 Suggested logistic  0.125577  0.265113  0.461971 

1000  Multiplicative Gaussian  0.00296022  0.0478740  0.474105 

 Multiplicative Epanechnikov  0.00554374  0.0521915  0.572888 

 Suggested logistic  0.00228290  0.0438053  0.44933 

 

 
 

Fig. 1: The histogram of production and planted area of Egyptian wheat by governorate during 2019/2020 
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The data on the planted area in feddans (feddan = 

4200 square meters) and wheat production (in tons per 

feddans) by governorate are obtained from the central 

agency for public mobilization and statistics: Egypt in 

figures agriculture (March 2021). The following graph 

illustrate the bivariate histogram of planted area and 

production of wheat together. A bivariate histogram 

bins the data within rectangles and then shows the 

count of observations within each rectangle (Fig. 1). 

The suggested bivariate logistic kernel estimator is 

used to estimate the bivariate density function of wheat 

production and planted area and Fig. 2 introduce the 3D 

graph of the estimated density  
A contour plot is a way of displaying the above 3D 

plot on a 2D plot. the contour plot shows only two 
dimensions (the x-axis and the y-axis), the third 
dimension is defined by the colour. The following 
figure illustrate the contour plot of the estimated 
density function and the cumulative function. 

From Fig. 3, it is obvious that we have two 
positively correlated variables, because there is overall 
tendency of the contour lines to point up and to the right 
(or down and to the left).  

 

 
 

Fig. 2: 3D graph of the estimated bivariate density of production and planted area of Egyptian wheat 

 

 
 

Fig. 3: The PDF and CDF of production and planted area of Egyptian wheat 

4106 

-500 

3106 

2106 

1106 

0 
-500 

0 

500 

1000 

0 

500 

Planted area 

Production 

PDF CDF 
600 

 
400 

 
200 

 
0 

 
-200 

 
-400 

600 

 
400 

 
200 

 
0 

 
-200 

 
-400 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

3.5106 

 

3.0106 

 

2.5106 

 

2.0106 

 

1.5106 

 

1.0106 

 

5.0107 

-500 0 500 1000 -500 0 500 1000 



Samah M. Abo-El-Hadid / Journal of Mathematics and Statistics 2021, Volume 17: 44.49 

DOI: 10.3844/jmssp.2021.44.49 

 

49 

Conclusion  

In this study, the univariate logistic kernel estimator 

introduced by Abo-El-Hadid (2018) is extended to the 

bivariate case. The theoretical properties of this proposed 

estimator are studied. Since the wheat crop is of prime 

importance to Egypt, due to its use in the manufacture of 

a basic commodity, which is the “baladi” bread, the 

bivariate probability density function of wheat yield and 

the areas planted with it was estimated. We found from 

the estimated density that there is as positive relationship 

between the wheat production and the planted areas. 

Finally, from a simulation study, the new bivariate logistic 

kernel estimator always outperforms the other estimators.  
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