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Abstract: Multivariate probit models have been explored for analyzing 

longitudinal ordinal data. However, the inherent identification issue in 

multivariate probit models requires the covariance matrix of the 

underlying latent multivariate normal variables to be a correlation matrix 

and thus hinders the development of efficient Bayesian sampling 

methods. It is known that non-identifiable models may produce Markov 

Chain Monte Carlo (MCMC) samplers with better convergence and 

mixing than identifiable models. Therefore, we were motivated to 

construct a non-identifiable multivariate probit model and to develop 

efficient MCMC sampling algorithms. In comparison with the MCMC 

sampling algorithm based on the identifiable multivariate probit model, 

which requires a Metropolis-Hastings (MH) algorithm for sampling a 

correlation matrix, our proposed MCMC sampling algorithms based on 

the non-identifiable model circumvent an MH algorithm by a Gibbs 

sampler for sampling a covariance matrix and thus accelerate the MCMC 

convergence. We illustrate our proposed methods using simulation 

studies and two real data applications. Both the simulation studies and 

the real data applications show that constructing nonidentifiable models 

may improve the convergence of the MCMC algorithms compared with 

the identifiable models. The marginalization of the redundant parameters 

in the non-identifiable models should be considered in developing 

efficient MCMC sampling algorithms. This investigation shows that 

construction of non-identifiable models is valuable in developing MCMC 

sampling methods and illustrates advantages and disadvantages of 

construction of non-identifiable models to improve the convergence of 

the MCMC sampling components.   

 

Keywords: MCMC, Longitudinal Ordinal Data, Multivariate Probit Model, 

Non-Identifiable Multivariate Probit Model 

 

Introduction  

Ordinal data are ubiquitous in many scientific 

fields, such as medical research, behavioral research, 

social sciences, and customer surveys. For example, the 

patient pain assessment after surgery is normally 

measured by ordered categories, such as “no pain,” 

“mild pain,” “moderate pain,” and “high pain.” To 

evaluate the severity of illness, the outcome is often 

categorized as “normal,” “mildly ill,” “severely ill,” 

and “extremely ill.” These ordinal measures are usually 

collected at multiple time points.  

The research field for analyzing longitudinal ordinal data 

can be generally divided into mixed-effects models and 

marginal models (Agresti, 2003; Molenberghs and 

Verbeke, 2005). The mixed-effects (or so-called 

subject-specific) models describe the mean response 

depending on both the covariates as fixed effects and a 

vector of random effects/variables varying by 

individuals/units (Hedeker and Gibbons, 2006; Varin  and 

Czado, 2010; Grilli and Rampichini, 2011; Hedeker, 

2015; Ursino and Gasparini, 2018). By including the 

random effects/variables, the mixed-effect models are 

flexible to incorporate the correlated data structure in 

the analysis. However, they are difficult to handle more 

than a few random effects in the maximum likelihood 

estimation and cannot provide a direct estimation for 

the correlations of multivariate data. Marginal (or so-
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called population-average) models have also been 

popularly explored for longitudinal ordinal data and 

provide direct estimation for population-based means 

(without random effects) and correlations (Li and 

Schafer, 2008, Pagui et al., 2015; Hirk et al., 2019). 

Due to the lack of explicit likelihood functions, the 

maximum likelihood estimation is computationally 

intensive. Therefore, the Generalized Estimating 

Equations (GEE) approach (Liang and Zeger, 1986) 

provides a convenient alternative to maximum 

likelihood estimation, especially for longitudinal 

categorical and ordinal data (Lumley, 1996; Parsons et al., 

2006; Touloumis et al., 2013; Nooraee et al., 2014; 

Ditlhong et al., 2018; da Silva et al., 2019). 

Marginalized models, integrating the random effects in 

the likelihood functions to get the estimation for marginal 

regression parameters, have also been explored for 

longitudinal ordinal data (Lee and Daniels, 2008; Lee et al., 

2016; Schildcrout et al., 2022).  

With the theoretical development of the Gibbs 

sampler and the maturation of Markov chains theory 

(Gelfand and Smith, 1990; Gilks et al., 1996; Gelman 

et al., 1995), the Markov chain Monte Carlo (MCMC) 

methods were popularized and have become a general 

computation tool in Bayesian inference. The MCMC 

methods have been developed for analyzing 

longitudinal ordinal data using generalized linear 

models (Johnson, 2003; Hadfield, 2010). Browne and 

Draper (2006) compared Bayesian and likelihood-

based methods for fitting multilevel models and 

pointed out that the Bayesian methods have several 

advantages compared with the likelihood-based 

methods. Multivariate logistic and multivariate probit 

models have been exploited for analyzing longitudinal 

binary data using marginal models from a Bayesian 

perspective (O'Brien and Dunson, 2004, Zhang et al., 

2006; Liu and Daniel, 2006; Zhang, 2020). However, 

compared with longitudinal binary data, analyzing 

longitudinal ordinal data using marginal models is 

much less familiar. In this article, we try to fill in the 

gaps by proposing the MCMC methods to analyze 

longitudinal ordinal data using the multivariate                   

probit models.  

Following Pearson (1900); Ashford and Sowden (1970), 

the multivariate probit models have been utilized to analyze 

longitudinal binary/ordinal data. The probit model assumes 

that there is a latent variable following a normal distribution 

underlying each binary/ordinal variable, whereas the 

multivariate probit model assumes that the latent variables 

underlying the longitudinal binary/ordinal variables follow a 

multivariate normal distribution. Due to the identification 

issue, the covariance matrix of these latent variables is a 

correlation matrix (Drasgow, 2014; Albert and Chib, 1993; 

Chib and Greenberg, 1998).  

Tanner and Wong (1987) proposed the data 

augmentation algorithm by including the missing data 

as unknown quantities to facilitate MCMC sampling. 

With the probit model assumption, including the latent 

variables treated as missing data, data augmentation 

can be developed to analyze the probit model.         

Albert and Chib (1993) proposed data augmentation 

algorithms for analyzing the univariate binary, ordinal 

and nominal data using the probit model. Chib and 

Greenberg (1998) extended the data augmentation 

algorithm to analyze longitudinal binary data under the 

assumption of the multivariate probit model. However, 

sampling a correlation matrix, constrained by the 

identifiable model, brings difficulties in developing an 

efficient Bayesian sampling algorithm. Different MH 

algorithms have been proposed to sample a correlation 

matrix. However, using the MH algorithm to sample 

each element of the correlation matrix is not desirable 

even for moderate-dimensional data (Chib and 

Greenberg, 1998), while sampling the whole 

correlation matrix may suffer slow convergence 

(Zhang et al., 2006) or entail stringent prior 

distributions for the correlation matrix (Liu and Daniel, 

2006). Liu (2001) used reparametrization to sample a 

covariance matrix instead of a correlation matrix. 

However, the reparametrization makes the choice of 

the prior distributions and the explanations inflexible.   

This rigid task of sampling a correlation matrix for 

longitudinal binary data is inherent with longitudinal 

ordinal data using identifiable multivariate probit 

models. MacEachern (2007) pointed out that the 

Markov chains produced by non-identifiable models 

may improve the convergence rates compared with 

those by identifiable models, as illustrated by the 

Dirichlet process. The non-identifiable models can be 

constructed by introducing a redundant parameter or 

parameter vector in the identifiable models. Based on 

the non-identifiable models, Liu and Wu (1999) proved 

that the convergence of the MCMC sampler, called 

parameter-expanded data augmentation, is no slower 

than the original MCMC sampler under mild conditions 

and illustrated using a univariate probit model for 

binary data. Used a non-identifiable multivariate 

binomial probit model to analyze multivariate binary 

data. Lawrence et al. (2008) used a non-identifiable 

multivariate probit model for multivariate ordinal data, 

however, without considering Jacobian transformation, 

their algorithm is not applicable. Zhang (2020) 

investigated nonidentifiable multivariate probit models 

to analyze multivariate binary data. Other related 

works for using a multinomial probit model to analyze 

univariate categorical data can be found in McCulloch and 

Rossi (1994); Nobile (1998); McCulloch et al. (2000); 

Imai and van Dyk (2005).  
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Motivated by the above-contributed work, in this 

article we propose a non-identifiable multivariate 

probit model and develop efficient MCMC sampling 

methods to analyze longitudinal ordinal data. Our 

investigation shows that MCMC sampling algorithms 

based on the non-identifiable model significantly 

improve the convergence and mixing of the sampling 

components in comparison with those based on the 

identifiable model. The remainder of the article is 

organized as follows. In the Section "Multivariate Probit 

Model for Longitudinal Ordinal Data", we present the 

identifiable multivariate probit models for longitudinal 

ordinal data and describe the MCMC sampling algorithm 

based on Zhang et al. (2006). In the section "Non-

identifiable Multivariate Probit Models and the MCMC 

Sampling Algorithms," we propose a nonidentifiable 

multivariate probit model and develop the MCMC 

sampling algorithms with and without marginalization of 

the redundant parameters. We then illustrate our proposed 

methods using simulations in the Section "Simulation 

Studies" and two real data applications in the Section 

"Real Data Applications". Discussion and conclusions are 

offered in the Section "Discussion".  

Materials and Methods  

Multivariate Probit Model for Longitudinal Ordinal 

Data 

We begin by reviewing the univariate probit model for 

ordinal data. Suppose there are n individuals. Each 

individual has an ordinal outcome, Yi, with J ordinal 

categories and a p  1 covariate vector Xi for i = 1, …, 

n. The probit model assumes that there is a latent 

variable Zi underlying Yi, following a normal 

distribution with mean Xi and variance being 1, 

denoted by ( ),1T

iN X  , where  is the p  1 regression 

parameter vector. The model further assumes that: 

 

1 1,...,i l i lY l Z for l J −=    =
 

 

i.e., ( ) ( )T

j iP Y l l X  =  − where (.) is the standard 

normal distribution function and  = (0, 1, …, J) being 

the unknown cut-points. It is usually defined that 0 = -, 

1 = 0 and J =  for the model identification purpose.  

The multivariate probit model then assumes each 

individual i for i = 1, …, n has a k  1 longitudinal ordinal 

outcome vector Yi = (Yi1, …, Yik)T and a k  p covariate 

matrix Xi = (Xi1, …, Xik)T. Each Yij has Jj ordinal categories 

for i = 1, …, n and j = 1, …, k. Then, the univariate probit 

model is still assumed for each component of Yi, Yij by: 

 

, 1 , 1,...,ij j l ij j l jY l Z forl J −=    =  (2.1) 

where, 𝑍𝑖𝑗 is the underlying latent variable following 

( ),1T

ijN X   and j = (j,0, j,1, … j, Jj) is the unknown cut-

points with j,0 = -, Jj = 0 and Jj = . 

Since, Yi1, …, and Yik are longitudinally collected from 

the same individual i, they are correlated to each other, 

and therefore, their corresponding latent variables Zi1, …, 

Zik is assumed to be correlated. A univariate probit model 

is assumed for each Yij, thus the variance of each Zij being 

equal to 1 and the covariance matrix of Zi = (Zi1, …, Zik)T 

underlying each Yi = (Yi1, …, Yik)T is, in fact, a correlation 

matrix, called the polychoric correlation matrix of 𝑌𝑖 

(Drasgow, 2014), denoted by R. It can be said that Zi 

follows a multivariate normal distribution with the mean 

vector being Xi and the covariance matrix 𝑅 being a 

correlation matrix, i.e., Zi~Nk(Xi, R). 

Assume an independent prior distribution for , R, and , 

i.e., P(, R, ) = P()  P(R)  P(). Then, we can derive the 

posterior joint density of , R, , and Z as given Y as follows: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
1

( , , , | ) | , , ,

; ,
n

i i ii

P R Z Y P P R P Z R Y

P P R P I Z X R

    

   
=

 

     
   

 

where, (.) is the standard normal density function and

1

k

i ijj
I I

=
= , where ( ) ( ) ( )( )1 1

1 1 1
j

ij j ij jt

J

ij ijt Y t t Z
I Y t

 = = −  
= = , 

indicates the compatibility of the latent variable Zij with 

the ordinal variable Yij defined in (2.1). To implement 

the MCMC sampling, the sampling steps based on the 

full conditional distributions can be described in            

the following. 

Step 2.1 ( )ˆ| , , , ~ ,kR Z Y N V   , where, 

( )
1

1 1

1

n T

i ii
V X R X C

−
− −

=
= +  and ( )1 1

1

ˆ n T

i ii
V X R Z C b − −

=
= + , 

assuming the prior of  follows Np(b, C) with the mean 

vector equal to b and the covariance matrix equal to C. 

Step 2.2: Zij| , , R, Y, Zik, k  j has interval truncated 

normal distribution constrained to lie between the two cut-

points j, l-1 and j, l-1 and j, l assuming Yij = l.  

Step 2.3: j, l| , R, Z, Y, j, k, k  l is a uniform 

distribution: 

 

   ( ), , 1max max : , ,min min : 1 , , 1j l ij ij j l ij ijU Z Y l Z Y l j l  −
   = = + +   

 

 

assuming a non-informative prior for j, l. 

Step 2.4: The full conditional density function of R 

is P(R|, , Z, Y)  P(R)  ( )
1

; ,
n

i ii
Z X R 

= . This full 

conditional distribution does not belong to any standard 

distributions. Zhang et al. (2006) proposed an MH 

algorithm to sample R. Since it is problematic to specify a 

prior for R, they included artificial parameters to facilitate 
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the specification of the prior for R. Thereby, the model itself 

does not change and thus remains identifiable. In the 

following discussion, we use their notation PX-MH to 

denote this algorithm for the identifiable model. 

Motivated by the possibility that the convergence and 

mixing of the MCMC sampler based on the non-

identifiable models may surpass those based on the 

identifiable models (Liu and Wu, 1999; MacEachern, 

2007), we propose a non-identifiable multivariate probit 

model and develop the corresponding MCMC sampling 

algorithms in the following section. 

Non-Identifiable Multivariate Probit Models and the 

MCMC Sampling Algorithms  

The identifiable multivariate probit model described in 

Section “Multivariate Probit Model for Longitudinal 

Ordinal Data” assumes that Zi, the underlying multivariate 

normal variable, follows Nk(Xi, R), i.e., Zi~Nk(Xi, R),          

i = 1, …, n. To construct the non-identification in the 

model, we assume Zi~Nk(D-1/2Xi, R) instead of Zi~Nk(Xi, 

R), where D is the diagonal matrix with the diagonal 

elements d = (d1, d2, …, dk) and dj > 0 for j = 1, …, k. As 

noted, by including D, the identifiable model becomes 

non-identifiable. We then augment Zi to be Wi by Wi = 

D1/2Zi with Wi~Nk(Xi, D1/2RD1/2). Therefore, the 

multivariate probit model can be defined by: 

 

( ), 1 ,ij j j l ij j ij j j lY l d W d Z d −=   =   

 

This is: 

 

, 1 ,ij j l ij j lY l W −=     (3.1) 

 

where, , ,j l j j ld =  for j = 1, … k and l = 1, …, Jj. It can 

be noted that d1, d2, …, and dk are redundant parameters 

and render the identifiable model non-identifiable.  

We denote 
1 1

2 2D RD =  and assume an independent 

prior distribution for , , and , i.e., P(, , ) = P()  

P()  P() Then, the joint posterior density of , ,  and 

W were given Y can be derived as follows: 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
1

1

1

, , |

1
exp

2

n
n

ii

Tn

i i i ii

P W Y I P P P

W X W X

   

 

−

=

−

=

       

 
 − −  − 

 




 

 

where, 
1

k

i ijj
I I

=
=  and

( ) ( )( )1 1
1 1

j

ij j ij jt

J

ij t Y t t w
I

 = = −  
= , 

indicating compatibility of the latent variable Wij with the 

ordinal variable Yij defined in (3.1). Correspondingly, the 

MCMC sampling algorithm can be implemented by the 

following steps. 

Step 3.1.1: Sampling ( )ˆ| , , ~ ,kW Y N V  , where ̂  

and V are defined as those in Step 2.1 by replacing Z with W 

and R with  and assuming the prior of  follows Np(b, C). 

Step 3.1.2: Sampling Wij|, , , Y, Wik, k  j, from a 

truncated normal distribution constrained to lie between 

the two cut-points j, l-1 and j, l, assuming Yij = l.  

Step 3.1.3: Sampling j, l|, , W, Y, j, k, k  l, from a 

uniform distribution: 
 

   ( ), , 1 , 1max max : ,min min : 1 ,j l ij ij j l ij ij j lU W Y l W Y l  − +
   = = +   

 
 

and assuming a non-informative prior for j, l. 

 

Step 3.1.4: Sampling |, , W, Y from Inverse-

Wishartk ( )( )( )1
, 1

Tn

i i i ii
W X W X V n m k 

=
− − + + + +

with a conjugate prior, P()~Inv Wishk (V, m) with V 

being the scale matrix and 𝑚 the degrees of freedom. 

Details can be found in Appendix A. 

Then, the MCMC sampling framework can be 

formulated by the above four Gibbs sampling steps. In 

particular, the sampling of  (= D1/2RD1/2) in Step 3.1.4 is 

a Gibbs sampling instead of an MH sampling. Hence, we 

term this sampling algorithm as the parameter-expanded 

Gibbs sampling (PX-GS) algorithm. 

Seeing the diagonal elements of D as the redundant 

parameters, we consider marginalizing D to improve 

the convergence and mixing of the PX-GS algorithm 

(Liu, 1994, Van Dyk, 2010). We propose the following 

sampling steps:  

 

Step 3.2.1: W, D|, , R, Y 

Step 3.2.1.1: D|, , R, Y 

Step 3.2.1.2: W, D|, , R, D, Y 

Step 3.2.2: , , R, D|W, Y 

Step 3.2.2.1: | R, D, W, Y 

Step 3.2.2.2: |R, D, W, Y 

Step 3.2.2.3: R, D|, W, Y 

 

Step 3.2.1, the joint sampling of W and D, can be 

followed by Step 3.2.1.1, D|, , R, Y and then followed 

by Step 3.2.1.2, W|, , R, D, Y, which is the same as Step 

3.1.2. Notice that sampling D in Step 3.2.1.1 can have two 

circumstances. With 𝑉𝑉 being a diagonal matrix for the 

prior of Σ, the diagonal elements of D, d = (d1, d2, …, di), 

are independent and dj follows an inverse-Gamma 

2
,

2
j J

m

V r
 
 
 =
 
 

with Vj being the jth element of V and rJ 

being the jth diagonal element of the inverse of 𝑅𝑅 for          

j = 1,2, …, k. However, if V is not a diagonal matrix, 
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sampling D necessitates an MH algorithm. Detailed 

sampling schemes of D|, , R, Y for these two 

circumstances is given in Appendix B.  

Step 3.2.2, the joint sampling of , , R, D|W, Y, can 

be implemented by Step 3.2.2.1, |, R, D, W, Y, which 

is the same as Step 3.1.3; Step 3.2.2.2, |R, D, W, Y, 

which is the same as Step 3.1.1; and Step 3.2.2.3, R, D| 

W, Y, which is the same as Step 3.1.4. With D 

marginalized in Step 3.2.1 and Step 3.2.2, we term this 

algorithm as a parameter-expanded Gibbs sampling with 

marginalization (PX-GSM) algorithm.  

Software Package 

We have implemented C programs for the proposed 

methods and applied them to simulation studies as well as 

two real data sets. The manual, the source C code, and the 

executable files for Windows operating system are 

available on GitHub 

(https://github.com/xzhang35kc/Bayesian/tree/master/Or

dinal). The two real data sets, several simulated data sets, 

and the R program that produce the figures in the article 

can also be found on the same website.  

Simulation Studies  

We presented the PX-MH algorithm for the 

identifiable multivariate probit model in Section 

“Multivariate Probit Model for Longitudinal Ordinal 

Data” and developed the PX-GS and PX-GSM algorithms 

based on the proposed non-identifiable multivariate probit 

model in Section “Non-identifiable Multivariate Probit 

Models and the MCMC Sampling Algorithms”. To 

investigate the performance of the PX-GS and PX-

GSM algorithms and to compare them with the PX-MH 

algorithm, we carried out our investigation by 

generating 5-dimensional correlated ordinal data with 

the latent variables following the multivariate normal 

distribution with two covariates generated from the 

uniform distribution on the interval (-0.5, 0.5), the 

regression parameters 𝛽𝑇 = (𝛽0, 𝛽1) = (2.0, 4.0) and the 

covariance matrix being the first-order autoregressive 

AR1(0.5). The ordered categories for the ordinal data 

were assumed to be 4, with the cut-points at 1 and 2 

(the first cut-point is fixed at 0, described in Section 

"Multivariate Probit Model for Longitudinal Ordinal 

Data"). We considered sample sizes of 50 and 500 and 

generated 50 data sets for each investigated scenario 

and ran each algorithm with 10,000 iterations for each 

data set. The MCMC convergence diagnostics were 

conducted using the R package-boa by Smith (2007).  

We considered two sets of priors. The first prior set, 

denoted by N-ID, assumes the non-informative priors for 

𝛽 and 𝜁, i.e., P(𝛽) ∝ 1 and P(𝜁) ∝ 1 and an Inverse Wishart 

prior for Σ, i.e., 𝑃(Σ)~Inv Wish5 (V = I5, 𝑚 = 20), where 

𝐼5 is the 5 × 5 identity matrix and assumes the correlations 

to be 0. The second prior set, denoted by I-CS, assumes 

an informative prior of 𝛽, i.e., 𝛽~N2(b, I2), where 𝑏 = (3.0, 

3.0) and 𝐼2 is the 2 × 2 identity matrix, a non-informative 

prior for 𝜁, i.e., 𝑃(𝜁) ∝ 1 and an Inverse-Wishart prior for 

Σ, i.e., P(Σ)~InvWish5 (V = CS (0.4), m = 20), where CS 

(0.4) denotes the compound symmetry covariance 

structure, with the equal correlation being 0.4. 

Table 1 presents the averaged posterior means and 

standard deviations for the regression parameters and the cut-

points and Table 2 presents those estimated quantities for the 

correlation parameters based on 50 data sets under two prior 

scenarios. For the estimation of the regression parameters 

and the correlations, the I-CS prior brings an obvious effect 

in comparison with the N-ID prior for a sample size of 50. 

Specifically, the I-CS prior, assuming 𝛽~N2(b, I2), produces 

the estimated values closer to the true values than the N-ID 

prior, which assumes P(𝛽) ∝ 1. Also, the I-CS prior specifies 

a CS (0.4) for the correlation matrix and thus gives larger and 

more precise estimated correlation parameters than the N-ID 

prior, which specifies the correlations to be 0. Although a 

noninformative prior is assumed for each cut-point, those 

two prior scenarios still affect the estimation of the cut-

points, especially for the PX-MH and PX-GS algorithms.  

As noted, the sample size of 500 gives estimated 

values closer to the true values and smaller standard 

deviations than the sample size of 50. The specification 

of the priors, N-ID and I-CS, does not affect much for 

the estimated parameters much, suggesting the sample 

size of 500 gives the estimated posterior quantities 

dominated by the data and is robust to the prior 

specification. It is noticeable that the PX-GSM 

algorithm has larger standard deviations for the 

estimated quantities using the I-CS prior rather than the 

N-ID prior. This is probably due to an MH sample 

algorithm required for the sampling of the redundant 

parameters in Step 3.2.1 (Appendix B, Circumstance 2) 

using the I-CS prior, which therefore produces larger 

variations than those using the N-ID prior.  

Figure 1 shows the Auto Correlation Function (ACF) 

plots for selected parameters. We chose regression 

parameter 𝛽1, the cut-point 𝜁11, and the correlation 

parameters 𝑟𝑟23 and 𝑟𝑟15 for illustration. As can be seen, 

for a sample size of 50 (first row: N-ID and second row: 

ICS), both priors produce similar ACF plots; the PX-GS 

and PX-GSM algorithms produce almost 

indistinguishable ACF plots, especially for the 

correlations; and the PX-MH algorithm has larger ACF 

values than the PX-GS and PX-GSM algorithms, 

especially for the correlations. For a sample size of 500 

(third row: N-ID and fourth row: I-CS), the ACF plots for 

using these three methods are distinguished. First, we can 

see that for the regression parameter 𝛽1 and the cut-point 

𝜁11, the ACF plots are similar under both the N-ID and 

I-CS priors, while clearly, the PX-GSM algorithm 

outperforms the PX-MH and PX-GS algorithms with 
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much faster-decreased ACF values and the PX-MH 

algorithm outperforms the PX-GS algorithm. For the 

correlation parameters, the ACF plots of the PX-GS 

algorithm are separated from those of the PX-GSM 

algorithm. The N-ID prior favors the correlation 𝑟𝑟15 with the 

true value being 0.0625, while the I-CS prior favors the 

correlation r23 with the true value being 0.5. The plots show 

that the PX-GS algorithm produces faster-decreased ACF 

values for r15 using the N-ID prior compared with that of 

using the I-CS prior, while it produces much faster-decreased 

ACF values for r23 using the I-CS prior compared with that 

of using the N-ID prior. In comparison with the PX-GS 

algorithm, the PX-GSM algorithm is robust to the prior 

specification. Like those for a sample size of 50, the 

PX-MH still has the largest ACF values among these 

algorithms for a sample of 500.  

Real Data Applications 

The Pain Score Data  

Our first application is the study of abdominal 

suction to reduce shoulder tip pain after laparoscopic 

surgery (Jorgensen, 1995; Lumley, 1996). There was a 

total of 41 patients randomized to suction or no suction 

on the drain. For each patient, the shoulder tip pain 

score, an ordinal measurement with 5 categories from 

1 to 5, was longitudinally collected after surgery from 

mornings and afternoons for three days. The age and 

gender of each patient were also collected. We used our 

proposed methods to analyze this data with the 

outcome being a 6-dimensional ordinal variable with 4 

categories by combining the last two categories and the 

covariates being the visit time, gender (1: Male; 0: 

Female), treatment (1: Treatment; 0: Control) and age 

with the intercept term.  

We investigated two prior scenarios: N-ID and ICS. 

The N-ID assumes P(𝛽) ∝ 1, P(𝜁) ∝ 1 and 

P(Σ)~InvWish5(V = I6, m = 30); the I-CS assumes 𝛽~ 

N5(b, I5), where b = (0, 0, 0, −1, 0), which is close to 

the estimated quantities, P(𝜁) ∝ 1 and 

P(Σ)~InvWish5(V = CS (0.5), 𝑚𝑚 = 30). We ran each 

algorithm with 10,000 iterations.  

Table 3 presents the 95% credible intervals for the 

regression parameters and the posterior means and 

standard deviations for each cut-point as well. As 

shown, the treatment effect is significant for all three 

methods under both priors, suggesting that abdominal 

suction helps to reduce shoulder tip pain after 

laparoscopic surgery. Noticeably, the age effect is 

significant for all three methods under the N-ID prior, 

but not with the I-CS prior. Also, the I-CS prior 

produces smaller estimated cut-points with smaller 

standard deviations than the N-ID prior does.  

Then we investigated two additional models: One 

with gender, treatment, and age by excluding visit time 

and the other with treatment and age by excluding both 

visit time and gender. Then we calculated Bayesian 

Information Criterion (BIC) (Grigorova and 

Gueorguieva, 2016) for these three models and the 

results are presented in Table 4. As can be seen, for all 

three models, the BIC values for the PX-GS and 

PXGSM algorithms are similar and both have smaller 

values than those for the PX-MH algorithm, suggesting 

the PX-MH algorithm is inferior to the PX-GS and 

PXGSM algorithms. By excluding visit time and/or 

gender (Model 1, Model 2), all BIC values for each 

algorithm are improved, suggesting visit time and 

gender can be dropped from the modeling.  

Table 5 contains the estimated posterior means and 

standard deviations for all the correlations under both 

priors. We can see that the I-CS prior gives a larger 

estimated value with smaller standard deviations in 

comparison with the N-ID prior. This implies that with a 

sample size of 41, the prior specification plays a part in 

the posterior estimation of unknown parameters, as 

addressed in the Section "Simulation Studies" for 

simulation studies with a sample size of 50.  

The Schizophrenia Study  

We then applied the proposed methods to the National 

Institute of Mental Health Schizophrenia Collaborative 

Study (Hedeker and Gibbons, 1994ab). There were 437 

patients randomized to receive either a placebo or one of 

three different anti-psychotic drugs (chlorpromazine, 

fluphenazine, or thioridazine). Each patient was 

assessed at weeks 0, 1, 3, and 6. The original primary 

outcome was item 79 on the Inpatient 

Multidimensional Psychiatric Scale, which indicates 

the severity of illness using 7 ordinal scales. Archer et al. 

(2015) used a mixed-effects logistic regression model 

to analyze this data by combining the 7 ordinal scales 

to be 4 ordinal scales to ensure enough observations for 

each category and choosing the treatment group, square 

root of the time, and the interaction of the treatment 

group and the square root of the time as the covariates. 

With the same outcome and covariates as Archer et al. 

(2015), we conducted our analysis using the PX-MH, 

PXGS, and PX-GSM algorithms. Since the sample size 

was 437, based on the simulation studies for a sample 

size of 500 in Section "Simulation Studies", the prior 

specification may not affect much for the estimated 

posterior means and standard deviations of the 

unknown parameters. Therefore, we chose the non-

informative priors for the regression parameters and the 

cut-points and an Inverse-Wishart prior for the 

correlation matrix with the scale matrix being the 

identity matrix and 20 degrees of freedom. We ran each 

algorithm with 20,000 iterations with the first 5,000 as 

the burn-in. Table 6 presents the 95% credible intervals 

for the regression parameters and the posterior estimated 
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means and standard deviations for the cut-points and 

correlations. It can be seen that all three methods 

illustrate the significant effect of the interaction of the 

treatment and the square root of the time; both the PX-

MH and PX-GSM algorithms show that the time effect 

is significantly negative, while the PX-GS algorithm 

does not. The estimated standard deviations of the cut 

points using the PX-GSM algorithm are larger than those 

of the other two algorithms. This may be caused by the 

slow convergences and mixings for the PXMH and PX-

GS algorithms in comparison with the PXGSM algorithm 

for the cut points (Fig. 1 for a sample size of 500).  

 
Table 1: Averaged posterior means and standard deviations for the regression parameters and cut-points based on 50 simulated datasets under two prior scenarios 

  PX-MH     PX-GS     PX-GSM 

  ------------------------------------------------------------ ------------------------------------------------------------- -------------------------------------------------------------- 

   n = 50   n = 500   n = 50   n = 500  n = 50  n = 500 

  ---------------------------- ---------------------------- ---------------------------- ----------------------------- ----------------------------- ---------------------------- 

Parameters   True N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS 

11  2.0  2.15 (0.30)  2.12 (0.28)  2.02 (0.09)  2.02 (0.09)  2.19 (0.41)  2.10 (0.37)  2.01 (0.17)  1.99 (0.17)  2.19 (0.39)  2.08 (0.47)  2.09 (0.24)  2.03 (0.33) 

22  4.0  4.28 (0.37)  4.09 (0.34)  4.06 (0.11)  4.02 (0.11)  4.34 (0.64)  4.00 (0.57)  4.04 (0.32)  3.99 (0.32)  4.34 (0.59)  3.98 (0.79)  4.19 (0.47)  4.03 (0.64) 

11  1.0  1.25 (0.24)  1.24 (0.24)  1.19 (0.07)  1.18 (0.07)  1.43 (0.38)  1.28 (0.32)  1.15 (0.19)  1.15 (0.19)  1.34 (0.31)  1.39 (0.39)  1.16 (0.19)  1.15 (0.23) 

12  2.0  2.02 (0.30)  1.99 (0.29)  2.20 (0.10)  2.19 (0.10)  2.37 (0.54)  2.10 (0.43)  2.12 (0.28)  2.12 (0.28)  2.23 (0.43)  2.24 (0.55)  2.18 (0.31)  2.14 (0.40) 

21  1.0  0.96 (0.19)  0.94 (0.20)  1.12 (0.09)  1.11 (0.09)  1.16 (0.33)  1.01 (0.27)  1.09 (0.17)  1.09 (0.17)  1.04 (0.26)  1.02 (0.29)  1.04 (0.18)  1.07 (0.21) 

22  2.0  1.94 (0.27)  1.91 (0.26)  2.21 (0.11)  2.20 (0.11)  2.39 (0.57)  2.09 (0.44)  2.18 (0.28)  2.18 (0.28)  2.12 (0.41)  2.18 (0.53)  2.11 (0.29)  2.13 (0.37) 

31  1.0  1.22 (0.22)  1.17 (0.21)  1.05 (0.08)  1.04 (0.07)  1.63 (0.44)  1.39 (0.34)  0.99 (0.17)  0.99 (0.16)  1.36 (0.30)  1.39 (0.37)  0.98 (0.17)  0.96 (0.19) 

32  2.0  2.22 (0.31)  2.14 (0.29)  2.13 (0.11)  2.11 (0.11)  2.91 (0.70)  2.48 (0.53)  2.01 (0.27)  2.01 (0.26)  2.47 (0.48)  2.51 (0.62)  2.01 (0.29)  2.00 (0.34) 

41  1.0  1.24 (0.24)  1.21 (0.22)  1.05 (0.09)  1.05 (0.09)  1.38 (0.38)  1.21 (0.30)  1.00 (0.16)  1.00 (0.16)  1.28 (0.31)  1.37 (0.38)  0.96 (0.16)  0.98 (0.18) 

42  2.0  2.38 (0.31)  2.28 (0.29)  2.08 (0.10)  2.07 (0.10)  2.61 (0.59)  2.30 (0.46)  2.01 (0.27)  2.01 (0.26)  2.49 (0.47)  2.62 (0.62)  1.95 (0.28)  1.99 (0.33) 

51  1.0  0.99 (0.21)  0.93 (0.20)  1.00 (0.07)  0.99 (0.07)  1.12 (0.31)  0.96 (0.25)  0.93 (0.15)  0.93 (0.15)  1.06 (0.26)  1.05 (0.30)  0.97 (0.16)  0.96 (0.19) 

52  2.0  1.87 (0.26)  1.79 (0.26)  2.04 (0.10)  2.02 (0.10)  2.10 (0.48)  1.83 (0.38)  1.91 (0.26)  1.91 (0.26)  2.02 (0.38)  2.02 (0.48)  2.02 (0.28)  1.98 (0.35) 

 
Table 2: Averaged posterior means and standard deviations for the correlation parameters based on 50 simulated datasets under two prior scenarios 

  PX-MH     PX-GS     PX-GSM  

  ------------------------------------------------------------- -------------------------------------------------------------- -------------------------------------------------------------- 

   n = 50   n = 500   n = 50   n = 500   n = 50   n = 500  

  ---------------------------- ----------------------------- ----------------------------- ---------------------------- --------------------------- ----------------------------- 

Parameters True N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS   

r12 0.5000 0.32 (0.17)  0.42 (.16)  0.47 (0.06)  0.49 (0.06)  0.30 (0.16)  0.43 (0.14)  0.45 (0.07)  0.48 (0.06)  0.23 (0.14)  0.40 (0.16)  0.47 (0.06)  0.49 (0.07) 

r13  0.2500 0.16 (0.17)  0.27 (.17)  0.23 (0.06)  0.24 (0.07)  0.18 (0.17)  0.32 (0.15)  0.23 (0.07)  0.26 (0.06)  0.14 (0.15)  0.26 (0.17)  0.24 (0.07)  0.26 (0.07) 

r14  0.1250  0.08 (0.17)  0.20 (.18)  0.10 (0.07)  0.11 (0.07)  0.11 (0.17)  0.25 (0.15)  0.11 (0.07)  0.13 (0.07)  0.08 (0.15)  0.18 (0.18)  0.11 (0.07)  0.12 (0.07) 

r15  0.0625  0.00 (0.18)  0.11 (.19)  0.05 (0.07)  0.06 (0.07)  0.02 (0.17)  0.18 (0.16)  0.06 (0.07)  0.09 (0.07)  0.02 (0.15)  0.09 (0.18)  0.06 (0.07)  0.07 (0.07) 

r23  0.5000 0.38 (0.16)  0.48 (.15)  0.46 (0.06)  0.48 (0.06)  0.35 (0.15)  0.46 (0.13)  0.44 (0.07)  0.47 (0.06)  0.27 (0.14)  0.45 (0.15)  0.45 (0.06)  0.48 (0.07) 

r24  0.2500 0.17 (0.17)  0.30 (.17)  0.23 (0.06)  0.25 (0.07)  0.21 (0.16)  0.33 (0.15)  0.24 (0.06)  0.26 (0.06)  0.16 (0.15)  0.30 (0.17)  0.24 (0.07)  0.26 (0.07) 

r25  0.1250 0.08 (0.17)  0.20 (.18)  0.12 (0.07)  0.14 (0.07)  0.11 (0.17)  0.25 (0.16)  0.13 (0.07)  0.16 (0.07)  0.08 (0.15)  0.18 (0.18)  0.13 (0.07)  0.15 (0.07) 

r34  0.5000  0.36 (0.16)  0.47 (.15)  0.48 (0.06)  0.50 (0.06)  0.34 (0.15)  0.45 (0.13)  0.46 (0.07)  0.49 (0.06)  0.26 (0.14)  0.45 (0.15)  0.47 (0.06)  0.50 (0.07) 

r35  0.2500 0.13 (0.17)  0.25 (.17)  0.24 (0.06)  0.26 (0.07)  0.16 (0.17)  0.30 (0.15)  0.24 (0.06)  0.27 (0.06)  0.12 (0.15)  0.25 (0.17)  0.25 (0.07)  0.27 (0.07) 

r45  0.5000 0.32 (0.17)  0.41 (.16)  0.45 (0.06)  0.47 (0.06)  0.29 (0.16)  0.42 (0.14)  0.43 (0.07)  0.46 (0.06)  0.22 (0.14)  0.41 (0.16)  0.45 (0.06)  0.48 (0.07) 

 
Table 3: Posterior 95% credible intervals of the regression parameters and posterior means and standard deviations for each cut-point 

using the pain score data 

 PX-MH   PX-GS   PX-GSM 

 -------------------------------------- ------------------------------------------ ----------------------------------------- 

Parameters N-ID  I-CS  N-ID  I-CS  N-ID  I-CS   

Visit time  (-0.18, 0.02)  (-0.17, 0.02)  (-0.19, 0.01)  (-0.17, 0.02)  (-0.21, 0.01)  (-0.17, 0.03)  

Gender  (-0.46, 0.53)  (-0.41, 0.63)  (-0.46, 0.53)  (-0.33, 0.65)  (-0.48, 0.60)  (-0.35, 0.69)  

Treatment  (-1.53, -0.58)  (-1.44, -0.44)  (-1.49, -0.51)  (-1.40, -0.41)  (-1.53, -0.43)  (-1.45, -0.35)  

Age  (-0.04, -0.01)  (-0.03, 0.00)  (-0.04, -0.003)  (-0.03, 0.004)  (-0.04, -0.01)  (-0.03, 0.003) 

11  0.57 (0.18)  0.54 (0.17)  0.57 (0.18)  0.52 (0.16)  0.54 (0.17)  0.49 (0.16)  

12  1.32 (0.26)  1.26 (0.25)  1.34 (0.25)  1.25 (0.24)  1.27 (0.26)  1.19 (0.24)  

21  0.66 (0.17)  0.62 (0.16)  0.64 (0.17)  0.60 (0.16)  0.63 (0.18)  0.58 (0.16)  

22  1.26 (0.22)  1.18 (0.21)  1.24 (0.23)  1.16 (0.21)  1.23 (0.24)  1.15 (0.22)  

31  0.67 (0.18)  0.62 (0.17)  0.60 (0.19)  0.57 (0.18)  0.59 (0.19)  0.57 (0.18)  

32  1.33 (0.21)  1.22 (0.20)  1.31 (0.24)  1.23 (0.22)  1.28 (0.25)  1.22 (0.23)  

41  0.51 (0.15)  0.46 (0.14)  0.52 (0.17)  0.48 (0.15)  0.51 (0.17)  0.47 (0.15)  

42  1.06 (0.20)  0.96 (0.18)  1.09 (0.22)  1.00 (0.21)  1.06 (0.23)  0.99 (0.21)  

51  0.73 (0.21)  0.68 (0.19)  0.73 (0.25)  0.68 (0.21)  0.70 (0.22)  0.67 (0.21)  

52  1.59 (0.29)  1.48 (0.27)  1.59 (0.32)  1.48 (0.29)  1.54 (0.33)  1.47 (0.30)  

61  1.08 (0.26)  1.02 (0.25)  1.05 (0.26)  1.01 (0.25)  1.01 (0.26)  0.99 (0.25)  

62  2.66 (0.54)  2.47 (0.49)  2.57 (0.52)  2.43 (0.48)  2.51 (0.53)  2.40 (0.48) 
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Table 4: Posterior means and standard deviations of correlation parameters using the pain score data 

 PX-MH   PX-GS   PX-GSM 
 ----------------------------------- ------------------------------------- ------------------------------------- 
Parameters  N-ID  I-CS  N-ID  I-CS  N-ID  I-CS   

r12  0.40 (0.13)  0.49 (0.11)  0.47 (0.13)  0.55 (0.11)  0.42 (0.13)  0.53 (0.11)  
r13 0.36 (0.15)  0.49 (0.13)  0.45 (0.13)  0.54 (0.11)  0.40 (0.13)  0.52 (0.11)  
r14  0.27 (0.15)  0.44 (0.13)  0.40 (0.14)  0.50 (0.12)  0.34 (0.14)  0.47 (0.12)  
r15  0.06 (0.15)  0.26 (0.15)  0.23 (0.15)  0.36 (0.13)  0.19 (0.15)  0.35 (0.14)  
r16  0.24 (0.15)  0.38 (0.15)  0.31 (0.15)  0.42 (0.13)  0.26 (0.15)  0.41 (0.13)  
r23  0.72 (0.11)  0.78 (0.10)  0.65 (0.10)  0.71 (0.08)  0.65 (0.10)  0.71 (0.08)  
r24  0.57 (0.12)  0.68 (0.12)  0.57 (0.11)  0.64 (0.10)  0.57 (0.12)  0.64 (0.10)  
r25  0.23 (0.15)  0.43 (0.13)  0.34 (0.15)  0.45 (0.13)  0.35 (0.15)  0.46 (0.13)  
r26  0.08 (0.15)  0.32 (0.14)  0.28 (0.15)  0.39 (0.13)  0.28 (0.15)  0.40 (0.13)  
r34  0.66 (0.14)  0.74 (0.12)  0.58 (0.11)  0.66 (0.09)  0.60 (0.11)  0.67 (0.09)  
r35  0.32 (0.14)  0.51 (0.13)  0.38 (0.14)  0.50 (0.12)  0.41 (0.14)  0.52 (0.12)  
r36  0.20 (0.16)  0.43 (0.13)  0.34 (0.14)  0.46 (0.12)  0.35 (0.15)  0.47 (0.13)  
r45  0.48 (0.14)  0.63 (0.12)  0.45 (0.13)  0.57 (0.11)  0.48 (0.13)  0.59 (0.11)  
r46  0.45 (0.13)  0.59 (0.12)  0.45 (0.14)  0.57 (0.11)  0.45 (0.13)  0.57 (0.11)  
r56  0.74 (0.11) 0.78 (0.10) 0.59 (0.11) 0.70 (0.09) 0.58 (0.11) 0.70 (0.09)  

 
Table 5: BIC for pain score data for model selection 

Models  PX-MH  PX-GS  PX-GSM  

Model 1: Treatment, Age  518.61  515.35  515.69  
Model 2: Gender,  
Treatment, Age  524.57  518.68  518.34  
Model 3: 526.85 520.01 521.16  
Visit time, Gender, 
Treatment, Age  

 
Table 6: Posterior 95% credible intervals of the regression parameters and posterior means and standard deviations of the correlation 

parameters and cut-points using the schizophrenia study 

Parameters  PX-MH  PX-GS  PX-GSM  

Treatment  (-0.27, 0.23)  (-0.31, 0.31)  (-0.31, 0.32)  
Time   (-0.54, -0.24)  (-0.50, 0.02)  (-0.87, -0.45)  

Treatment × Time   (-0.59, -0.31)  (-0.89, -0.40)  (-0.75, -0.31)  
r12  0.55(0.04)  0.54(0.05)  0.55(0.05)  
r13  0.39(0.06)  0.40(0.06)  0.40(0.06)  
r14  0.18(0.07)  0.21(0.07)  0.22(0.07)  
r23  0.65(0.04)  0.65(0.04)  0.67(0.04)  
r24 0.52(0.05)  0.53(0.05)  0.55(0.05)  
r34  0.66(0.04)  0.67(0.04)  0.68(0.04)  
11  1.23(0.10)  1.48(0.28)  2.05(0.28)  
12  2.12(0.10)  2.37(0.27)  2.95(0.38)  
21  1.28(0.07)  1.22(0.08)  1.33(0.16)  
22  2.07(0.07)  2.00(0.11)  2.11(0.23)  
31  1.07(0.06)  1.02(0.07)  1.03(0.13) 
32  2.01(0.07)  1.95(0.10)  1.93(0.22) 
41  1.20(0.07)  1.19(0.08)  1.13(0.14) 
42 1.80(0.09)  1.8(0.10)  1.74(0.20)  

 

Figure 2 contains the trace plots for selected 

parameters: The regression parameter, 𝛽3, the square root 

of the time, the correlation r14 being the smallest 

correlation parameter, the correlation. 

r34 being the largest correlation parameter and two 

cut-points 𝜁1 and 𝜁42. As can be seen from the trace plots 

of 𝛽3, the PX-MH algorithm reaches stabilization faster 

than the PX-GS and PX-GSM algorithms; the PX-GSM 

algorithm reaches stabilization after 5,000 iterations, 

while the PX-GS seems not to do so. This may cause the 

PX-GS algorithm to fail to show the significant time effect 

in Table 5. The trace plots of the correlations 𝑟𝑟14 and 𝑟𝑟34 

for the PX-GS and PX-GSM algorithms are similar and 

show better mixing than the PX-MH algorithm. The trace 

plots for the cut-point 𝜁1 show that the PX-GSM algorithm 

reaches stabilization after 5,000 iterations, while the PX-

MH and PX-GS algorithms do not. For the cut-point 𝜁42, 

the PX-GS and PX-GSM algorithms exceed the PX-

MH algorithm, with the PX-GSM algorithm still having 

the best mixing sampler among the three algorithms.
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Fig. 1: ACF plots of selected parameters for simulation studies with sample sizes being 50 and 500 under the N-ID and I-CS priors. 

The solid line: is PX-GSM; the long-dashed: is PX-GS; the dot-dashed: PX-MH 

 

 
 

Fig. 2: Trace plots of selected parameters for the schizophrenia study using PX-MH, PX-GS, and PX-GSM algorithms
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Results and Discussion  

In this article, we proposed a non-identifiable 

multivariate probit model to analyze longitudinal ordinal 

data and developed the PX-GS and PX-GSM algorithms, 

with the PX-GSM algorithm marginalizing the redundant 

parameters. We conducted simulation studies and two real 

data applications to investigate and compare the PX-GS and 

PX-GSM algorithms with the PX-MH algorithm, which is 

based on the identifiable multivariate probit model. The PX-

GSM algorithm outperforms the PX-GS and PX-MH 

algorithms in the convergence and mixing of the regression 

parameters, the cut-points, and correlations.  

For data with small sample sizes, such as 50, the ACF 

plots for the PX-GS and PX-GSM algorithms are almost 

indistinguishable and have much faster-decreased ACF 

values than the PX-MH algorithm does, especially for 

correlations. This indicates that the PX-GS and PX-GSM 

algorithms based on a non-identifiable model outperform 

the PX-MH algorithm based on the identifiable model. 

For data with a large sample size, such as 500, the PX-GS 

algorithm is affected by the prior specification, while the 

PX-GSM algorithm is robust to the priors for correlations.  

It is also shown that the ACF values (𝛽1, 𝛾11, 𝑟23) of 

the PX-GSM and PX-MH algorithms decrease faster than 

the PX-GS algorithm. In the schizophrenia study with 437 

patients, the trace plots of 𝛽3 and 𝛾11 illustrate that the PX-

GS algorithm does not converge after 20,000 iterations 

while the PX-MH and PX-GSM algorithms do. This 

explains the PX-MH and PX-GSM algorithms show a 

significant time effect, while the PX-GS fails. This 

suggests one possibility that the redundant parameters of 

the PX-GS algorithm may converge slower for data with 

a large sample size than for the data with small sample 

size, thus leading to the slow convergence of the 

identifiable parameters, such as the regression parameters, 

cut-points, and correlations. In this circumstance, the PX-

GS algorithm may be inferior to the PX-MH algorithm 

and this issue is worth further investigation.  

We also noticed that for the PX-GS algorithm in the 

schizophrenia study, the mixing of the trace plot for the 

cut-point 𝜁𝜁11 was not as good as that for the PX-GSM 

algorithm, while the plot for the cut-point 𝜁𝜁42 seemed 

similar to that of the PX-GSM algorithm. In this article, 

we specified only the non-informative priors for the 

cutpoints. This suggests that further investigation 

regarding the convergence of the cut-points for the PX-

GS algorithm and possible informative priors may be 

considered in our future research work.  

Conclusion 

 Our investigation illustrates that constructing 

nonidentifiable models may improve the convergence of 

the MCMC sampling components compared with the 

identifiable models. The marginalization of the redundant 

parameters in the non-identifiable models should be 

considered in developing efficient MCMC sampling 

algorithms, especially for data with large sample sizes. 

Due to the improved convergence of the correlation 

parameters, applying the PX-GSM algorithm to large and 

high-dimensional ordinal data may become one of our 

future investigations.  
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Appendix A. Details of Sampling Σ|β, ζ, W, Y 

In this Appendix, we give details of sampling | , , 

W, Y in step3.1.4 for the PX-GS algorithm. 

We assume P()~ Inv Wish (m, V), i.e.: 
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In this Appendix, we give details of sampling D| , , 

W, Y in Step 3.2.1.1 for the PX-GSM algorithm. 

First, we realize that D| , , W, Y is the condition 

before D given R, denoted by D|R. 

We assume P(Σ)~Inv Wishk (m, V). Then 
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The Jacobian of the transformation from  to (R, D) is 

denoted by |J() (R, D)| which can be calculated to be equal 

to
1

2

k

D
−

. Then we have
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Circumstance 1: V = diag(v11, v22, …, vkk): 
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Then, P(D|R) = P(d1|R)  P(d2|R)  …  P(dk|R) and: 
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, for i = 1, …, k.  

The, 
11r  is the ith diagonal element for R-1, for i = 1, 

…, k. 

Circumstance 2: If 𝑉𝑉 is not a diagonal matrix, then 

we use the MH algorithm to sample D given R; this is to 

sample P(D|R)  P()  |J() (R, D)|. 

Set initial value of (R(0), D(0)) through setting 

( ) ( ) ( ) ( )
1 1

0 00 02 2D R D= to an initial covariance matrix. Then, 

at iteration t: 
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 and the proposal 

density f(*|(t)) is equal to J* →R*, D*  Inverse-Wishartk 

(mp, mp  (t)). 

 


