# Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences

## <sup>1</sup>Ayhan Esi, <sup>2</sup>Subramanian Nagarajan and <sup>3</sup>Kemal Ozdemir

<sup>1</sup>Department of Mathematics, Malatya Turgut Ozal University, Turkey <sup>2</sup>Department of Mathematics, Sastra University, India <sup>3</sup>Department of Mathematics, Inonu University, Turkey

Article history Received: 02-03-2022 Revised: 20-06-2022 Accepted: 21-06-2022

Corresponding Author: Ayhan Esi Department of Mathematics, Malatya Turgut Ozal University, Turkey Email: aesi23@hotmail.com **Abstract:** In this study, we obtain a Korovkin-type approximation theorem for Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operator of rough *I*-convergent of triple sequences of positive linear operators of two variables from  $H_w(K)$ to  $C_w(K)$ . We introduce and study some basic properties of Korovkin-type approximation theorem for Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operator of rough *I*-convergent of triple sequence spaces and also study the set of all Korovkin-type approximation theorem for Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operator of rough *I*-limits of triple sequence spaces and the relation between analyticness and Korovkin-type approximation theorem for Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operator of rough *I*-core of triple sequence spaces.

**Keywords:** Chlodowsky Type  $(\lambda, q)$ -Bernstein Stancu Operator, Ideal, Triple Sequences, Rough Convergence, Closed and Convex, Cluster Points and Rough Limit Points, Korovkin-type Approximation.

## Introduction

The idea of rough convergence was first introduced by (Phu, 2001; 2002; Xuan Phu, 2003) infinite-dimensional normed spaces. He showed that the set  $LIM_x^r$  is bounded, closed, and convex; and he introduced the notion of a rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of  $LIM_x^r$  on the roughness of degree *r*.

Aytar (2008a) studied rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar (2008b) studied that the *r*-limit set of the sequence is equal to the intersection of these sets and that the r-core of the sequence is equal to the union of these sets. Dündar and Çakan (2014) investigated rough ideal convergence and defined the set of rough ideal limit points of a sequence the notion of *I*-convergence of triple sequence spaces is based on the structure of the ideal *I* of subsets of  $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ , where  $\mathbb{N}$  is the set of all-natural numbers, is a natural generalization of the notion of convergence and statistical convergence. Our primary interest in the present paper is to obtain a general Korovkin-type approximation theorem for triple sequences of positive linear operators of two variables from  $H_w(K)$  to  $C_w(K)$  via statistical A-summability.

Let *A* be a three-dimensional summability matrix. For a given triple sequence  $x = (x_{mnk})$ , the *A*-transform of *x*, denoted by  $Ax : x((Ax)_{ii\ell})$ , given by:

$$\left(Ax\right)_{i,j,\ell} = \sum_{(m,n,k)\in\mathbb{N}^{\hat{\ell}}} a_{i,j,\ell,m,n,k} x_{mnk}$$
(1.1)

provided the triple series converges in Pringsheim's sense for every  $(i, j, \ell) \in \mathbb{N}^3$ .

A three dimensional matrix  $A = (a_{i,j,\ell,m,n,k})$  is said to be RH-regular it maps every bounded *P*-convergent sequence into a *P*-convergent sequence with the same *P*-limit. A three dimensional matrix  $A = (a_{i,j,\ell,m,n,k})$  is RH-regular if and only if:

(i) 
$$P - \lim_{i,j} a_{i,j,\ell,m,n,k} = 0$$
 for each  $(m, n, k) \in \mathbb{N}^3$   
(ii)  $P - \lim_{i,j,\ell} \sum_{(m,n,k) \in \mathbb{N}^3} a_{i,j,\ell,m,n,k} = 1$   
(iii)  $P - \lim_{i,j,\ell} \sum_{m \in \mathbb{N}} a_{i,j,\ell,m,n,k} = 0$  for each  $n, k \in \mathbb{N}$ 



- (iv)  $P \lim_{i,j,\ell} \sum_{n \in \mathbb{N}} a_{i,j,\ell,m,n,k} = 0$  for each  $m, k \in \mathbb{N}$
- (v)  $P \lim_{i,j,\ell} \sum_{k \in \mathbb{N}}^{m} a_{i,j,\ell,m,n,k} = 0$  for each  $m, n \in \mathbb{N}$
- (vi)  $\sum_{(m,n,k)\in\mathbb{N}^{\hat{i}}} |a_{i,j,\ell,m,n,k}|$  is *P*-convergent for every (*i*, *j*,  $\ell$ )  $\in \mathbb{N}^{3}$
- (vii) There exist finite positive integers *A* and *B* such that  $\sum_{m,n,k>B} |a_{i,j,\ell,m,n,k}| < \sum_{m,n,k>B} |a_{i,j,\ell,m,n,k$

A holds for every  $(i, j, \ell) \in \mathbb{N}^3$ .

Now let  $A = (a_{i,j,\ell,m,n,k})$  be a non-negative RH-regular summability matrix, and  $K \subset \mathbb{N}^3$ . Then the *A*-density of *K* is given by:

$$\mathcal{S}_{2}^{A}\left\{K\right\} \coloneqq P - \lim_{i,j,\ell} \sum_{(m,n,k) \in K(\varepsilon)} a_{i,j,\ell,m,n,k}$$

where:

$$K(\epsilon) \coloneqq \left\{ (m, n, k) \in \mathbb{N}^3 : \left| x_{mnk} - L \right| \ge \epsilon \right\}$$

provided that the limit on the right-hand side exists in Pringsheim's sense. A real triple sequence  $x = (x_{mnk})$  is said to be *A*-statistically convergent to a number *L* if, for every  $\epsilon > 0$ :

$$\delta_2^{A}\left\{ (m,n,k) \in \mathbb{N}^3 : \left| x_{mnk} - L \right| \ge \epsilon \right\} = 0.$$

In this case, we write  $st_2^A - \lim_{m,n,k} = L$ .

In this study, we investigate some basic properties of the Korovkin-type approximation theorem for rough *I*-convergence of triple sequence spaces in threedimensional matrix spaces which are not earlier. We study the set of all rough *I*-limits of triple sequence spaces and also the relation between analytic ness and rough *I*-core of a Korovkin-type approximation theorem for triple sequence spaces. We recommend the reader to refer to (Arqub, 2015; Abu-Arqub *et al.*, 2013; Al-Smadi *et al.*, 2012; 2015; 2016; Momani *et al.*, 2016) and (Shawagfeh *et al.*, 2014) references to see the different approaches.

Let *K* be a subset of the set of positive integers  $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$  and let us denote the set  $K_{ik\ell} = \{(m, n, k) \in K: m \ge i, n \ge j, k \ge \ell\}$ . Then the natural density of *K* is given by:

$$\delta(K) = \lim_{i,j,\ell\to\infty} \frac{\left|K_{ij\ell}\right|}{ij\ell},$$

where,  $|K_{ij\ell}|$  denotes the number of elements in  $K_{ij\ell}$ .

In this study, we construct Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators of triple sequence space is defined as:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x) = \sum_{m=0}^{r} \sum_{n=0}^{s} \sum_{k=0}^{t} \hat{b}_{rst,mnk}(x; q) f\left(\frac{[mnk]_{q} + \alpha}{[rst]_{q} + \beta} b_{rst}\right), (1.2)$$

where,  $r, s, t \in \mathbb{N}$ ,  $0 < q \le 1, 0 \le x \le b_{rst}$  and  $b_{rst}$  is a sequence of positive numbers such that

$$\lim_{rst\to\infty} b_{rst} = \infty, \lim_{rst\to\infty} \frac{b_{rst}}{[rst]_q} = 0,$$

$$\hat{b}_{rst,mnk}\left(x;q\right) = \binom{r}{m}\binom{s}{n}\binom{t}{k}\binom{x}{b_{rst}}^{m+n+k}\left(1-\frac{x}{b_{rst}}\right)^{(r-m)+(s-n)+(t-k)}$$

and  $\alpha, \beta \in \mathbb{R}$  and  $0 \le \alpha \le \beta$ . For  $\alpha = \beta = 0$  we obtain the Chlodowsky type ( $\lambda, q$ )-Bernstein Stancu polynomials.

Throughout the paper,  $\mathbb{R}$  denotes the real of threedimensional space with metric (*X*, *d*). Consider a triple sequence of Chlodowsky type ( $\lambda$ , *q*)-Bernstein Stancu operators  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right)$  such that

$$\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right) \in \mathbb{R}, m, n, k \in \mathbb{N}.$$

Let *f* be a continuous function defined on the closed interval [0,1]. A triple sequence of Bernstein polynomials  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right)$  is said to be statistically convergent to  $0 \in \mathbb{R}$ , written as  $st - \lim x = 0$ , provided that the set:

$$K\epsilon := \left\{ \left(m, n, k\right) \in \mathbb{N}^3 : \left| B_{(r, s, t), \lambda, q}^{\alpha, \beta} \left(f; x\right) - f\left(x\right) \right| \ge \epsilon \right\}$$

has natural density zero for any  $\epsilon > 0$ . In this case, 0 is called the statistical limit of the triple sequence of Bernstein polynomials. i.e.,  $\delta(K_{\epsilon}) = 0$ . That is:

$$\lim_{r,s,t\to\infty}\frac{1}{rst}\left|\left\{m\leq r,\,n\leq s,\,k\leq t:\left|B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f;\,x\right)-\left(f,\,x\right)\right|\geq\epsilon\right\}\right|=0.$$

In this case, we write  

$$\delta - \lim B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f;x) = f(x) \text{ or } B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f;x) \to S_B f(x).$$

Throughout the paper, N denotes the set of all positive integers,  $\chi_A$ -the characteristic function of  $A \subset N$ , and R the set of all real numbers. A subset A of N is said to have asymptotic density d(A) if:

$$d(A) = \lim_{i,j,\ell\to\infty} \frac{1}{ij\ell} \sum_{m=1}^{i} \sum_{n=1}^{j} \sum_{k=1}^{\ell} \chi A(K).$$

A triple sequence (real or complex) can be defined as a function  $x: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{R}(\mathbb{C})$ , where  $\mathbb{N}$ ,  $\mathbb{R}$ , and  $\mathbb{C}$  denote the set of natural numbers, real numbers, and complex numbers respectively. The different types of notions of the triple sequence were introduced and investigated at the initial by (Şahiner *et al.*, 2007; Sahiner and Tripathy, 2008; Esi, 2014; Esi and Catalbas, 2014; Esi and Savas, 2015; Esi *et al.*, 2016; Datta *et al.*, 2013; Subramanian and Esi, 2015; Esi *et al.*, 2022, Debnath *et al.*, 2015) and many others.

A triple sequence  $x = (x_{mnk})$  is said to be triple analytic if:

$$\sup_{m,n,k} \left| x_{mnk} \right|^{\frac{1}{m+n+k}} < \infty.$$

The space of all triple analytic sequences is usually denoted by  $\Lambda^3$ .

# **Definitions and Preliminaries**

Throughout the paper,  $\mathbb{R}^3$  denotes the real threedimensional case with the metric. Consider a triple sequence  $x = (x_{mnk})$  such that  $x_{mnk} \in \mathbb{R}^3$ ; *m*, *n*,  $k \in \mathbb{N}^3$ . The following definition is obtained.

#### Definition 1

Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x))$  of real numbers and A =  $(a_{i,j,\ell,m,n,k})$  be a non-negative RH-regular summability matrix is said to be rough statistically Asummable to f(x) if for every  $\epsilon > 0$ :

$$\delta_{2}\left\{\left(i,j,\ell\right)\in\mathbb{N}^{3}:\left|B_{\left(r,s,t\right),\lambda,q}^{\alpha,\beta}\left(f;Ax\right)-f\left(x\right)\right|\geq r+\epsilon\right\}\in I=0,$$

i.e.:

$$\begin{aligned} P - \lim_{mnk} \frac{1}{mnk} \\ \left| \left\{ i \le m, \, j \le n, \, \ell \le k : \left| B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f;Ax\right) - f\left(x\right) \right| \ge r + \epsilon \right\} \right| = 0, \end{aligned}$$

where,  $(Ax)_{ij\ell}$  is as in (1.1).

## A Korovkin-Type Approximation Theorem

Let  $C_B(K)$  the space of all continuous and bounded real-valued functions on  $K = [0, \infty) \times [0, \infty) \times [0, \infty)$ . This space is equipped with the supremum norm:

$$\left\|f\right\| = \sup_{(x,y,z)\in K} B_{(r,s,t),\lambda,q}^{\alpha,\beta} \left|f, (x,y,z)\right|, \left(f \in C_B(K)\right).$$

Consider the triple space of  $H_w(K)$  of all real-valued functions of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators of f on K satisfying:

$$\begin{split} & \left| B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f;u,v,w\right) - B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f;x,y,z\right) \right| \\ & \leq w \Biggl( \left| \frac{u}{1+u} - \frac{x}{1+x} \right|, \left| \frac{u}{1+u} - \frac{y}{1+y} \right|, \left| \frac{w}{1+w} - \frac{z}{1+z} \right| \Biggr) \end{split}$$

where, *w* be a function of the type of the modulus of continuity given by, for  $\delta$ ,  $\delta_1$ ,  $\delta_2$ ,  $\delta_3 > 0$ :

- (1) *w* is non-negative increasing function on *K* with respect to  $\delta_1$ ,  $\delta_2$ ,  $\delta_3$
- (2)  $w(\delta, \delta_1 + \delta_2 + \delta_3) \le w(\delta, \delta_1) + w(\delta, \delta_2) + w(\delta, \delta_3)$
- (3)  $w(\delta_1 + \delta_2 + \delta_3, \delta) \le w(\delta_1, \delta) + w(\delta_2, \delta) + w(\delta_3, \delta)$
- (4)  $\lim_{\delta_1, \delta_2, \delta_3 \to 0} w (\delta_1, \delta_2, \delta_3) = 0$

The Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;Ax) \in H_w(K)$  satisfies the inequality:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left|\left(f,(x,y,z)\right)\right| \le B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f,(0,0,0)\right) + w(1,1,1), x, y, z \ge 0$$

and hence it is bounded on K. Therefore:

$$H_{w}(K) \subset C_{B}(K)$$

We also use the following Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators of test functions:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{000},(u,v,w)\right) = 1, B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{111},(u,v,w)\right) = \frac{u}{1+u},$$
  
$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{222},(u,v,w)\right) = \frac{u}{1+u}, B_{nnk}\left(f_{333},(u,v,w)\right) = \frac{w}{1+w},$$

and:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{444},\left(u,v,w\right)\right) = \left(\frac{u}{1+u}\right)^2 + \left(\frac{v}{1+u}\right)^2 + \left(\frac{w}{1+w}\right)^2.$$

## **Results**

#### Theorem 1

Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x))$  of real numbers from  $H_w(K)$  into  $C_B(K)$  and let  $A = (a_{i,j,\ell,m,n,k})$  be a nonnegative RH-regular summability matrix. Assume that the following conditions hold:

$$B^{st_2} - \lim \left\| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{rst} \right) - f_{rst} \right\| = 0, r, s, t = 0, 1, 2, 3...$$

Then, for any  $f \in H_w(K)$ :

$$B^{st_2} - \lim \left\| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f) - f_{rst} \right\| = 0.$$
(4.2)

Proof

Assume that (4.1) holds. Let  $B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f,(x,y,z)) \in H_w(K)$  and  $f(x, y, z) \in K$  be fixed.

Since  $B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f,(u,v,w)) \in H_w(K)$  for all  $f(u, v, w) \in K$  be fixed, we write:

$$\begin{aligned} & \left| B_{(r,s,t),\lambda,q}^{\alpha,\beta} \left( f, (u,v,w) \right) - B_{(r,s,t),\lambda,q}^{\alpha,\beta} \left( f, (x,y,z) \right) \right| \\ & \leq r + \epsilon + \frac{2N}{\delta^2} \left\{ \left( \frac{u}{1+u} - \frac{x}{1+x} \right)^2 + \left( \frac{u}{1+u} - \frac{y}{1+y} \right)^2 + \left( \frac{w}{1+w} - \frac{z}{1+z} \right)^2 \right\} \end{aligned}$$

where, N := ||f||. Using the linearity of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x,y,z)\right)$ , we obtain:

$$\begin{split} & \left| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f, (x, y, z) \right) - f \left( x, y, z \right) \right| \\ & \leq r + \epsilon + C \left| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{000}, (x, y, z) \right) - f \left( x, y, z \right) \right| + \\ & C \left| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{111}, (x, y, z) \right) - f \left( x, y, z \right) \right| + \\ & C \left| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{222}, (x, y, z) \right) - f \left( x, y, z \right) \right| + \\ & C \left| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{333}, (x, y, z) \right) - f \left( x, y, z \right) \right| + \\ \end{split}$$

where:

$$c \coloneqq \max\left\{r + \epsilon + N + \frac{2N}{\delta^2} \left(\left(\frac{A}{1+A}\right)^2 + \left(\frac{B}{1+B}\right)^2 + \left(\frac{C}{1+C}\right)^2\right), \\ \frac{6N}{\delta^2} \left(\frac{A}{1+A}\right) \frac{6N}{\delta^2} \left(\frac{B}{1+B}\right), \frac{6N}{\delta^2} \left(\frac{C}{1+C}\right), \frac{2N}{\delta^2}\right\}.$$

Then, taking supremum over  $f(x, y, z) \in K$  we get:

$$\left\|\sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f\right) - f\right\|$$

$$\leq r + \epsilon + C \sum_{r,s,t=0}^{3} \left\|\sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f_{rst}\right) - f_{rst}\right\|$$
(4.3)

For a given  $\rho > 0$ , choose  $r + \epsilon > 0$  such that  $(r + \epsilon) < \rho$ . Then, for each *r*,*s*,*t* = 0,1,2,3, setting:

$$\begin{split} U &\coloneqq \left\{ \left(i, j, \ell\right) \colon \left\| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f\right) - f \right\| \ge \rho \right\}, \\ U'_{rst} &\coloneqq \left\{ \left(i, j, \ell\right) \colon \left\| \sum_{(m,n,k)} a_{ij\ell,m,n,k} B^{\alpha,\beta}_{(r,s,t),\lambda,q}\left(f_{rst}\right) - f_{rst} \right\| \ge \frac{\rho - (r+\epsilon)}{6C} \right\}. \end{split}$$

$$(r, s, t = 0, 1, 2, 3),$$

it follows that (4.3) that:

$$U \subset \bigcup_{r,s,t=0}^{3} U_{rst}$$

which gives, for all  $(i, j, \ell) \in \mathbb{N}^3$ :

$$\delta_{2}\left(U\right) \leq \sum_{r,s,t=0}^{3} \delta_{2}\left(U_{rst}\right)$$

From (4.1), we obtain (4.2). This completes the proof. If we take A = I, which is the identity matrix we get the following statistical version of Theorem 1.

### Corollary 1

Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right)$  of real numbers from  $H_{w}(K)$  into C<sub>B</sub> (K). Assume that the following conditions hold:

$$B^{st_2} - \lim \left\| B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f_{rst} \right) - f_{rst} \right\| = 0, r, s, t = 0, 1, 2, 3...$$
(4.4)

Then, for any  $f \in H_w(K)$ :

$$B^{st_2} - \lim \left\| \sum_{(m,n,k)} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f \right) - f \right\| = 0$$

$$(4.5)$$

In Corollary 1, if the statistical convergence ([C,1,1] statistical convergence) replace with Pringsheim convergence, we obtain the following classical version of Theorem 1.

#### Corollary 2

Let f be a continuous function defined on the closed interval [0,1]. A triple sequence of Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x))$  of real numbers from  $H_w(K)$  into  $C_B(K)$ . Assume that the following conditions hold:

$$P - \lim \left\| \sum_{(m,n,k)} B_{(r,s,t),\lambda,q}^{\alpha,\beta} \left( f_{rst} \right) - f_{rst} \right\| = 0, r, s, t = 0, 1, 2, 3, \dots (4.6)$$

Then, for any  $f \in H_w(K)$ :

$$P - \lim \left\| \sum_{(m,n,k)} B^{\alpha,\beta}_{(r,s,t),\lambda,q} \left( f \right) - f \right\| = 0$$
(4.7)

Remark 1. We now show that our result Theorem 1 is stronger than its classical version Corollary 2 and

statistical version Corollary 1. To see this first consider the following Bleimann, Butzer, and Hahn operators of three variables of Chlodowsky type ( $\lambda$ , q)-Bernstein Stancu operators  $\left(B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f;x)\right)$  are:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f,(x,y,z)\right) = \frac{1}{(1+x)^{m}(1+y)^{n}(1+x)^{k}} \sum_{i=0}^{m} \sum_{\ell=0}^{n} \sum_{\ell=0}^{k} B_{(r,s,\ell),\lambda,q}^{\alpha,\beta} \left(f,\left(\frac{i}{m-i+1},\frac{i}{n-j+1},\frac{\ell}{k-\ell+1}\right)\right) \binom{m}{i} \binom{n}{j} \binom{k}{\ell} x^{i} y^{j} z^{\ell},$$
(4.8)

where,  $f \in H_w(K)$  and  $K = [0, \infty) \times [0, \infty) \times [0, \infty)$ . We have:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{000}, (x, y, z)\right) = 1, B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{111}, (x, y, z)\right) = \frac{m}{m+1}\frac{x}{1+x},$$

$$B_{nmk}, \left(f_{222}, (x, y, z)\right) = \frac{n}{n+1}\frac{y}{1+y}, B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{333}, (x, y, z)\right) = \frac{k}{k+1}\frac{z}{1+z},$$

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f_{444}, (x, y, z)\right) = \frac{m(m-2)(m-1)}{m+1}\left(\frac{x}{1+x}\right)^3 + \frac{m(m-1)}{(m+1)^2}$$

$$\left(\frac{x}{1+x}\right)^2 + \frac{m}{(m+1)^2}\frac{x}{1+x} + \frac{n(n-2)(n-1)}{(n+1)^2}\left(\frac{y}{1+y}\right)^3$$

$$+ \frac{n(n-1)}{(n+1)^2}\left(\frac{y}{1+y}\right)^2 + \frac{n}{(n+1)^2}\frac{y}{1+y}$$

$$+ \frac{k(k-2)(k-1)}{(k+1)^2}\left(\frac{z}{1+z}\right)^3 + \frac{k(k-1)}{(k+1)^2}\left(\frac{z}{1+z}\right)^2 + \frac{k}{(k+1)^2}\frac{z}{1+z}.$$
(4.9)

Now take A = [C,1,1,1] and define a triple sequence u: =  $(u_{mnk})$  by:

$$u_{mnk} = (-1)^{m+n+k} \tag{4.10}$$

we observe that:

$$B^{st_2} - \lim \mathbb{C} \left[ 1, 1, 1 \right] (u) = 0 \tag{4.11}$$

However, the Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right)$  of the triple sequence of u is not P-convergent and statistical convergent. Now using (4.10) and (4.11), we define the following double-positive linear operators on  $H_w(K)$  as follows:

$$B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f,\left(x,y,z\right)\right) = \left(1 + u_{mnk}\right) B_{(r,s,t),\lambda,q}^{\alpha,\beta}\left(f,\left(x,y,z\right)\right) \quad (4.12)$$

Then, observe that the Chlodowsky type  $(\lambda, q)$ -Bernstein Stancu operators  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}(f;x)\right)$  of a triple sequence  $\left(B_{(r,s,t),\lambda,q}^{\alpha,\beta}\right)$  defined by (4.12) satisfy all hypotheses of Theorem 1. Hence, by (4.9) and (4.11), we have, for all  $f \in H_w(K)$ :

$$B^{st_2} - \lim \left\| \sum_{(m,n,k)} a_{ij\ell, m,n,k} B^{\alpha,\beta}_{(r,s,\ell),\lambda,q}(f) - f \right\| = 0$$

Since u is not P-convergent and statistical convergent, the sequence  $\left(B^{\alpha,\beta}_{(r,s,t),\lambda,q}(f)\right)$  cannot uniformly converge to f on K or statistical sense.

Example 1 with the help of Matlab, we show comparisons and some illustrative graphics for the convergence of operators (1.2) to the function  $f(x) = 1 - x^2 e^{-x^2}$  under different parameters.



Fig. 1: Chlodowsky type  $(\lambda, q)$ -Bernstein-Stancu operators

From Fig. 1(a), it can be observed that as the value the q approaches towards 1 provided  $0 < q \leq 1$ , Chlodowsky type  $(\lambda, q)$ -Bernstein-Stancu operators given by (1.2) converges towards the function  $f(x) = 1 - x^2 e^{-x^2}$ . From Fig. 1(a), it can be observed that for  $\alpha = \beta = 0$ , as the value the (r, s, t) increases, Chlodowsky type  $(\lambda, q)$ -Bernstein-Stancu operators given by (1.2) converges towards the function. Similarly from Fig. 1(b), it can be observed that for  $\alpha = \beta = 1$ , as the value the q approaches towards 1 or something else provided  $0 \le q \le 1$ , Chlodowsky type ( $\lambda$ , q)Bernstein-Stancu operators given by (1.2) converges towards the function. From Fig. 1(b), it can be observed that as the value the [r, s, t] increases, Chlodowsky type  $(\lambda, q)$ -Bernstein-Stancu operators given by  $f(x) = 1 - x^2 e^{-x^2}$ converges towards the function.

## Acknowledgment

We would like to thank reviewer for his/her valuable suggestions and comments which were very helpful in improving the manuscript.

# **Author's Contributions**

All authors equally contributed in this study.

# **Ethics**

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

## References

- Abu-Arqub, O., El-Ajou, A., Momani, S., & Shawagfeh, N. (2013). Analytical solutions of fuzzy initial value problems by HAM. Applied mathematics and information sciences, 7(5), 1903. doi.org/10.12785/amis/070528
- Al-Smadi, M., Arqub, O. A., & Shawagfeh, N. (2012). Approximate solution of BVPs for 4<sup>th</sup>-order IDEs by using the RKHS method. Applied mathematical sciences, 6(49-52), 2453-2464.
- Al-Smadi, M., Freihat, A., Arqub, O. A., & Shawagfeh, N. (2015). A novel multistep generalized dierential transform method for solving fractional-order Lüchaotic and hyperchaotic systems. Journal of Computational Analysis and Applications, 19(1).
- Al-Smadi, M., Freihat, A., Hammad, M. M. A., Momani, S., & Arqub, O. A. (2016). Analytical approximations of partial differential equations of fractional order with the multistep approach. Journal of Computational and Theoretical Nanoscience, 13(11), 7793-7801. doi.org/10.1166/jctn.2016.5780

- Arqub, O. A. (2015). An iterative method for solving fourth-order boundary value problems of mixed type integro-differential equations. Journal of Computational Analysis and Applications, 18(5).
- Aytar, S. (2008a). Rough statistical convergence. Numerical functional analysis and optimization, 29(3-4), 291-303. https://www.tandfonline.com/doi/abs/10.1080/0163 0560802001064
- Aytar, S. (2008b). The rough limit set and the core of a real sequence. Numerical functional analysis and optimization, 29(3-4), 283-290. doi.org/10.1080/01630560802001056
- Datta, A. J., Esi, A. Y. H. A. N., & Tripathy, B. C. (2013). Statistically, convergent triple sequence spaces are defined by the Orlicz function. J. Math. Anal, 4(2), 16-22.
- Debnath, S., Sarma, B., & Das, B. (2015). Some generalized triple sequence spaces of real numbers. Journal of Nonlinear Analysis and Optimization: Theory and Applications, 6(1), 71-79. http://www.math.sci.nu.ac.th/ojs302/index.php/jnao/ article/view/378
- Dündar, E., & Çakan, C. (2014). Rough I-convergence. Demonstratio Mathematica, 47(3), 638-651. https://www.degruyter.com/document/doi/10.2478/d ema-2014-0051/html
- Esi, A. (2014). On some triple almost lacunary sequence spaces defined by Orlicz functions. Research and reviews: Discrete mathematical structures, 1(2), 16-25.
- Esi, A., & Savas, E. (2015). On lacunary statistically convergent triple sequences in probabilistic normed space. Applied Mathematics and Information sciences, 9(5), 2529.
- Esi, A., Araci, S., & Acikgoz, M. (2016). Statistical convergence of Bernstein operators. Appl. Math. and Inf. Sci, 10(6), 2083-2086. doi.org/10.18576/amis/100610
- Esi, D., & Catalbas, M. N. (2014). Almost convergence of triple sequences. Global journal of mathematical analysis, 2(1), 6-10. doi.org/10.14419/gjma.v2i1.1709
- Esi, A., Subramanian, N. & Ozdemir, M.K. (2022), Chlodowsky type ((λ, q)-Bernstein Stancu Operator of rough fuzzy Borel summability of triple sequences.Int. J. Open Problems Compt.Math. 15(1), 1-19.
- Momani, S., Arqub, O. A., Freihat, A., & Al-Smadi, M. (2016). Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Applied and computational mathematics, 15(3), 319-330.
- Phu, H. X. (2001). Rough convergence in normed linear spaces. Numerical functional analysis and optimization, 22(1-2), 199-222. doi.org/10.1081/NFA-100103794
- Phu, H. X. (2002). Rough continuity of linear operators. doi.org/10.1081/NFA-120003675
- Sahiner, A., & Tripathy, B. C. (2008). Some i related properties of triple sequences. Selcuk J. Appl. Math, 9(2), 9-18.

- Şahiner, A., Gürdal, M., & Düden, F. K. (2007). Triple sequences and their statistical convergence. Türkiye Klinikleri Psikiyatri Dergisi, 8(2), 49-55.
- Shawagfeh, N., Arqub, O. A., & Momani, S. (2014). Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. Journal of Computational Analysis and Applications, 16(4), 750-762.
- Subramanian, N., & Esi, A. (2015). The generalized tripled difference of  $\chi^3$  sequence spaces. Global journal of mathematical analysis, 3(2), 54-60. doi.org/10.14419/gjma.v3i2.4412
- Xuan Phu, H. (2003). Rough convergence in infinitedimensional normed spaces. doi.org/10.1081/NFA-120022923