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Abstract: Recently, it has been reported that the hypothesis proposed by the 

classical black Scholes model to price multivariate options in finance were 

unrealistic, as such, several other methods have been introduced over the last 

decades including the copulas methods which uses copulas functions to 

model the dependence structure of underlying assets. However, the previous 

work did not take into account the use of mixed copulas to assess the 

underlying assets' dependence structure. The approach we propose consists 

of selecting the appropriate mixed copula’s structure which captures as much 

information as possible about the asset’s dependence structure and apply a 

copulas-based martingale strategy to price multivariate equity options using 

monte Carlo simulation. A mixture of normal distributions estimated with 

the standard EM algorithm is also considered for modeling the marginal 

distribution of financial asset returns. Moreover, the Monte Carlo simulation 

is performed to compute the values of exotic and up and out barrier options 

such as worst of, spread, and rainbow options, which shows that the clayton 

gumble and clayton gaussian have relatively large values for all the options. Our 

results further indicate that the mixed copula-based approach can be used 

efficiently to capture heterogeneous dependence structure existing in 

multivariate assets, price exotic options and generalize the existing results.  

 

Keywords: Monte Carlo Simulation, Dependence Structure, Exotic and 

Barrier Options, Copulas Method, Gaussian Mixture Distributions, and 

Mixted Copulas, Black Scholes Model 

 

Introduction 

The pricing of derivatives using copulas has received 

extensive attention within the actuarial and finance literature 

in the past two decades. For instance, Chiou and Tsay (2008) 

priced multivariate exotic derivatives using copula-based 

models and the risk neutral representation and demonstrated 

how copula-based models may be used to determine the 

value at risk of numerous assets. Kim and Kim (2015) used 

copula functions to derive correlation coefficients that 

depend on strike prices between assets rather than the more 

straightforward correlation coefficients to offer an accurate 

technique of pricing rainbow options with stochastic 

simulation. Malgrat (2013) used the copula method to model 

the underlying dependency structure of assets and price 

basket options by employing several families of copulas with 

parameters chosen using the maximum likelihood approach. 

Church (2011) used a similar idea and devised a copula-

based algorithm for pricing path dependent basket options 

and demonstrated how the marginals selected can 

significantly affect the price of the options. Barban and Di 

Persio (2014); Berton and Mercuri (2021) presented an 

alternative to the Monte Carlo simulation method to price 

multivariate options by using a copula GARCH model. 

Hassane et al. (2021) presented an approach to price options 

that provide for the modeling of financial asset returns to take 

the impact of extreme values into consideration by using a 

combination of two gaussian distributions and an extreme 

copula to model the returns’ combined dependence structure. 

The Multivariate Geometric Brownian Motion (MGBM) 

approach is the most commonly used in the literature and in 

practice for pricing options. This approach requires an 

unrealistic hypothesis of independence or perfect correlation 

between the underlying assets. During the last decade, 

several alternatives have been proposed to solve this 

problem. The stochastic volatility and copulas methods are 

two examples. The stochastic volatility approach models 

volatility as a stochastic quantity. One of the most widely 

used models which assume nonconstant volatility of assets 

was proposed by Heston (1993). For a better understanding 
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of the Heston model, (Ball and Roma, 1994; Kouritzin and 

Mackay, 2020). The copulas method’s main goal is to 

distinguish the marginal distributions of variables from their 

reliance on one another. Flexible dependence structures are 

possible, such as tail dependent or nonlinear dependence 

(Chiou and Tsay, 2008). Another unrealistic assumption that 

has been abandoned over time is the joint normality of 

asset returns, which does not account for distribution tails or 

extreme events. In this case, the use of mixtures of gaussian 

distributions has been shown to be preferable (Hassane et al., 

2021) due to the fact that it approximates all the distributions 

previously used (gaussian, student, hyperbolic, etc.). 
Multivariate option pricing using copulas is a field in 

finance that has been developing very fast for the last two 
decades. In many works on the pricing of options with 
copulas, the joint risk neutral density is considered after 
marginal risk neutral densities or risk neutral copula 
(Hassane et al., 2021). However, all this past work did not 
take into account the use of mixed copulas to assess the 
underlying assets' dependence structure.  The ability of the 
mixed copula model to nest various copula shapes is by far 
its greatest benefit. Therefore, compared to an individual 
copula, a mixed copula is empirically more adaptable in 
modeling dependence structure and can provide better 
descriptions of dependence structure (Cai and Wang, 2014). 

In the present work, we suggest an approach for 
multivariate options valuation, allowing the dependent 
structure to be written as a copula mixture and analyzing 
how our choice of copula affects the cost of multivariate 
exotic and barrier choices with a range of strikes. In 
addition, we price exotic options using a copulas-based 
method by describing the statistical behavior of each 
underlying asset using a mixture of gaussian distributions, 
which have been proven to capture excess kurtosis and 
asymmetry. In particular, we model the underlying asset 
returns as a mixture of two gaussian distributions, with 
two components: One capturing the more volatile “crisis” 
behavior and the other the "business as usual" stock return 
behavior with a mean close to zero. Also, the modeling of 
the dependencies between assets using different mixtures 
of copulas distributions so as to include a variety of 
dependency structures. 

This study is set up as follows: The main copula 
principles are briefly reviewed in section two. In the 
third section, we expose the methodology for the 
martingale option pricing approach with mixed 
copulas. Then, in the fourth section, the results of 
different estimations and simulations are presented, 
along with their analyses and interpretations. The last 
section presents a conclusion and discussion. 

Materials and Methods 

Facts About Copulas 

In this section, we recall the basic notion, definition, 

and theorem about copulas. For more details on copulas, 

you may refer to Pfaff (2016); Hofert et al. (2018). 

Copulas are mathematical functions that represent the 

relationships (dependency) among random variables. 

Definition 1.1 

N-dimensional copulas are multivariate distribution 

functions. (d.f.) C, with margins uniformly distributed in 

[0,1] (U(0,1)) and the following properties: 

 

1. C: [0,1]n → [0,1]; 

2. C is grounded and increasing 

3. C has margins Ci which satisfy Ci = C(1,...,1,u,1,...,1) 

= u for all u ∈ [0,1] 

 

The main outcome of the copula theory is the well-

known Sklar theorem by Sklar (1959). As stated therein. 

Theorem 1.2 

Sklar theorem for any real valued random variables 

X1,..., Xn with joint distribution function F and univariate 

marginal distribution functions F1,..., Fn there exists a 

copula C such that: 

 

( ) ( ) ( )( )1 1 1,..., ,...n n nF x x C F x F x=  (1) 

 

In contrast, given a copula C and univariate 

distribution functions F1,..., Fn, then the function F 

defined by (1) is a d-dimensional distribution function 

with univariate margins F1,..., Fn. 

There are many proofs of this theorem that arise from 

different properties of copulas. 

A proof by multilinear interpolation was established, first 

in the bivariate situation, by Schweizer and Sklar (1974), and 

later in the multivariate case by Carley and Taylor (2002). 

Moore and Spruill (1975) used the idea of generalized 

probability integral transformation to prove the theorem; 

(Durante et al., 2012) showed the existence of a random 

vector’s connection to a copula without presenting 

analytically or probabilistically its form; and finally, 

(Benth et al., 2022) have demonstrated a topological 

demonstration of the theorem in any dimension. 

Furthermore, the copula is unique if F1,..., and Fn are 

continuous functions. Sklar’s theorem gives a flexible 

approach to the construction of multivariate distributions and 

to derive from any monotonic transformation certain features 

of the copula, such as invariance, which is particularly useful 

in financial applications where logarithmic conversions are 

commonly utilized. Also, every copula C satisfies: 
 

( ) ( )1 2 1 2

1

max 1;0 , ,..., min , ,...,
d

i n n

i

u n C u u u u u u
=

 
− +   

 
  

 
where the upper bound for all d = 2 is a copula and the 

lower bound for all d ≥ 2 is a copula. 



Jimbo Henri Claver et al. / Journal of Mathematics and Statistics 2023, Volume 19: 1.12 

DOI: 10.3844/jmssp.2023.1.12 

 

3 

Classes and Families of Copulas in Finance 

Copulas come in a variety of families, some of which 

are more suitable for financial modeling; these families 

are stated in the next few subsections. 

Elliptical Copulas 

One of the most popular types of copulas in use today is 

the elliptical one. With the aid of Sklar’s theorem, they 

are created from elliptical distributions and are used to 

dependence structure these elliptical distributions. The 

normal and t-copulas are the two most prominent 

elliptical copulas and they have the following 

respective density functions: 

 

( ) ( )1

1 1/2

1 1
,..., ; exp

|| || 2
nC u u l − 
 = − −   

  (2) 

 

where, ( ) ( )( )1 1

1 ,..., nu u − −=    with Φ−1 the quantile 

function of the univariate standard normal distribution 

and l the d-dimensional identity matrix: 

 

( )

( )
1

1/ 2

1

2
1

1
2 2

1

|| ||
2 2

,..., ; ,
1

2

1
1

1

n

n d

v n

v

n
i

i

v n v

C u u v
v

v

v

 



−

−

+
−

−

+
−

=

+   
    

   =
 + 
  
  

 
+  

 

 
+ 

 


 (3) 

 

( ) ( )( )1 1

1 ,...,v v nt u t u − −=  compared to normal copulas, 

the t-copulas are more efficient at modeling tail 

dependencies in the distribution with an additional 

parameter, the degrees of freedom v. As n gets smaller, 

the dependence gets stronger. The t-copula converges to 

the normal copula for s → ∞. 

Archimedean Copulas 

The Archimedean copulas, which may be easily built 

with univariate generating functions and have closed 

forms, represent another significant family of copulas. 

The advantage of these copulas is that they may capture 

the pattern of positive or negative dependence between 

the variables (asymmetrical dependence) patterns). The 

main disadvantage is their small number of parameters, 

which reduces flexibility. An archimedean copula is a 

copula of the form: 

 

( ) ( ) ( )( )1 1

1 1,..., ...n nC u u u u  − −= + +  (4) 

where, u1,..., un ∈ [0,1] for a so called generator ψ: [0,∞] 

→ [0,1] which satisfies ψ(0) = 1, ψ(∞) = limt→∞(ψ(t) 

= 0 and which is strictly decreasing on [0,inf{t: ψ(t) = 

0}]. It follows from (4) that archimedean copulas are 

exchangeable. 

The density of the Archimedean copulas is given by: 

 

( ) ( ) ( )( )( ) ( )1 1

1 1

1

,..., ...
n

n

n n i

i

C u u u u u   − −

=

= + +   (5) 

 

where, ψ(n) is the nth mixed partial derivative of the inverse 

generator. 
The clayton, frank, and gumbel copulas are among the 

members of the family of archimedean copulas, which is 
primarily employed in the area of finance. Table 1 their 
respective generator functions and distributions. 
where, θ ≥ 0 for clayton and frank and θ ≥ 1 for gumble. 

An increase in the parameter theta suggests a stronger 
dependence for each of these archimedean copulas. 

Estimation and Conformity Test of Copulas 

Considering the marginal distributions of F1,..., and Fn 

is unknown, the copulas C need to be estimated assuming 

that they are members of a parametric, semiparametric, or 

nonparametric copula family. 

Estimation 

If we consider F1,..., Fn to be members of absolutely 

continuous parametric families of univariate 

distributions. Assuming that the unknown copula Cθ0 

belongs to the parametric family of distribution 

functions, the estimation problem of interest entails 

estimating it. The Inference Functions for Margin 

Estimator (IFME), a two-stage estimator, is used to 

achieve this: 

 

1. First, the parameters αi, i = 1,...,n of the marginals 

distributions are estimated via maximum likelihood: 

 

( )
1

ˆ ln ;
N

j

d i i

j

argmax f x 
=

=   (6) 

 

2. Next, the copula’s parameter, θ that, according to 

maximum likelihood estimation, best describes 

these marginals: 

 

( )( )( )1

1

ˆ ln ;...; ;
N

j j

i n i

j

argmax C F x F x 
=

=   (7) 

 

Because it requires less processing, this IFME 

estimation approach is more effective than the accurate 

MLE method. 



Jimbo Henri Claver et al. / Journal of Mathematics and Statistics 2023, Volume 19: 1.12 

DOI: 10.3844/jmssp.2023.1.12 

 

4 

Conformity Test 

This is a fit test that fits chosen copula model to the 

data well. The most effective tests are based on the 

processes ( )ˆ
ˆn C C


− where Ĉ  and ˆC


are, respectively, 

the empirical copula and the parametric copula. 

The Akaike Criterion (AIC) is used frequently to select 

the best copula: 

 

( )( )2 logAIC m l = −  (8) 

 

where, m is the number of parameters to be estimated, n 

is the size of data, and l(θ) is the model likelihood for the 

estimated parameter θ. 

Copulas Mixtures 

Several different copula groups are combined linearly 

to form a mixed copula. A mixed copula function is 

defined mathematically as: 

 

( )( ) ( )

( ) ( )( )

1

1

1 1 1

1

,..., , ,

, ,..., , ;

m

m k k

k

m

k k p p p k

k

mix C C u C u

C F x F x

  

   

=

=

=

=




 

 

where, C1,..., Cm is a collection of known base copulas with 

unidentified parameters.    
1

,
m

k k k
 

=
 are the priori 

probabilities satisfying 0 ≤ λk ≤ 1 and 
1

1
m

kk


=
=  and m 

is the number of components for all k ∈ {1,..., m}. 

When only one component is present in a mixed copula, 

it is known as a single copula. All linear functionals of 

the mix (C1,..., Cm) (u, θ) can be calculated as the 

equivalent mixture of linear functionals of the 

component C1,..., Cm. For instance, in the bivariate 

case, Spearman’s rho, the coefficient of lower tail 

dependence, the coefficient of upper tail dependence, 

and the density of mix (C1,..., Cm)(u, θ) are simply: 

( ) ( ) ( ) ( )
1 1 1 1

, ,
m m m m

k m k k l k k u k k k

k k k k

C w C w C and C u    
= = = =

     

 

Note that sampling from a mixture of copulas is 

immediate from the sampling of individual components. 

The copulas used in finance are mostly from the 

archimedean and elliptical families of copulas, 

although the survival copulas are also used. Each of 

these copulas has its own characteristics that help it 

model the dependency structure. For example, gaussian 

copulas better model the linear dependence but are 

symmetrical, which is not convenient for fat tailed 

distributions; on the other hand, gumble copulas are 

asymmetrical and are best for right tail distributions. 

Hence, mixing these copulas helps to combine their 

different properties into a single copula. 

Fitting Mixtures to Data 

The three most commonly used methods are pseudo 

maximum likelihood, maximum likelihood, and 

Empirical Cumulative Density Function (ECDF). 

A two-step process is used in the pseudo maximum 

likelihood: 

 

• Map each marginal piece of data to its quantile using 

the ECDF 

• For the quantile data, determine Kendall’s ̂  and use 

it to determine ̂  

 

For elliptical copulas, θ estimated here is their ρ, the 

correlation parameter. 

As for the maximum likelihood and ECDF, the 

model and likelihood function can be optimized from 

copula density c(u1, u2) as the objective function to 

maximize. This is slow, though, and even for a 

bivariate copula with arbitrary univariate marginal 

distributions, it might not be the best solution with 

many parameters to fit. Hence, in general, we don't use 

this strategy and ECDFs are instead frequently used.

 

Table 1: Generating function, distribution, tail dependence, and tau of Archimedean copulas 

Copulas 
1

 −
 Cθ(u1,...,un) λL λU τ 

Clayton ( )
1

1 , 0t  


− −   ( )
1

1
1

n

ii
u


−

−

=

 +
    

1

2 

−

 0 
2



 +
  

Gumble ( )ln , 1t

−   ( )

1

1
exp ln

n

ii
u

 

=

 
  − −
   

 
  0 

1
2 2


−  

1
1


−  

Franck 
1

ln 0
1

te

e






−

−

−
− 

−
 

( )
( )

1

1

11
ln 1

1

i
n u

i

n

e

e





−

=

−
−

 −
 +
  −
 


 0 0 

2 0

4 4
1

1t

t

e



 
− +

−  
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Valuation Approach for Multivariate Options 

The objective is to price options whose underlying 

assets are risky assets (St)t∈+
, where: 

 

t t t t tdS S dt dW = +  (9) 

 

where, µt and σt are constants and Wt is a standard 

geometric Brownian motion. 

A well-known result from the martingale option pricing 

theory is the fundamental theorem of option pricing. 

Theorem 2.1 

Let (Ω, F, (F ) 0 ≤ t ≤ T, ) be a filtered probability space. 

In No Arbitrage Opportunity (NAO), there exists a risk 

neutral measure  equivalent to  under which  
0

T
rt

t t
e S−

=
 

is a -martingale and such that at any time t ∈ [0,T], the 

value of the contingent claim payout (fair or without 

arbitrage) P is given by: 

 
( ) ( ) ( )| 0
T t r T t r

t t T TV e P e Pf X dX t T
− − − −

 = =    F  (10) 

 

Where, T ≥ 0 is the option’s maturity time, r is a real 

positive parameter that usually represents the risk-free 

rate and f(XT) is the underlying assets’ joint risk neutral 

density probability function. 

Recall that a market is without arbitrage opportunity if 

and only if it admits at least one equivalent risk neutral 

probability measure . 

Proposition 2.2 

The price at time t ∈ [0,T] of European call and put 

options for complete markets with strike price K, risk free 

rate r, and maturity T are respectively given by: 

 

( ) ( )
( ) ( )( ) ( )( )

|

_

T t r

t T t

T t r

t

V e K S

Ke d T t S d T t

+− −

− −

+

 = −
  

=  − − −  − −

F
 

 

and: 

 

( ) ( )

( )( ) ( ) ( )( )

|

_

T t r

t T t

T t r

t

V e S K

S d T t Ke d T t

+− −

− −

+

 = −
  

=  − − −  − −

F
 

 

with: 

 

( )
( ) ( )( )2log / / 2tS K r T t

d T t
T t




+

+ + −
− =

−
 (11) 

( )
( ) ( )( )2log / / 2tS K r T t

d T t
T t




−

+ − −
− =

−
 (12) 

 

where, Φ is the standard gaussian cumulative distribution 

function and 0 ≤ t ≤ T. 

The study attempts to uncover valuation implications 

resulting from the use of dependence structures in mixed 

copulas and mixed marginal distributions. The normality 

of stock returns is a fundamental assumption in 

mathematical finance. However, empirical evidence often 

contradicts this theoretical foundation. As a consequence, 

the application of alternative models is an important 

research topic in financial modeling. The limitations of 

this assumption are. 

Stock prices are frequently assumed to follow a 

geometric Brownian motion process; therefore, financial 

returns are considered to be independent and normally 

distributed, but the geometric Brownian motion 

assumption has many shortcomings. 

The theoretical distribution, thus estimated, 

guarantees the exact reproduction of the mean and the 

variance. On the other hand, some empirical 

characteristics of the distribution of returns are not 

reproduced by the gaussian law: 

 

1. Compared to the tails of the gaussian law distribution, 

the empirical distribution’s tails are thicker. Extreme 

values of the returns are more often observed, hence 

producing a higher kurtosis 

2. Because the empirical distribution is asymmetric 

compared to the gaussian distribution, it has a 

negative skewness coefficient 

 

Finite Gaussian Mixtures 

A Gaussian Mixture (GM) distribution model is a 

multivariate distribution that consists of multivariate 

gaussian distribution components. The mixture is defined 

by a vector of mixing proportions and each component 

is specified by its mean and covariance. It has been 

shown, for example, by Cha (2010) that the gaussian 

mixture with two or more normal distributions 

increases the model fit dramatically and captures the 

shape of the empirical distribution. 

A GM model represents a distribution as: 

 

( ) ( )
1 1

| , , 1 0
K K

j k k j j

j j

f x x and j   
= =

=  =     (13) 

 

where, (x|µk, Σk) is the density function of multivariate 

Gaussian distribution. 
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Also, πj represents the prior probability for Ωj and each 

2

2

1

j

x 


 

 −
 
 

is the conditional probability density of X 

given Ωj. Hence for every realization x of X, the posterior 

probabilities for each regime are given by: 
 

1

|

j j

j j

j
k

h h

h
h h

x

P X x
x

 


 

 


 =

 −
 
 
   = =   −
 
 



 

 

Numerous methods, such as Bayesian approaches, the 

method of moments, maximum likelihood, and graphical 

methods, can be used to fit mixture distributions. Due to the 

existence of an underlying statistical theory, the maximum 

probability method rises to the top among the others. 

The EM algorithm is the method of preference for 

estimating the mixing model’s parameters since it 

produces simple estimators. Let x1, x2,..., xn  be an 

observed random sample coming from a univariate GM 

and let: 
 

( )2 2 2

1 2 1 2 1 2, ,..., , , ,..., , , ,...,k k k         =  

 
be its vector parameters, then the corresponding 

likelihood function is: 
 

( )
1 1

ln
n k

j j

i j j j

x
l

 
 

 = =

  −
 =  

  
  

   

 
in order to estimate θ, l must be maximized subject to

1
1

k

kj


=
= . 

The EM Algorithm 

The maximum likelihood estimate of θ can be 

obtained by the following iterative process known as the 

EM algorithm: 
 

Algorithm 1: EM algorithm 

 Input: Data τ, initial guess θ(0), and evaluate the log 

likelihood with these parameters 

 Output: Approximation of the maximum likelihood 

estimate. 

1 t  1 while change in Log-likelihood ≥ ε do 

 Expectation Step: Evaluate the posterior 

probabilities P(t)(Zi|τ) with θ(t-1) and compute the 

expectation 

2 ( ) ( )
( )( ): ln , |
tt

P t
Q P Z   =

 
 

 Maximization Step: Let θ(t) ← argmaxθ ∈ Θ Qt (θ) 

3 t  t +1 

 Return: θ(t) 

For more information on the fitting of mixture 

distributions and the EM algorithm, (Ghojogh et al., 2019). 

Several families of distributions have been proposed 

to overcome the shortcomings of the gaussian law: 

 

• Alpha stable distributions 

• The finite mixtures of distributions, such as 

gaussian mixtures 

• Simple and generalized student’s t-distributions 

• Hyperbolic distributions 

 

We are interested here in the mixture of gaussian 

distributions for the following reasons: 

 

• It is simple to simulate 

• It allows us to correctly approach all the alternative 

distributions cited above 

• It makes it possible to reproduce various features 

observed in the data such as average, kurtosis, 

skewness, and variance 

• It has several theoretical characteristics that make it 

simple to manipulate in the frame of a hypothetical 

asset price valuation model 

 

Results and Discussion 

In our application, we work with the dataset downloaded 

from the Yahoo finance website. In particular, we consider 

the following returns: BNP Paribas SA (BNP.PA) and Louis 

Vuitton stocks (LVMUY) Fig. 2. All daily data is extracted 

from Yahoo finance for a total of 237 days, from January 

1, 2020, to December 31, 2020 (Fig. 1), resulting in the 

same number of closing levels for each return. We 

write an option contract X based on this data, with the 

payoffs P in Table 2 at maturity T ≥ 0: 

First, we correct the database with respect to time 

synchronization between closed prices and convert 

them to logarithmic returns (log returns). For each 

asset, Eq. (14) converts a closed price series S into a 

log returns r series: 
 

,

,

1,

log
t i

t i

t i

S
r

S −

=  (14) 

 
where, i ∈ (1,d) is the number of assets, t ∈ (1,T) is a time 

point, in our case d = 2, T = 237 where K ≥ 0 is the strike 

price of the option X and B ≥ 0 is the barrier level our 

approach consists of the following steps: 

 

1. Generate log return data from our historical data 

returns following Eq. (14) 
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2. Estimate the parameters of the gaussian mixture regime 

3. Transform the log return sample into the pseudo sample 

4. Estimate the parameters of the copulas mixtures 

using copulas suitable for financial applications 

5. Calculate the option prices using the monte Carlo 

numerical integration method 

 

Visualizing the above graphs, the following 

observations are made about the stock price for both BNP 

and LVMUY: 

 

• Stock prices never reach the zero value 

• Stock prices are continuous everywhere 

• Stock prices are never negative 

• Stock prices show randomness 

• stock prices increase in the long run 

From the quantile plots (Figs. 3-4) of the returns and 
the value of the kurtosis (greater than 3) in the 
descriptive statistics in Table 3, we can infer that the 
returns are not normally distributed. 

At first, using the Expectation Maximization (EM) 
algorithm, the parameters of the two gaussian regimes that 
make up the gaussian mixture are calculated for each of 
the two assets. We shall limit ourselves to a mixture of 
two gaussian distributions. Also, we underline the 
presence of a fat tail for the returns of returns, in 
agreement with the non-gaussianity of the results. 
 

Table 2: Options payoff 

Option Payoff 

Worst option ( )
( )

( )

( )

( )
1 2

1 2

max min , ,0
0 0

S T S T
X T K

S S

   
= −      

 

Spread option X(T) = max {S1 −S2 −K; 0} 

Up and out barrier X(T) = max(S1(T) + S2(T)-k)S1(t) + S2(t)≤B 

 

 

 

Fig. 1: Stocks dynamic 

 

 

 

Fig. 2: Stocks return 
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Fig. 3: QQ-BNP 

 

 

 

Fig. 4: QQ-LVMUY 

 

Table 3: Gaussian mixture parameters 

  Regime 1 Regime 2 Gaussian mixture Empirical distribution 

BNP.PA Mean 0.0002059686 -0.003024669 -0.0006774372 -0.00046660 

 Variance 0.0254138500 0.063095280 0.0013487840 0.02143490 

 Skewness 0.0000000000 0.000000000 -0.1245244000 -0.18622490 

 Kurtosis 3.0000000000 3.000000000 6.0715980000 3.25609200 

 Proportion 0.7918247000 0.208175300 -0.0000000000 -0.00000000 

 Mean 0.0003270575 -0.083608300 0.0016211340 0.00149100 

LVMUY variance 0.0229391500 0.026349790 0.0007847089 0.01630201 

 Skewness 0.0000000000 0.000000000 0.3588690000 -0.61618140 

 Kurtosis 3.0000000000 3.000000000 3.7702700000 4.29672600 

 Proportion 0.9658321000 0.034167900 -0.0000000000 -0.00000000 
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Table 4: Copulas mixture parameters 

Mixture Values ̂  ̂  ̂ 1 (CLTD, CUTD) 

 Estimated value -0.064256780 1.88077672 0.90251515 (0,0.05404298) 

Clayton gumble Standard error 0.088591830 1.27086298 0.13036934  

 Estimated value -0.023207010 1.92443290 0.92202054 (0,0.04416826) 

Gaussian gumble Standard error 0.099159210 1.55531956 0.13535726  

 Estimated value 0.118835900 -0.21130660 0.59644730 (0,0) 

Gaussian clayton Standard error 0.135612180 0.09436311 0.32229041  

 Estimated value -0.052031380 0.36477681 0.19598048 (0,0) 

Gaussian frank Standard error 0.438890700 1.48452170 2.10518570  

 Estimated value -0.115452400 1.05600050 0.54800890 (0,0) 

Clayton franck Standard error 0.175625600 2.25166300 0.81296650  

 Estimated value 2.036135240 0.02156605 0.05678242 (0, 0.03375477) 

Gumble franck Standard error 0.175625600 2.25166300 0.81296650  
 
Table 5: Fitted Copulas mixture parameters 

Mixture ̂  ̂  ̂ 1 Statistic of test 

Clayton gumble -0.2608 1.5703 0.6011 3.692 

Gaussian gumble -0.6325 1.2304 0.2788 8.889 

Gaussian clayton -0.5161 0.9985 0.4266 12.07 

Gaussian frank -0.5739 4.0333 0.4314 13.33 

Clayton franck -0.5127 0.7306 0.1924 5.542 

Gumble franck 1.0000 7.5821 0.8117 3.307 
 

In the next step, we determine the parameters of the 

copula’s mixtures, which are shown in Table 4. The 

estimation of the copula parameters and weights is 

jointly obtained by the minimization of the negative log 

likelihood of the weighted densities from the copulas, 

as in Pfaff (2016). Copula densities are computed as in 

Hofert et al. (2018). Four commonly used copulas in 

the finance field, namely gaussian, clayton, gumbel, 

and frank, consist of our candidate copula families. 

Indeed, all possible combinations of these four copulas 

have the ability to capture most of the possible 

dependence structures. We see from the Coefficient of 

Upper Tail Dependence (CUTD) that the mixtures that 

capture dependence in the upper tail are clayton 

gumble, gaussian gumble, and gumble frank. In 

accordance with the IFME, the copula mixtures are 

fitted with a mixture of gaussian distributions and the 

fitted copula parameters are obtained through a 

maximum likelihood estimate and displayed in Table 5. 

Now we run the monte Carlo simulation with 50 000 

simulations, which involves simulating a large number 

L of independent paths, 1 2, ,...,l l l

nS S S  from the simulated 

return and estimating the option price using the average 

simulated discounted option payoff across the paths. 

In this, we provide the simulation results for the 

prices of all the alternatives mentioned above based on 

the basket (BNP, LVMUY). On the basis of the 

univariate risk-neutral distributions and the calibrated 

copulas, the theoretical values of their prices are 

calculated at different values of K. In each case, we 

normalize the underlying to have their prices at t = 0 

and assume a constant risk-free rate of r = 0.03. 

Conclusion 

This study proposes an approach to price multivariate 

options taking into account the extreme values and the 

dependence structure of the assets returns using mixtures of 

copulas and gaussian marginals. An application is made on a 

basket of the financial market (BNP.PA and LVMUY) 

downloaded from the Yahoo finance website (between 

January 1, 2020, and December 31, 2020). 

At first, each asset's log returns are modeled by a mixture 

of gaussian distributions (Table 3) In all the cases, there 

exists a gaussian distribution with a negative mean and 

another one with a positive mean. one explanation is that 

there exist two regimes: The first one corresponds to 

potentially significant losses (for example, due to a 

financial crash), and the second one to the standard 

evolution of prices. The dependence between the returns 

is estimated using copulas mixtures. 

The choice of the best fitted copulas mixture is 

determined by the statistic parameter of the MLE which 

showed that clayton gumble and gumble frank (Table 5) are 

the most effective at simulating dependency structures 

of the log returns. Prices of three options are obtained 

via simulation and the Clayton gumble and Clayton 

gaussian have relatively large values for all the options 

meaning that they capture more information than the 

other structures (Tables 6-8 and Figs. 5-6). This can 

also be observed from the contour plots (Figs. 7-8) 

which shows the strength of the dependency. Also, the 

differences in prices for all the copulas are very small 

showing that all the mixture captures the dependence 

structure of the returns. 
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Fig. 5: Clayton gumble wireframe plot 
 

 
 
Fig. 6: Clayton gaussian wireframe plot 

 

 

Fig. 7: Clayton gumble contour plot 

 

 
 
Fig. 8: Clayton gaussian contour plot 

 

Table 6: Worst of options prices with different strikes (K) 

 Clayton gumble Gaussian gumble Gaussian clayton Gaussian frank Clayton franck Gumble franck 

K = 0.5 0.3030 0.3010 0.298 0.3010 0.2950 0.313 

K = 1.0 0.0710 0.0690 0.073 0.0694 0.0660 0.077 

K = 1.5 0.0130 0.0126 0.014 0.0121 0.0111 0.016 

 
Table 7: Prices of barrier options with different strikes K 

 Clayton gumble Gaussian gumble Gaussian clayton Gaussian frank Clayton franck Gumble franck 

K = 1 1.283 1.2730 1.284 1.277 1.258 1.286 

K = 2 0.476 0.4560 0.485 0.478 0.471 0.482 

K = 3 0.127 0.1200 0.124 0.120 0.121 0.155 

 

Table 8: Prices of the spread options with different strikes K 

 Clayton gumble Gaussian gumble Gaussian clayton Gaussian frank Clayton franck Gumble franck 

K = 0.5 0.045 0.0385 0.0395 0.0445 0.0461 0.0371 

K = 1.0 0.015 0.0170 0.0167 0.0150 0.0180 0.0160 
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Further research could consider the use of 

nonparametric or hierarchical archimedean copulas 

with gaussian mixture marginals. Also, the use of cross 

validation or numerical algebraic geometry may be 

used to find the optimal number of gaussian mixture 

components. 

Data Availability 

Data are available on request. 

Acknowledgment 

The associate editor and the anonymous reviewers 

are sincerely appreciated for their helpful comments 

and recommendations that helped us to improve the 

quality of this study. 

Funding Information 

The authors have not received any financial support or 

funding to report. 

Author’s Contributions 

Jimbo Henri Claver: Drafted the research project and 

gave final approval of the version to be submitted and any 

revised version. Contributed to reviewed the critical 

aspect of the work and its intellectual significance. 

Tatanfack Emerson: Contributed to the conception 

and designed of the work, the collection, analysis, and 

interpretation of data. 

Shu Felix Che: Contributed to the written of the 

manuscript. 

Ethics 

This manuscript is the sole creation of the authors and 

it has not been previously published. There are no 

potential ethical problems because the authors have 

already read and approved the paper. 

References 

Barban, A., & Di Persio, L. (2014). Multivariate option 

pricing with pair-copulas. Journal of Probability, 2014. 

https://downloads.hindawi.com/archive/2014/83920

4.pdf 

Ball, C, & Roma, A. (1994). Stochastic volatility option 

pricing. Journal of Financial and Quantitative 

Analysis, 29(4), 589-607. 

 https://doi.org/10.2307/2331111 

Benth, F. E., Nunno, G. D., & Schroers, D. (2022). A 

topological proof of Sklar’s theorem in arbitrary 

dimensions. Dependence Modeling, 10(1), 22-28. 

https://doi.org/10.1515/demo-2022-0103 

Berton, E., & Mercuri, L. (2021). Spread Option Pricing 

in a Copula Affine GARCH (p, q) Model. arXiv 

preprint arXiv:2112.11968. 

 https://doi.org/10.48550/arXiv.2112.11968 

Cai, Z., & Wang, X. (2014). Selection of mixed copula 

model via penalized likelihood. Journal of the 

American Statistical Association, 109(506), 788-801. 

https://doi.org/10.1080/01621459.2013.873366 

Carley, H., & Taylor, M. D. (2002). A new proof of 

Sklar’s theorem. Distributions with Given Marginals 

and Statistical Modelling, 29-34. 

 https://doi.org/10.1007/978-94-017-0061-0_4 

Cha, S. Y. (2010). Pricing Derivatives with Optimized 

gaussian Mixture. Available at SSRN 2471477. 

http://doi.org/10.2139/ssrn.2471477 

Chiou, S. C., & Tsay, R. S. (2008). A copula-based 

approach to option pricing and risk assessment. 

Journal of Data Science, 6(3), 273-301. 

 https://doi.org/10.6339/JDS.2008.06(3).503 

Church, C. (2011). Pricing of path-dependent basket 

options using a copula approach. 

 https://www.semanticscholar.org/paper/Pricing-of-

path-dependent-basket-options-using-a-

Church/e396ed6b4b645c85badeca26a02853a62158a

67b#paper-header 

Durante, F., Fernández-Sánchez, J., & Sempi, C. (2012). 

Sklar’s theorem obtained via regularization 

techniques. Nonlinear Analysis: Theory, Methods & 

Applications, 75(2), 769-774. 

 https://doi.org/10.1016/j.na.2011.09.006 

Ghojogh, B., Ghojogh, A., Crowley, M., & Karray, F. 

(2019). Fitting a mixture distribution to data: 

Tutorial. arXiv preprint arXiv:1901.06708. 

https://doi.org/10.48550/arXiv.1901.06708 

Hassane, A. M., Diakarya, B., WendKouni, Y., & 

Bisso, S. (2021). Pricing Multivariate European 

Equity Option Using Gaussians Mixture 

Distributions and EVT-Based Copulas. 

International Journal of Mathematics and 

Mathematical Sciences, 2021, 1-9. 

 https://doi.org/10.1155/2021/7648093 

Heston, S. L. (1993). A closed-form solution for options 

with stochastic volatility with applications to bond 

and currency options. The Review of Financial 

Studies, 6(2),327-343 

https://doi.org/10.1093/rfs/6.2.327 

Hofert, M., Kojadinovic, I., Mächler, M., & Yan, J. 

(2018). Elements of copula modeling with R. 

Springer International Publishing. 

 https://link.springer.com/book/10.1007/978-3-319-

89635-9 

https://doi.org/10.1155/2021/7648093
https://doi.org/10.1093/rfs/6.2.327


Jimbo Henri Claver et al. / Journal of Mathematics and Statistics 2023, Volume 19: 1.12 

DOI: 10.3844/jmssp.2023.1.12 

 

12 

Kim, M. S., & Kim, S. (2015). Digital Option Pricing 

based on Copulas with Stochastic Simulation. The 

Pure and Applied Mathematics, 22(3), 299-313. 

 https://doi.org/10.7468/JKSMEB.2015.22.3.299 

Kouritzin, M. A., & Mackay, A. (2020). Branching 

particle pricers with Heston examples. 

International Journal of Theoretical and Applied 

Finance, 23(01), 2050003. 

 https://doi.org/10.1142/S021902492050003X 

Malgrat, M. (2013). Pricing of a “worst of” option using 

a Copula method. https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A668285&

dswid=-2357 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moore, D. S., & Spruill, M. C. (1975). Unified large-

sample theory of general chi-squared statistics for 

tests of fit. The Annals of Statistics, 599-616. 

https://www.jstor.org/stable/2958431 

Pfaff, B. (2016). Financial risk modelling and portfolio 

optimization with R. John Wiley & Sons. 

https://doi.org/10.1002/9781118477144 

Schweizer, B., & Sklar, A. (1974). Operations on 

distribution functions not derivable from operations on 

random variables. Studia Mathematica, 52(1), 43-52. 

https://doi.org/10.4064/SM-52-1-43-52 

Sklar, M. (1959). Fonctions de repartition an dimensions 

et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 

229-231. https://doi.org/10.5023/jappstat.32.77 

https://doi.org/10.7468/JKSMEB.2015.22.3.299

