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Introduction

Recently, fractional differential equations have been
acquired much attention due to its applications in a
number of fields such as physics, mechanics, chemistry,
biology, signal and image processing, see for example the
books (Baleanu et al., 2012; Kilbas et al., 2006;
Lakshmikantham et al., 2009; Yang et al., 2015).

Some recent works on fractional differential equations
involving Riemann Liouville and Caputo-type fractional
derivatives are studied using nonlinear analysis methods
such as Krasnoselskii fixed-point Theorems (Agarwal and
O'Regan, 1998; Ghanmi and Horrigue, 2018; Guo et al.,
2007; Guo et al., 2008), Leray-Schauder alternative
(Ghanmi and Horrigue, 2019; Qi et al., 2017), sub-solution
and super-solution methods (Wang et al., 2019; Maagli et al.,
2015) and iterative techniques (Liu et al., 2013).

Hadamard (1892) introduced an important fractional
derivative, which differs from the above-mentioned ones
because its definition involves logarithmic function of
arbitrary exponent and named as Hadamard derivative. In the
last few decades many authors are paying more and more
attention to fractional differential equation involving
Hadamard derivative, the study of the topic is still in its
primary stage. For details and recent developments on
Hadamard fractional differential equations, see (Huang and
Liu, 2018; Wang et al., 2018; Zhai et al., 2018) and
references therein. Recently, some researches have
extensively interested in the study of the fractional
differential equations with p-Laplacian operators see for
examples (Chamekh et al., 2018; Ding et al., 2015).

From the above review of the literature concerning
fractional differential equations, most of the authors
investigated only the existence of solutions or positive
solutions for Hadamard fractional differential equations
without considering the pi-Laplacian operator. A very few
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authors established results along with p-Laplacian
operator, us example in (Wang and Wang, 2016), the
authors considered the following nonlinear Hadamard
fractional differential problem:

D (¢,(D°u(t)))=f(Lu(t),  te@T),

u(T)=2l"u(n), D“(1)=0, u(1)=0,

where fore an appropriate & D¢ is the Hadamard fractional
derivative of order &, 1 < ¢<2,0<0<1,y>0,1e R
and f € C([1,T]x R, R). By using the Schauder fixed point
Theorem, the existence of solutions is obtained. In Liand Lin
(2013), the authors used the Guo-Krasnosel’skii fixed point
Theorem to prove the existence and uniqueness of positive
solutions of the following Hadamard fractional boundary
value with p—Laplacian operator:

te(l,e),
D“u(1)=D"u(e) =0,

where,2 <a<3,1<0<2,feC([1,e] x [0,),[0,00)) and
the function ¢, (p > 1), is called p-Laplacian and is defined
in R by gp(s) = [s|P~%s. The authors in Zhang et al. (2018)
established some existence of positive solutions for the
following nonlinear Hadamard fractional differential
equations with p-Laplacian operator:

D7 (¢, (D u(t))) = f (tu(1)), te(Le),

u(l)=u’'(1)=u'(e)=0, D“u(1)=0,

d,(D°u(e)) =] 4, (Du(0) T,
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where, 2<0<3,1<c<2,0<u<candfe C([1e] xR, R).
Motivated by the above mentioned papers, in this study,
we study the following fractional Hadamard problem:

D" (4,(D"x))(t) = f (t,),
x(1)=¢,(D*x)(1)=0,
A1 x(m )+ Bx(e)=c,
A x(d, (D)) (7 )

where, o and o are in (1,2], n1and 2 are in (1,e), A1, Az,
B1, B2, c1and c; are fixed real numbers.
For the sake of computational convenience, we set:

(1.1)
0<y

:C2v 0<7,

= i ot 1.2
A, Bz+r(72+6)(lognz) , (1.2)
ALF(O-) n+a-1 1 3
2= 1“'1_(}/1 a)(|09771) ( . )

And we assume the following conditions.
(H1) There exist nonnegative functions a(t), b(t) e
C([1,e], R), such that:

[F(tx)]<a(t)+b()x""
(H,)®, +©, <1,where

e J“(Z“l)r (o(a-1)+1)

1:[1"(0'+1) M(a+o(q-1)+1)

[1+:‘\2: (zqful)[l A2||A+1||Bz |D

, foreacht e[Le]and x L.

and:

o]

Mo (a+1)|a, |{' Bl

(Hs) There exist a positive continuous nondecreasing
function g on [0,00) and a function p € C([1,e],R") such that:

()< p(1)g

y =

[A ]

(1A 1+18, |)}_

(Ix]) foreach(t,u) e [1,e]xLJ

(Hy) there exists Mz > 0, such that:
MZ

e eI o(Me) ol o(M:) v

>1,

where wi, wp and ws is given respectively by:
r(o(a-1)+1) [Hm q
F(a+0'(qfl)+l) [A, |
L2 -)a e, )
[, 1"

|A IT(a(q-1)+1) }

(1.4)

|A, IT(a+0)(q-1)+1 '

62

_IB[T(o+1) |A|+]B, |
? T(a+o+l) +(F(0'+1)l"(a+l)|A1 J (15
and:
W, = 16| +4(2(H_1) o {1+|A1|]
1A, | |A, 1" 1A, | (1.6)

1S, I B, |
|AA, | T(a+1)(o+1)

The main results of this study are summarized in the
following theorems.

Theorem 1.1

Letq>2.If f € C ([1,e] X R, R) such that hypothesis
(H1) and (H) are satisfied, then the Hadamard fractional
boundary value problem (1.1) has a unique solution.

Theorem 1.2

If f e C ([1,e] x R, R) and if hypothesis (Hs) and (Ha)
are fulfilled. Then the fractional boundary value problem
(1.1) has at least one solution.

This study is organized as follows, in Section 2 we
present some preliminaries and usefully results which will
be used in the proofs of the main results. Section 3 is
devoted to the proof of Theorem 1.1 and Theorem 1.2. In
Section 4, we present some important examples in order
to illustrate the main results of this article.

Preliminaries

In this section, we recall some results and we prove
key lemmas which we will use later in section 3. Also, we
give some definitions and properties related on
Hadamard fractional calculus, we refer the reader to
Kilbas et al. (2006) for more details.

Definitions 2.1

The Hadamard fractional integral of order g > 1 for a
function g: [1, ) — R is defined as:

19 (1) :ﬁ jl‘(mggjq_l@ds, 2.1)
- %{(mg(t))q j:(l—s)qilg( shal )ds} 2.2)

where, log(.) = loge(.):

e The Hadamard derivative of fractional order « for a
function g: [1,00) = R is given by:
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2.3)

a d ' n-a
D g(t):[taJ 1",

where, n—1 < a < n, n =[a]+1, [o] denotes the integer part
of the real number a.

Lemma 2.1

[12] For any t € [1,e], ¢ € R and any constants a,o in
[1,2], we have:

I“(c)(t):cl“l(t):cr(la)

a1 . (2.4)
t t ds c(logt)
L['OQEJ ?S‘r(ml)'

1

NCON R

o ‘o 2
I(Io Lj‘“ [log(s)]"ds (logt)”" T (o +1) (25)
19 s s ~ T(a+o+l)
We use also the following property:
If g > 2 and max(|x|,ly|) <R, then:
|ch(x)—ch(y)|s(q—1)Rq’2|x—y|. (2.6)

The following elementary relation is usefully:

If n > 1, then for all positive numbers a and b, we
have:
(a+b) < (2" @.7)

1)(a” +b").
Lemma 2.2

Kilbas et al. (2006) Let g > 0 and xe C[1, «0)NL[1,00).
Then the Hadamard fractional differential equation D%(t)
= 0 has the solution:

Cy

¢ —AI“*’1¢q[I”(f (1:.x)) + ¢, (logr, )071}(771)—31'”('”(“ (e.x))+c5)

n

x(t)=>c (logt)™",

i=1

and the following formula holds:

19Dx(t) = x(t) +icI (logt)"

i=1
wherecie R, i=12,..,nandn—-1<qg<n.
Theorem 2.3

Giveny € C([1, €], R), the unique solution of the
problem:

( ))ftx
( x()=o.

A,

where, A and A;are given respectively in Eq. (1.2) and (1.3)
Proof

As argued in Kilbas et al. (2006), the Hadamard
differential Equation in (2.8) can be written as:

g, (D*x(t)) =17 (f (t, x))+a(logt)”" +b(logt)””

Since ¢y(D*x(1)) = 0, then b = 0. So, we obtain:

63

All“ (m )+BX() &
A1 x(¢° (D7X)) () + Bu, (D.X) () =,

is given by:

X(1) =16, [17F (LX) + ¢ (log (1)) |+c, (logt) ", (2.9)
where, czand c are given by:

. - c,— A 177 (f (,72:))— B,1°(f (e,x)), 2.10)
and:
(2.11)

4,(D“x(t)) =171 (t,x) +a(logt)"" (2.12)

By applying 172 on both sides of (2.12) for t = 5, and
using the property (2.5), we obtain:

1 (8 (D°x(:)) =177 (:.%)
()

(2.13)
o +0)(Iog

ya+0-1
+a m)
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On the other hand, put t = e in Equation (2.12), we
obtain:

4,(D“x(e))=1f (e,x)+a. (2.14)

By combining Equations (2.13), (2.14) and the
second boundary condition in (2.8), we obtain:

C, = A2|72+0f (772:)())4-3 Azr(l;(i)o-)(lognz)uﬁa1+ BZ‘|
2
+BZ|6f (E',X).
Therefore:

¢, — A1 (17,,x) - B,17 f (e,X)
B A

=lc, (2.15)

1

where:

s gy AL(E) oo e
)

Then, the solution can be written us follows:
X(0)=1%{, [171 (t.x) +, (log (1)) J}-+a" (logt)" "+ (logt)” .

Since x(1) =0, then b'= 0 and we get:

x(t)=1° {¢q[|”f (t,x)+c3(|ogt)“'j} +a'(logt)".  (2.16)

Now, if we apply 1" to (2.16) and we replace t by #1,
then, using the property (2.5), we obtain:

R
_T(e)

1"(771 +a)(log771

it (2.17)
+a ) .

On the other hand, Equation (2.16) with t = e, yields to:
x(e)= I”{¢q[l"f (e,x)+c3]}+a

Finally, by combining Equations (2.17), (2.18) with
the first boundary condition c1, we obtain:

(2.18)

64

¢, =AI"" [qﬁq (I"f (%) + ¢4 (logn, )Hﬂ
I(a)

m+o-1
F(Vl +a)(log771) +Bl}

+Blla[¢q(l”f(e,x)+c3)}

+a’[A,_

It follows that:

cl_Al,v,m[%(wf(771,x)+c3(|ogq1)”'1)}—sl| [4,(17F (ex)+c, ]

A,

. (219)

a'=

where:
A, =B + ’E& (+0)[)( an )"

Substituting the values of czand c4in (2.16), we obtain
(2.9). This completes the proof.

To prove the main results of this study, we recall the
following theorems.

Theorem 2.4

Smart (1974) Let X be a Banach space. If the operator
T: X — X is completely continuous and if the set:

V={ueX|u:,uTu,O<;z<1},

is bounded. Then T has a fixed point in X.
Theorem 2.5

Granas and Dugundji (2003) Let X be a Banach space,
C be a closed, convex subset of X, U be an open subset of
C and 0 e C. Suppose that the operator F: U — C is
continuous and compact. Then either

(i). F has a fixed pointin U, or
(ii). Thereisu € oU and /4 € (0,1), with u = AF(u).

Proof of the Main Results

This section is devoted to prove existence results for
the nonlinear boundary value problem (1.1). Also, we
shall prove existence and uniqueness results by using
different methods. Let us de ne the operator Q: C([1,e], R)
— C([1,e], R) by:

QX(1) =1, 177 (tX)+ cx (logt)™* <, (logt) ", (3.2)
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where czand csare given respectively by Equation (2.10)
and (2.11). Notice that the existence of fixed points of the
operator Q is equivalent to the existence of solutions for
problem (1.1).

Proof of Theorem 1.1

In this subsection, by using the well known Banach’s
fixed point Theorem, we present the existence and
uniqueness result for Problem (1.1).

Let Br = {x € C([1,e], R): |[X|.x < R}. The proof is
divided into tow steps.

Step 1: In this step, we will prove that the operator Q
is completely continuous. Let O be an open bounded
subset of C([1,e], R). Since f is continuous, then, the
operator Q is contunuous and so, Q(O) is bounded. Next,
we will show that Q is equicontinuous.

Let 1 <t <t < e, then, from Inequality (2.6) we
obtain:

L)),

‘I"(f)(x,t)‘gr(la) 1‘@093

(3.3)
“Fioghlimg) T gt
for some M > 0. Hence, (2.5), implies that:
(% >ﬁ”(§°g;>l) (3.4)
By combining (3.2) and (3.4), we obtain:
[Q(3)(t:)-Q(x)(t )
_(a-1)R*M (3.5

- —(Iogtl)a+a:|

[(a+o+1) [(Iogtz )M

On the other hand, from (2.10) and (3.3), we obtain:

\ ()~ < )( )\
[q’q ¢, (logt; )" 1}—% P o]+ A1 77 £ (x.m, )|+ [B17 F (x.0)
-1 ¢ A
(171 (xt) e (Iogt) 18] ) & )
. L— : v
+|C4[ Iogt Iogtl J 3.2) ‘C2‘+‘A2‘1—-(6+y2 +l)( 09’72) +‘Bz‘r(o-+1) 356)
<(@-D)R[11(£)(xt, ) =11 (£)(x.t,)] 2]
_1)R%2 oL ot ‘c ‘+M7‘A2‘ (lo )Myz+ ‘Bz‘
+(a-1)R"?c,[ (logt, )"~ 1ogt, )" | R ) LS Vo)
1 a-1 S
+‘c‘,‘[(logt2)a7 ~(logt, ) } ‘Al‘
So, by using (21), (24) and the fact that f is bounded, Therefore using (26), (211) and (34)’ we get:
we get:
o +[Aa-)Re 17 [ (), (1ogm )~ (17 (ex)+<,)
o) < ™
o +|A [[(a-1)R"* (logn, ) " M +‘c3‘(log771) ~ Fle-2) B Mg
F(oc+0'+}/1+1) F(a+7l+0') ‘ 1‘ F(a+0'+1) F(a+1)
< +
‘Az ‘AZ‘
O 0 A G
cl+|\/{(q—l)Rq Al{l“(a+a+7l+l) +F(a+0'+l)
<

2,

+

W S TR (78 e L
[ 2‘ M[F(o-+72+1)(l 9772) F(o-+1)]][ F(a+7/1+0') F(a+1)J

4,8
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By combining (3.5), (3.6) and (3.7), one has:

lim (x)(t;) - Q(x)(t )| =0.

Finally, the Arzela-Ascoli Theorem implies that Q:
C([1, e], R) — C([1, €], R) is completely continuous.
Step 2: In this step, we will pove that the set D = {x
C([1, €], R): x = uQ(x), u € (0,1)} is bounded. From
hypothesis (H1) and using (2.7), we have:
()] = (@A) ()]

smaxl“d>q(l f)(x.t)+¢;(logt)” 1)+c‘t(logt)”’1
< max

te[le]
tefle] IR(D”(I A)(Xt)+c (IOgt) 1) (lOgt)

(
(
Z(Iaq;q[A[ J |cs|(logt)” ] le.|(logt)” }

(logt)”
I'(o+1

“ A
SPQ[?] : {{F(Uﬁl ‘C3 |Ogt } ‘C |Ogt :I
r a+o(q-1)
< max A ‘ ‘ Iogt) (U 1)+1) ‘04‘ Iogt
&E[Le] I(o+1) F(a+a +1)
o(q-1)+1)
ol | W +[ed
(o(q-1)+1)

(o +1) a+a(q_1)+1)+‘°“"

(){[

where, A = [[a]|o + |[b o] [X]|-o" 2.

J b

On the other hand, we have:

o) < A B o)
3 4
o+, A
\C\ \Az\m(og’b) ’ +\Bz\r0+1)
™
Al v, [B
c2+A[(Iogr72) + ]
g T(o+7, +1)A ‘ I(o+1) 38)
1
[A] B.|
<C2+A{F(0+y2+1) I'(oc+1)
) 44 ’
C.
< £ (lels)

\A \ \A \r o +1)

Then, using Inequality (2.7), we obtain

[

|

and:

‘c‘ ‘Al‘lam[ (I f(i]1 )+cs(log771)6_1)}+ ) |a(|“f(e,x)+c3)‘
o) < m
<\°1\+\A&\'“’“ :¢q("’(A)(m)+\cs\(logm)Hﬂ+ 1 (17 (A) )+ )
_ 44
('09771) N A
o] +[A 1 | A (o1 +c|(logn, )” } +[B, | (F(ml)mg(e)]
< A
SIS T G e N ALY
‘Clh‘p&‘_mw%‘ F(a+71 +a(q—l)+1) i F(a+l)+‘03‘ IT(a+1)
_ 44
. C a7 r(e(a-)+) N B.|A . .
SC1 ‘A‘_F(aﬁ-l) ‘3‘ l"(a+y1+0(q—1)+1) [F(0'+1) CSJ/F( Y

A

B.[A

F(0'+1)

Lol

F(G+1)

i

+c3]/r(a+1)

66

A& +]e])
T(o+1)[A,]

J ] (3.9)

(3.10)
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Therefore, it follows from (2.7), (3.8), (3.9) and
(3.10), that:

px(t)] = () t)

(o(a-1)+1)

a-1 v -1 C, " A‘Az“*‘Bz‘ v I'(o(q-
<(2 1){(“6&1)] +(2 —1){@1] +[F((a+1)A1)] ”F(a+a(ql)+1)

ol

+

I(o(q-1)+1)

1 J +(‘Ca‘) _ ‘|]"(a+7/1 +o(q-1)+1)

4

3

Mo+l (a+1) AT (e +1)

[ (18:/2)

AR

44

(2 -)r(o(a-1)+ 1)[1

I(a+o(q-1)+1)

el

Az++Bz]
+7‘ .

A,

S(mil)]“

3

I'(a +1)\A1A2\

]
o+
2,

* : B,
T(o+)T(a+1)A,|
Using the inequality (2.7), we have:

AT

_yaL
= (Iall, +IblL 1)

< (Il + ol 1, )
Since q > 2, then, p <2 and x|’

<|X|eo . Thus, we have:

M, <(©, +8,)[X], +e;,

[

[1

where:

O'+l)] F ) )

) [Az e J J |

N
(4] +[e.)
T J

lbf, ) (2 1) (o(a-2)+1)
+o(q-
|

o - [b]> 8
© T(o+D)T(a+1)a,||
and:

67

Al

y\}
2./ )T

o]

o(q-1)+1)
a+0'(q 1)+1)

(2q '-1)T(o(q-1)+1)

\A\ I(a+1) \AA\ [(a+0(q-1)+1)
N2 -1)r(o(a-1)+)

][ . A] Jafle

[A =g, [rwﬂ Maro(a 1>>
[A - I[MBZJ} . \Az\ \B
A A,

This together with condition (H2), gives ||u]|w < M.
That is D is bounded, so the operator Q has at lest one
fixed point. Which implies that the problem (1.1) has
at least one solution.

o il Il

laflo
o‘+1

(-
(a+1) L

Proof of Theorem 1.2

In this subsection, by using Leray-Schauder’s
nonlinear alternative Theorem, we give the proof of
Theorem 1.2. The proof is divided into several steps.
Step 1: In this step, We prove that Q maps bounded sets
into equicontinuous sets of C([1,e], R). Let t3,tz € [1, €]
with t; < t;and x € B;. Then, we have:

o-1
s s
lds o, ) ds
Iog ——|"|log-2| —|
s s s

fxt2

ati
L ;

Ill
1
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So, using Inequality (2.6), we obtain:

(@)(t)- (@)t

< 1,01, (xt ) +¢, (logt, ) [~ 1,0, 1,1 (xt,) + ¢, (1ogt, )" |+c, [ (1ogt, )~ 1ogt, ) |
< Ia{cbq[laf (xt, )+ ¢, (logt, )”*]_@q[uaf (x,t,)+c, (logt, )“]}H{(logg )~ (logt, )}
<t {@-9re 1 (k) -1, F (xt) o[ (1ot )™ = (togt, )™ [}, (1ogt, )~ (1ogt,

sua{(q“rq(;)(p)[j [Iog jﬂ[uog j }dsj[ J 1+cg[(logt1)“(Iogtz)“}}+c{(logg)al(Iogtz)al}
g.a{m—?z‘;‘?l()fﬂ[(.ogg)ﬂ1_(.095)“1}_@0@”}%[(.0%)“1_(|ogtz)°1}}+c4[(|ogtl)“h(uogtz)“}
—{W{('Ogh)aw1—(|09tz)am1}—(|ngjam]+c3[(logtl)g1—(Iogt2)gl]}+c4[(logt1)a1—(Iogt2)al}

Obviously the right-hand side of the above inequality Letr >0, t € [1, €] and x € By, then, by using the
tends to zero independently of x € Bras t; — t, — 0. hypothesis (Hs) and the inequality (2.7), we obtain:
Step 2: In this step, we will prove that Q maps
bounded sets (balls) into bounded sets in C([1, €], R).

[QEX)(t)] < max

16, [17F (%) +, (logt)™ | + ¢, (logt) "

tefte]
=] :%ﬂ['ogéjﬂ f (z,x)ds +C ('09t)”1} +c,(logt)”™
o o ] o
S@[% 1“¢, ||p|| gr(|1>;||+)1)logt c3(logt)(’1}+c4(logt)“1
< ,Ju ol, 9(@1)3090” (Iogt)ﬂr e ogt”
- [ (lx(lL )ﬂ) o)™ o) |25 _1) gty
= oL r(||(xo|,|+)a((:c?1t))+1)(qr();(+01§f_ 1)+1)+°3('°9‘)0 Y (2 1),
(g PO Tota @)

M(a+o(q-1)+1)r(o+1)""

68
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In the other hand, we have:

[+ At (xom,)

‘ c
-

+‘le"f(x,e)‘<

Il a(lL.) ;

o] +] \m('

9 (=)

oo (Pl
on) B

N

<

N

AZ aty; BZ A2 BZ
e +1el, 9 (J1.) r(G+y2+1)(lognz) +r(0+1)] cz+pwg(xw)[r(a+y2 1) T(o+1)
<

_led 1oL oI )( 4]+ 2.
B F(G+l)‘A1‘ ’

<20 -y)

N

(r(a+1)\A1\)fH

and:
cl—All‘“’lqﬁq[I”F(nl,x)+ca(logr71)H}—Bll”(l“f(e,x)+c3)
- o ‘
X||0)(log7, ) ot (X )(log(.))"
CﬁAl,thj{pmg(r(az(lu)gm> o (o) }81 ,{p g(r(az(l)go) +c3]<e)

ol P e |

I(c+1)

N

-1
+Bl[p,ag(x,a)rw)+ :

1"(0(+6+1) F(a+1)

<

IoLo(i.) |
C1+A1{F(a(+1))+c3} |a+”[(|09771)( )}

44

Ioll a(Ix.)r(e+1) ¢
+Bl[ ( ) + 3 ]

F(a+0'+l) F(OH—l)
<
2]

o, o1, ) r(o(q-1)+1)(logn, )" " ol o(IX.)r(e+D)
e+l Mo+ % T(a+y1+0(q-1)+1) +[B. Flato+l)  T(a+l)
S L _

]

Meloix.) |7 r(e(a-1+) ol (b )re+D) o
<Al fo+1) F(a+71+0(€4—1)+1)+‘81‘ Fla+o+l)  T(a+l)
< L i

] A

S LT A L Rt lpLo(bL)r(e+) o

]+ (27 -3)A| o+ F(a+7l+0'(q—1)+l)+‘Bl‘ Fa+o+l)  T(a+l)

<

N

ol o)

‘Cl‘+(2q7171)‘A1‘ F‘H(o-+1) 3

<

[(a+o+1) I'(a+1)

| rlota-n+) +Bl[pmg(xm)r<a+1>+ . J

I(a+o(q-1)+1)

4,
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It follows, from Inequalities (3.12), (3.13) and (3.14) that Note that the operator Q: U — C([1,e], R) is
the inequality (3.11) becomes: continuous and completely continuous. From the choice
of U, thereisnou € 8 U such that u = 1Qu for some 1 €

(ql ) L olpl g (H I ) (0,1). Consequently, by the nonlinear alternative of

|lQ(x H i )H pll. (H . ) ) +a,, Leray- Schauder type (Lemma 2.5), we deduce that Q has

a fixed point u € U which is a solution of problem (1.1).
This completes the proof.

where:
o Examples
-1 -
o, :M 1+@ +(2q _1)(‘AZWBZ‘) Example 4.1 Consider the Problem
F(a+0(q—1)+l) ‘Az‘ ‘Al‘qf
L, Alr(e(a-1)+1) D™ (2 (D*x(1))) = f (1)
+
|A,|T(a+ o (q-1)+1) x(1) = ,,,(D**x(1)) =0, 4.1
|B,|r(o+1) |A|+[B,] 12x(2) +2x(e) =0,
= + ,
* T(a+o+l) (T(o+1)T(a+1)a,] 1 (42 (D”X)) (57 2) - ¢, (D**x) (e) = 0,
and:
7 3 3
a=z,a:5,p=§,q=3,Al =A =18
B 2 q-1
w:m+w 1+H whereZZBZ_1 11 . ZECZZandCz
3 ‘Az‘ ‘ l‘q—l ‘Az‘ ) ' 1 2:72 47771 1, 2
= 0. Then, we have:
SlEY
(@ r(o ) A, =-0.157andA, = 2.61.
Consequently, as x € By, we have: ] ]
Consider problem (4.1) with:
(2 - ) @,
NOE o+ HPH +A2 Ipl. o(r)+ @, f(t,x):%e’t2 Ix(t)| +arctan(1+t).
Therefore, the Arzeld-Ascoli Theorem implies that Q: Clearly:
C([1, €], R) —> C([1, €], R) is completely continuous. Let x y:
be a solution. Then, for t € [1, €], as in the first step, we have:
[ (tx)[<a(t)+b(t)l],.
a@ ) oo allo(M)
M. < T P o) = .
( ‘ ‘ where, a(t) = arctan(1 + t) and b(t)=Ee’I . It follows
which implies that: that:
1
I, ) Jol. <% bl = 7o
o Dol L)
I (o +1) A, ’ With the given values, we find that:

6, <8.58x107%and ¢, <0.121.
In view of (H.), there exists Mz such that ||x|| 6 = M.

Let us set: So, 61+ 6,< 1. Thus, all hypothesis of Theorem 1.1

hold. Therefore, the Hadamard fractional integral
U= {U eC([Le],l ):kuk < Mz}' boundary value problem (4.1) has at least one solution.

70



Samah Horrigue / Journal of Mathematics and Statistics 2021, Volume 17: 61.72
DOI: 10.3844/ajabssp.2021.61.72

Consider Problem (4.1) with:

logt
f = .
(t:x) 1+x2
It follows that:
[t < p(t)g (I, ).

for p(t) = log t and g(||X||-) = 1. Then, we have:

|p|, =1, =488.4,m, =6.405and , =0.766.

Further, the hypothesis (H.), it is equivalent to show
existence of M such that:

M, > 496,

Thus, all hypothesis of Theorem 1.2 hold. Therefore,
the Hadamard fractional integral boundary value problem
(4.1) has at least one solution.

Example 4.2

Consider the problem, for A > 1:

( ):—Iogtxp =
( x(1)=0 (4.2)
Ailﬁ (m )+ B, x(e )
A1 (4°(D x))(nz)+82¢ (D*x)(e) =c,..

1. Let,a=o=7/4p=5/4q=5 Al=Bi=-1/4 A=
B.= 1/4, c1=1,c=0, n= 2, N2 = 5/2, y1= 3/2 and P2
=5/4. Then, it follows that:

], =o.

A, =034,A,=-04,

4
6, =1.89[ij and 0° =1.687.
10 10

The hypothesis (H») is equivalent to give a positive
real My such that:

4
1.89 A +1.68i£1.
10 10

So, for 1 < 5, there exist M1 > 0 satisfying the above
inequality. Thus, all hypothesis of Theorem 1.1 hold.

71

Therefore, the Hadamard fractional integral boundary
value problem (4.1) has at least one solution:

2. Leta=3/2,6=7/4,p=3,9=3/2,A1=-1,B1=2,
A= 1, B,= 0, C1=Czx= 0, n1= 5/2, n2= 3/2, y1= 1/2
and y,=3/2

It follows that:

[f (X< p®a(lx, )

for p(t) :%Iogtand g (HXHOO) = HxHi .Then, we have

H pr = ‘%la)l = 55, w, = 7anda)3 =0.

Further, the hypothesis (Ha), it is equivalent to show
existence of M such that:

0.74M; +(L5JZ ~1)M, 20,

1524 -1

074
Thus, all hypothesis of Theorem 1.2 hold. Therefore, the
Hadamard fractional integral boundary value problem
(4.1) has at least one solution.

Then, for every A > 1, there exist M, >
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