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Abstract: A novel extension of the Inverted Exponentiated Weibull (IEW) 

distribution is achieved through the utilization of the generator Alpha Power 

(AP) transformation. The resulting extended distribution is denoted as the 

Alpha Power Inverted Exponentiated Weibull (APIEW) distribution, which 

encompasses various sub-models. The statistical characteristics of the newly 

proposed distribution are established, encompassing the hazard rate 

function, mean residual life, mean inactivity time, quantile function, 

moments, Rényi entropy, and order statistics. The unknown parameters of 
the proposed distribution are estimated via the maximum likelihood 

estimation technique. Subsequently, two sets of application data are 

employed to demonstrate the adaptability of the model. 
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Introduction 

The Inverse Weibull (IW) distribution is widely 

employed in the field of life reliability and testing 

research. It is considered the reciprocal counterpart of the 

conventional Weibull distribution, as discussed by 

(Drapella 1993; Mudholkar and Kollia 1994), This 

distribution is utilized to characterize the deterioration of 

mechanical parts within diesel engines, including 

components like the crankshaft and pistons, as highlighted 

by Keller et al. (1982). The expressions for the 
Cumulative Distribution Function (CDF) and Probability 

Density Function (PDF) of the IW distribution can be 

respectively found in the following equations: 
 
𝐹(𝑥) = 𝑒−𝑣𝑥

−𝜂
, 𝑥 ≥ 0, 𝑣 > 0, 𝜂 > 0 (1) 

 
And: 

 
𝑓(𝑥) = 𝑣𝜂𝑥−(𝜂+1)𝑒−𝑣𝑥

−𝜂
, 𝑥 ≥ 0, 𝑣 > 0, 𝜂 > 0 (2) 

 
where, ν is the scale parameter and η is the shape 

parameter. 

Numerous generalizations of the inverse Weibull 

distribution have been examined in recent years by 

various researchers. These include the generalized inverse 

Weibull distribution proposed by De Gusmão et al. 

(2011), the modified inverse Weibull distribution 

introduced by Khan and King (2012), the beta inverse 
Weibull model by Hanook et al. (2013), the gamma 

inverse Weibull distribution by Pararai et al. (2014), 

the Kumaraswamy modified inverse Weibull 

distribution by Aryal and Elbatal (2015), the reflected 
generalized beta inverse Weibull distribution by 

Elbatal et al. (2016), the Marshall-Olkin extended 

inverse Weibull distribution by Okasha et al. (2017); 

Okasha et al. (2020a-b; 2021; 2022), the Bayesian 

estimation of Marshall Olkin extended inverse Weibull 

under progressive type II censoring by Lin et al. (2023) 

and the Generalized modified inverse Weibull 

distribution by Saboori et al. (2020). 

The focus is on the Inverted Exponentiated Weibull 

(IEW) distribution, as introduced by De Gusmão et al. 

(2012); and Lee et al. (2017) which is based on the 

transformation
1

Z
X

 , where X follows the Exponentiated 

Weibull (EW) distribution. The Cumulative Distribution 

Function (CDF) and Probability Density Function (PDF) 

of the IEW distribution are provided accordingly: 
 
𝐹(𝑥) = 1 − (1 − 𝑒−𝑣𝑥

−𝜂
)𝜉 , 𝑥 ≥ 0, 𝑣 > 0,𝜂 > 0, 𝜉 > 0 (3) 

 
And: 

 

   
1

1
1 , 0, 0, 0, 0

vxvxf x v x e e x v





  
 


          

 
 (4) 

 
where, η and ξ are the shape parameters and ν is the scale 

parameter of IEW distribution. Bayesian parameter 
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estimation of the IEW distribution has been previously 

examined by Lee et al. (2017). 

In contrast, (Mahdavi and Kundu, 2017) introduced a 
modification to the underlying Cumulative Distribution 

Function (CDF) by incorporating an additional parameter 

to generate a range of distributions. This approach is 

referred to as the Alpha Power Transformation (APT). If 

F(x) represents the CDF of any distribution, then the CDF 

and PDF of the APT can be expressed as: 
 

 

 

 

1
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, 1

F x

APTg x

F x


 





 
 

  
 

  (5) 

 
And: 
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The APT distribution has been extensively studied, with 

various distributions such as the alpha power Weibull 

distribution by Nassar et al. (2017; 2019), the alpha power 

Gompertz distribution by Eghwerido et al. (2021), the 

alpha power transformed inverse Lindley distribution by 

Dey et al. (2019), and alpha power inverse Weibull 

distribution by Basheer et al. (2019; 2021; 2022).  
The APIEW distribution is introduced in this study as 

a new modification of the IEW distribution with four 

parameters. It encompasses a range of lifetime 

distributions, including the inverse exponential, inverse 

Rayleigh, IW, alpha power IW, and IEW distributions, as 

special cases. The APIEW distribution is highlighted due 

to its inclusion of twelve-lifetime distributions as sub-

models and its PDF representation as a mixture of IW 

distribution, which proves advantageous for deriving its 

key properties. 

Alpha Power Inverted Exponentiated Weibull 

Distribution 

By inserting the CDF of the IEW distribution given by 

(3) in the CDF of the APT distribution given by (5), we 

get the CDF of a new distribution denoted as APIEW 

(x;α,ν,η,ξ) distribution given by: 
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where, ν > 0, η > 0, ξ > 0. 

 

The PDF of APIEW distribution is defined as follows: 
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 (8) 

 
where, ν > 0, η > 0, ξ > 0. 

Through the application of the generalized binomial 

expansion and the power series, a valuable linear portrayal 

of the Probability Density Function (PDF) is derived. (if 

α > 0, α  1) as: 
 

       1 1

0

1
m vx

APIEW m
m

g x W v m x e
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Several sub-models of the APIEW distribution are 

enumerated in the Table (1). 

Figure (1) provides a graphical illustration of the PDF 

corresponding to various parameter values. 

Reliability Analysis 

The reliability function of APIEW distribution is 

defined as follows: 
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Hazard Rate Function 

The HR function of APIEW distribution is defined as 

follows: 
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 (11) 

 
The graphical representations of the HRF for various 

parameter values are illustrated in Fig. (2). 

Reversed Hazard Rate Function 

The reversed hazard rate (RHR) function of APIEW 

distribution is defined as follows: 
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Table 1: Sub-models of the APIEW (α, ν, η, ξ) distribution 

  Parameters 
 Models ----------------------------------------------------------------------------------- 

Inverted Exponentiated Weibull (IEW) 1 ν η ξ 

Inverted Exponentiated Fréchet (IEF) 1 1 η ξ 
Inverted Exponentiated Rayleigh (IER) 1 ν 2 ξ 
Inverted Exponentiated Exponential (IEE) 1 ν 1 ξ 
Alpha Power Inverse Weibull (APIW) α ν η 1 
Alpha Power Fréchet (APF) α 1 η 1 
Alpha Power Inverse Rayleigh (APIR) α ν 2 1 
Alpha Power Inverse Exponential (APIE) α ν 1 1 

Inverse Weibull (IW) 1 ν η 1 
Fréchet (F) 1 1 η 1 
Inverse Rayleigh (IR) 1 ν 2 1 
Inverse Exponential (IE) 1 ν 1 1 

 

 

 

 
 
Fig. 1: Plot of the PDF of the APIEW distribution for some 

values of parameters 

 

 

 
 
Fig. 2: Plot of the HRF of the APIEW distribution for some 

values of parameters 
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Table 2: Some reliability of APIEW for selected values of λ = 1.3 and β = 5 at t = 0.8 

α ξ HRF MRL RHR MIT SMIT 

0.3 1.5 1.21717 0.24858 24.2596 0.032402 0.050077 

  2.3 1.85296 0.18546 23.8596 0.032640 0.050439 
0.8 1.5 0.79804 0.30161 24.5992 0.032202 0.049775 
  2.3 1.22173 0.22266 24.3706 0.032337 0.049977 
1.4 1.5 0.60654 0.33461 24.7944 0.032088 0.049602 
  2.3 0.93246 0.24550 24.6654 0.032162 0.049714 
2.6 1.5 0.43518 0.37224 25.0115 0.031963 0.049412 
  2.3 0.67272 0.27133 24.9943 0.031971 0.049424 

 

Mean Residual Life 

The MRL function is defined as follows: 
 

𝜇(𝑡) =
1

𝑅(𝑡)
∫ 𝑥𝑔(𝑥)
∞

𝑡

𝑑𝑥 − 𝑡, 𝑡 ≥ 0 

 
Proposition 3.1. The MRL function for a lifetime 

random variable X following the APIEW distribution can 

be expressed as: 
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  (13) 

 
Proof. 

By employing the definition of MRL and using (9), 

we get: 
 

𝜇(𝑡) =
1

𝑅(𝑡)
∫ 𝑥𝑔(𝑥)𝑑𝑥 − 𝑡
∞

𝑡

=
1

𝑅(𝑡)
∑ 𝑤𝑚

∞

𝑚=0

∫ 𝑥. 𝑣𝜂
∞

𝑡

(𝑚

+ 1)𝑥−(𝜂+1)𝑒−𝑣(𝑚+1)𝑥−𝜂𝑑𝑥 − 𝑡 
 
Put 𝑧 = 𝑣(𝑚 + 1)𝑥−𝜂thus 
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where, 𝛾(𝑠, 𝑡) = ∫ 𝑥𝑠−1𝑒−𝑥
𝑡

0
𝑑𝑥, 𝑠 > 0 

 

Mean Inactivity Time 

The MIT function is defined as follows: 
 

𝑚(𝑡) = 𝑡 −
1

𝐺(𝑡)
∫ 𝑥𝑔(𝑥)
𝑡

0

𝑑𝑥, 𝑡 ≥ 0 

 
Proposition 3.2. The MIT function of a lifetime 

random variable X with APIEW is given by: 
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Proof. 

By employing the proof of the MRL and the relation 

  1, , 0,c x

t
c t x e dx c

     we get the above result. 

Strong Mean Inactivity Time 

The Strong Mean Inactivity Time (SMIT) represents a 

novel reliability metric introduced by the work by Kayid 

and Izadkhah (2014). The definition of the SMIT: 
 

𝑀(𝑡) =
1

𝐺(𝑡)
∫ 2𝑥𝐺(𝑥)
𝑡

0

𝑑𝑥 = 𝑡2 −
1

𝐺(𝑡)
∫ 𝑥2
𝑡

0

𝑔(𝑥)𝑑𝑥, 𝑡 ≥ 0 

 
The SMIT function of APIEW distribution is: 
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Table (2) Provides the numerical data pertaining to 

HRF, MRL, RHR, and MIT (SMIT) corresponding to the 

specific set of selected parameters ν = 1.3, η = 5, and t = 

0.8 for various parameter values. α and ξ. Also, from 

Table (2) we see the: 
 
 The decrease in HRF is observed with the increase in 

the MRL 

 The increases in RHR are observed with the 

decreases in the MIT(SMIT) 
 

Statistical Properties 

In this section, the statistical properties of the APIEW 

distribution are examined, focusing on the quantile 

function, moments, moment generating function, entropy, 

and order statistics. 

Quantile Function 

The solution for the quantile function of a distribution 

is obtained by solving the equation: 
 
𝐺(𝑥𝑝) = 𝑝, 0 < 𝑝 < 1 (16) 
 

The quantile function of the APIEW distribution can 

be expressed as follows proposition. 

Proposition 4.1. If a random variable X follows an 
APIEW (α,ν,η,ξ) distribution, then the quantile function 

of X can be determined by: 
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Proof. 

By considering the function 1 vxh e
  , the CDF of 

the APIEW distribution  
1 1

1

h

G x







 




. 

 
The pth quantile function is derived by solving G(x) = 

p and the obtained result is 1 vxh e
  by solving for x 

we get: 
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Statistical measures for the APIEW distribution can be 

calculated based on Eq. (17), such as obtaining the 1st 

quartile for p = 0.25, the median for p = 0.5, and the 3rd 

quartile for p = 0.75. In order to generate samples for the 

APIEW distribution, Eq. (17) can be utilized. 

Moments 

The rth moments of the APIEW distribution are given 

by the following proposition. 

Proposition 4.2. If a random variable X follows an 

APIEW (α,ν,η,ξ) distribution, then the rth moments of X 

can be determined by: 
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Proof. 

From the definition of moments and utilizing Eq. (7), 
it can be derived: 
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Put 𝑍 = 𝑣(𝑚 + 1)𝑥−𝜂 Thus 
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where, Γ(.) denotes the gamma function. Specifically, the 

initial two moments can be calculated as: 
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The subsequent formulas can also be utilized to 

calculate the mean, variance, skewness, and kurtosis: 
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Table (3) Gives the median, skewness, kurtosis and 

moments of APIEW distribution for specific parameters ν 

= 1.3 and η = 5. along with various values of the 
parameters α and ξ. 

Moment Generating Function 

The next proposition provides the moment-generating 

function (MGF) of the APIEW distribution. 

Proposition 4.3. If a random variable X follows an 

APIEW (α,ν,η,ξ) distribution, then the MGF of X can be 

determined by: 
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Proof. 

We can express: 
 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥
∞

0

𝑔(𝑥)𝑑𝑥 

 
Upon utilizing the Taylor’s series expansion of the 

function etx, the expression simplifies to: 
 

𝑀𝑋(𝑡) =∑
𝑡𝑟

𝑟!

∞

𝑟=0

∫ 𝑥𝑟
∞

0

𝑔(𝑥)𝑑𝑥 

 
By applying the same method used for proving 

moments, the result presented above is obtained. 

Rényi Entropy 

Rényi entropy of order δ is defined as: 
 

𝐻𝛿 =
1

1 − 𝛿
log(∫ (𝑔(𝑥))𝛿𝑑𝑥

∞

−∞

), 𝛿 ≥ 0, 𝛿 ≠ 1 

 
Let X ∼ APIEW(x;α,ν,η,ξ) then: 
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Table 3: Median and moments of APIEW for selected values of v = 1.3 and n = 5 

α  ξ  Median Mean  Variance  Skewness  Kurtosis 

0.3  1.5 0.99044 1.03516  0.04331 2.25544 15.1943 

  2.3 0.94313 0.96974  0.02181 1.50423 7.89711 
0.8  1.5 1.04191 1.09113  0.05562 2.06334 13.3022 
  2.3 0.98298 1.01049  0.02657 1.34908 7.00147 
1.4  1.5 1.07581 1.12584  0.06236 1.97078 12.5658 
  2.3 1.00861 1.03539  0.02894 1.26953 6.65369 
2.6  1.5 1.11538 1.16533  0.06911 1.89135 12.0279 
  2.3 1.03788 1.06339  0.03105 1.19840 6.41016 

 

Table (4) presents the Rényi entropy values 
corresponding to the chosen parameters (ν = 1.3 and η = 

2.1) and various values of α, ξ, and δ. Also, from Table (4) 

we see that the Rényi entropy increases when the α 

increases (ξ decreases). 

Order Statistics 

The order statistics of a random sample X1,..., Xn refer 

to the ordered sample values. They are typically denoted 

as X1:n,..., Xn:n. The PDF of the ith order statistic Xi:n can be 

expressed as: 
 
𝑔𝑖:𝑛(𝑥) =

𝑛!

(𝑖−1)!(𝑛−𝑖)!
𝑔(𝑥)[𝐺(𝑥)]𝑖−1[1 − 𝐺(𝑥)]𝑛−𝑖 , 𝑖 = 1, . . . , 𝑛 (21) 

 
Hence the PDF of the ith order statistics Xi:n of APIEW 

distribution can be obtained by substituting from (7) and 

(8) into (21), we get the ith order statistics of APIEW 

density function as follows: 
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where Ψ = e−νx−η. 

The CDF of the ith order statistics Xi :n can be 

expressed as: 
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Hence the CDF of the ith order statistics Xi :n of 

APIEW distribution can be obtained by substituting 

from (7) into (23). 

Materials and Methods 

Maximum Likelihood Estimation Method 

This subsection discusses the Maximum Likelihood 

Estimation (MLE) for the parameters Θ = (α,ν,η,ξ) of the 

APIEW distribution. Consider a complete random sample 

of size n from the APIEW distribution, denoted as 

x1,x2,...,xn. The likelihood function can be expressed as: 
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Then, the logarithm of the likelihood function is given 

by: 
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Upon deriving the first partial derivatives of the log-

likelihood function with respect to the parameters in Θ, 

we obtain a set of equations: 
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where Ψi = e−νx−i η. 

Due to the complexity of these equations, explicit 

solutions are not feasible. Therefore, numerical methods 

become necessary for the estimation of the MLEs of the 

parameters Θ = (α,ν,η,ξ). 
 
Table 4: Values of Rényi entropy of APIEW distribution 

δ α ξ R´enyi entropy 
1.2 0.3 0.2 2.92597 
  1.5 0.42441 
 0.8 0.2 3.56940 
  1.5 0.64175 
 1.4 0.2 3.96504 
  1.5 0.75677 
2.3 0.3 0.2 1.99853 
  1.5 0.16046 
 0.8 0.2 2.46871 
  1.5 0.38243 
 1.4 0.2 2.77052 
  1.5 0.50334 
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Simulation 

In this subsection, we examined the behavior of MLEs 

derived from unspecified parameters. The simulation was 

carried out using the Mathematica program and the 

following is the technique that was followed for it: 
 
1. Two different sets of initial parameter values are 

considered set(A):  α = 0.6, ν = 0.8, η = 0.5 and ξ = 

0.3 and set (B): α = 0.3, ν = 0.5, η = 0.7 and ξ = 0.6 

2. 1000 random samples from different sample sizes n 

= 50, 100, 150, 200, 300 are generated using the (17) 

3. The calculated Mean Squared Error (MSE) as well 

as the Bias are then presented when the result has 

been obtained 
 

The MSE and bias of respective estimators are given by: 
 

𝑀𝐸𝑆(�̂�) =
1

1000
∑(�̂� − �̂�)2
1000

𝑖=1

, 𝐵𝑖𝑎𝑠(�̂�)

=
1

1000
∑(�̂� − �̂�)

1000

𝑖=1

 

 

where Θ = ( ̂ , v̂  , ̂ , ̂ ). 

Table (5) Illustrates the Mean Squared Error (MSE) 

and the bias value of the parameters. Moreover, it is 

evident from Table (5) that the MSE (Bias) diminishes 

with the increment in sample size. 

Real Data 

In this section, we conduct an analysis of empirical 

data to demonstrate the efficacy of the APIEW as a viable 

model for lifetime estimation, in comparison to 

established distributions such as Alpha Power Inverse 

Weibull (APIW), Inverted Exponentiated Weibull (IEW) 
and Inverse Weibull (IW) distributions. 

The first data set pertains to the mortality trends 

attributed to the COVID-19 outbreak in the United 

Kingdom over a span of 76 days, spanning from 15th 

April to 30th June 2020. This dataset was initially 

scrutinized by Mubarak and Al-Metwally, (2021). The 

second dataset delineates the durations of waiting (in 

minutes) prior to receiving customer assistance in a 

financial institution. The second dataset has been 

initially scrutinized by Ghitany et al. (2008). The first 

data and second data are displayed in Table (6). 

The MLEs of the APIEW distribution as well as 

several other competing distributions are showcased in 

Tables (7-8) for the first and second datasets, 

respectively. Furthermore, Tables (7) and 8 also present 

various goodness-of-fit metrics such as the Akaike 

Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Kolmogorov-Smirnov (K-S) 

statistic along with their corresponding p-values for both 

sets of data. Analysis of these tables reveals that the 

APIEW distribution outperformed all other competitive 

distributions, establishing itself as the most suitable 

model for fitting the provided datasets. Figures (3-4) 

exhibit the fitted PDFs, CDFs, RFs, and PP plots for the 

APIEW distribution with respect to the first and second 

datasets. These visual representations illustrate the 

capacity of the APIEW distribution to closely 

approximate the given datasets. 
 
Table 5: MLE of parameters α, λ, β and θ 

   MSE( ̂ ) MSE( v̂ ) MSE(̂ ) MSE( ̂ ) 
 APIEW (α, λ, β, θ) n Bias( ̂ ) Bias( v̂ ) Bias(̂ ) Bias( ̂ ) 

  50 0.637984 0.641329 0.100141 0.560831 
   0.384949 0.101142 0.113329 0.118349 
  100 0.586985 0.306908 0.058644 0.233698 
   0.295446 -0.095049 0.093508 0.027588 
 APIEW (0.6,0 150 0.506365 0.235828 0.037153 0.132643 
 8,0.5,0.3)  0.258647- 0.079209 0.072439 -0.018376 
  150 0.506365 0.235828 0.037153 0.132643 
   0.258647- 0.079209 0.072439 -0.018376 
  200 0.487527 0.155893 0.035711 0.065784 
   0.236805 -0.050396 0.068773 -0.006879 
  300 0.389554 0.113611 0.021887 0.019242 
   0.219046 -0.031330 0.045049 -0.003664 
  50 0.960334 1.276341 0.209416 0.704751 
   0.534367 0.232847 0.172251 0.091041 
  100 0.810275 0.890308 0.129319 0.672735 
   0.497137 0.112601 0.141588 0.075258 
APIEW (0.3,0.5, 150 0.703661 0.660812 0.102225 0.652296 
0.7,0.6)  0.438629 0.085103 0.109805 0.058749 
  200 0.650309 0.534065 0.078401 0.589692 
   0.395532 0.061709 0.091561 0.040322 
  300 0.203455 0.117308 0.026731 0.005775 

   0.075293 -0.058479 0.058635 -0.009791 
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Table 6: The first data and second data 

First 0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079  0.2395 
data 0.2751 0.2845 0.2992 0.3188 0.3317 0.3446 0.3553 0.3622  0.3926 
  0.3926 0.4110 0.4633 0.4690 0.4954 0.5139 0.5696 0.5837  0.6197 

  0.6365 0.7096 0.7193 0.7444 0.8590 1.0438 1.0602 1.1305  1.1468  
  1.1533 1.2260 1.2707 1.3423 1.4149 1.5709 1.6017 1.6083  1.6324 
  1.6998 1.8164 1.8392 1.8721 1.9844 2.1360 2.3987 2.4153  2.5220 
  2.7087 2.7946 3.3609 3.3715 3.7840 3.9042 4.1969 4.3451  4.4627 
  4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456 8.2307  9.6315 
  10.187 11.1429 11.2019 11.4584 
Second 0.80 0.80 1.30 1.50 1.80 1.90 1.90 2.10  2.60 
data 2.70 2.90 3.10 3.20 3.30 3.50 3.60 4.00  4.10 
  4.20 4.20 4.30 4.30 4.40 4.40 4.60 4.70  4.70 

  4.80 4.90 4.90 5.00 5.30 5.50 5.70 6.10  6.20 
  6.20 6.20 6.30 6.70 6.70 6.90 7.10 7.10  7.10 
  7.10 7.40 7.60 7.70 8.00 8.20 8.60 8.60  8.60 
  8.80 8.80 8.90 8.90 9.50 9.60 9.70 9.80  10.70 
  10.90 11.00 11.00 11.10 11.20 11.20 11.50 11.90  12.40 
  12.50 12.90 13.00 13.10 13.30 13.60 13.70 13.90  14.10 
  15.40 15.40 17.30 17.30 18.10 18.20 18.40 18.90  19.00 
  19.90 20.60 21.30 21.40 21.90 23.00 27.00 31.60  33.10 

  38.50 

 
Table 7: MLEs and different statistics of APIEW for first data 

  Estimates     Statistics 
  ----------------------------------------------------------- -------------------------------------------------------------------- 
Distributions α ν η ξ AIC BIC K-S P-Value 

APIEW 0.9186 3.805 0.242 25.18 287.538 296.861 0.0563 0.9693 
APIW 17.523 0.2617 0.9450 — 292.04 299.03 0.0796 0.7208 
IEW — 1.621 0.46821 3.231 289.19 296.18 0.1009 0.4210 
IW — 0.6701 0.7896 — 294.34 299 0.1021 0.4059 

 
Table 8: MLEs and different statistics of APIEW for second data 

  Estimates    Statistics 
  ----------------------------------------------------------- ------------------------------------------------------------------- 
Distributions  α ν η ξ AIC BIC K-S P-Value 

APIEW 32.317 4.474 1.020 2.1 652.48 662.90 0.0549 0.9231 

APIW  98.324 3.076 1.487 — 658.61 666.43 0.0876 0.4261 
IEW  — 7.832 1.1 1.49 668.52 676.34 0.1048 0.2218 
IW — 6.533 1.163 — 672.76 677.97 0.1166 0.1314 
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Fig. 3: Plots of the fitted functions for the APIEW distribution 

and PP plot for the first data 
 

 

 

 

 
 

Fig. 4: Plots of the fitted functions for the APIEW distribution 
and PP plot for the second data 

 

Results and Discussion 

Table (5) shows the numerical results of the 

simulation applied to our model which had four 

parameters using the maximum likelihood estimation 

method where the results showed the small MSE and 

bias of these parameters. Also, Tables (7-8) applied to 

real data by our model show the suitability of these data 

to our proposed model and Figs (3-4) support this. Thus, 

our model appears to be a better fit for this data set than 

many existing models. 

Conclusion 

Contemporary research has made a significant 

contribution by introducing a novel extended distribution 

utilizing the Alpha Power (AP) transformation on the 

Inverted Exponentiated Weibull (IEW) distribution. 

Referred to as the APIEW distribution, this new 

distribution serves as a generalization of the IEW 

distribution. Various statistical characteristics of the 

APIEW distribution have been obtained and deliberated 
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upon, such as the hazard rate function, mean residual 

life, mean inactivity time, quantile function, moments, 

Rényi entropy, and order statistics. Moreover, the 

maximum likelihood estimation method has been 

suggested for estimating the parameters of the APIEW 

distribution, with the outcomes of a simulation study 

endorsing the effectiveness of the MLE method in 

parameter estimation. The efficacy of the model has 

been exhibited through the application of two real 

datasets, showcasing its practical utility. The proposed 

distribution emerges as a more suitable model for fitting 

such datasets compared to numerous existing models 

and recently developed distributions. Subsequent 

research endeavors may focus on exploring the 

estimation challenges of the proposed model under 

progressive type II censoring. Additionally, a 

comparison could be made between the traditional 

parameter estimation techniques, such as the maximum 

product of spacing and least squares methods, utilizing 

the squared error loss and LINEX loss functions. 
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