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Abstract: Stability of load-bearing members, as known, is a challenging 

issue and several tools are available for designers. Disregarding the material 

properties in use, the avoidance of possible stability troubles is a mandatory 

and challenging step of the overall design process. In this study, a 

theoretical model is presented for the of loss of stability in elastic states of 

very slender rectangular shell elements axially compressed through ball-

and-socket joints without friction. According to this theory, as shown, a 

loss of carrying capacity of very slender columns in elastic states occurs 

when the line of force leaves a critical transverse cross-section. The critical 

transverse cross-section, moreover, progressively moves because of the 

superposition of bending and pure compression. The theory allows to 

determine the governing differential equations of curved central lines and 

their slopes, as well as the critical stresses of columns, in the form of 

surface function in dependence on slenderness ratios and cross-sectional 

areas. The graphs for the elastic deflected central line y(x), slope dy/dx, 

dependence yL/2(P), stresses and strains for a rectangular column made of 

steel and compressed by ball-and-socket joints without friction, as well as 

the corresponding surface graphs of critical stress, are presented in this 

study. The obtained surface graphs of critical stresses are then discussed 

and compared with Euler’s formulation. 

 

Keywords: Stability, Elastic States, Slenderness, Rectangular Columns, 

Steel 

 

Introduction 

Shell structures, in the field of building construction 

and engineering in general, represent a thin, curved plate 

structure that is optimally shaped to transmit applied 

forces by compressive, tensile and shear stresses that act 

in the plane of the same surface. When we consider the 

application of shell elements in load-bearing structures, 

accordingly, the first issue to analyze is their load 

capacity to sustain axial loads, i.e., their stability and 

susceptibility to potential buckling collapse mechanisms 

that could compromise the structure and occupant safety. 

In the case of very slender columns, this refers to the 

problem of stability in elastic states. 

The basic theory of slender rods losing stability in 

elastic states, as known, has been originally formulated 

by (Euler, 1744; 1759). He first introduced the concept 

of critical load Pcr and presented, according to his 

theory, the differential equation of an elastic deflected 

central line, that is: 

2

2
,cr

d y
EJ P y

dx
   (1) 

 

Where: 

E: Denotes the Young’s modulus of elasticity of the 

column 

J: The moment of inertia of the cross-section area, while 

y: Represents the distance from the undeformed central 

line, from the y-axis 

 

He had assumed a displacement y(x) of the column 

axis as a part of a sine curve: 

 

  sin ,y x n x
L

 
  

 
  (2) 

 

Where: 

n: Denotes the coefficient of the sine curve part and 

depends on boundaries (n = 1 for a pinned column, n 
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= 2 for a column fixed at one end, n = 1/2 for a 

column fixed by a pinned end and a vertically slide for 

the second end, n = 0.7 for a column with a pinned 

end and a pinned vertical slide at the second end) 

L: The length of the bar 

 

And he has obtained the formula for a critical stress 

cr of an axially compressed column by force as follows:  

 
2

.Euler

cr E
n






 
  

 
  (3) 

 

The problem of the stability was later searched and 

analyzed further with a focus on many other relevant 

aspects for various engineering applications, like 

buckling of columns composed of various 

constructional materials (Gupta et al., 2001; Oleiwi et al., 

2014; Schnabl et al., 2013; Kalamar et al., 2016; 

Wahrhaftig et al., 2016; Thermou et al., 2018; Zhou et al., 

2017; Ye et al., 2018; Osmani and Meftah, 2018;   

Wang et al., 2018; Naderpour et al., 2019; Qi et al., 

2019; Goroshko et al., 2020), as well as beams (Ascione 

and Grimaldi, 1983; Di Sarno and Manfredi, 2012;      

Li et al., 2015; Özbaşaran et al., 2015; Monsalve-Cano 

and Aristizábal-Ochoa, 2016; Nguyen et al., 2018; 

Belaid et al., 2018) or nanobeams (Rahmani et al., 

2017; Mohammadi et al., 2019). 

Single-layer graphene sheets have been examined 

in (Genoese et al., 2019), while polymer-confined 

concrete columns have been discussed in (Liang et al., 

2012) and hyperelastic tubes are analyzed by (Liu, 

2018). Many other research contributions have been 

then related to the stability issues of a multitude of load-

bearing systems and members can be found in the 

literature, including plates (Sabouri‐Ghomi et al., 2008; 

Rao and Ra, 2009; Xu et al., 2013; Moradi-Dastjerdi and 

Malek-Mohammadi, 2017; Riahi et al., 2018; Vu et al., 

2019) and nanoplates (Malikan et al., 2018), bracing 

systems (Rahnavard et al., 2018), tubes (Nouri et al., 2015; 

Mozafari et al., 2018; Naveed et al., 2017; Sadath et al., 

2017; Sun et al., 2018), frames (Marante et al., 2012; 

Slimani et al., 2018), pipes (Lolov and Lilkova-Markova, 

2005; Melissianos et al., 2017; Moustabchir et al., 2018; 

Psyrras et al., 2019), or Functionally Graded Material 

(FGM) structures (Moita et al., 2018; Kiss, 2019;      

Singh and Harsha, 2019), etc. 

Stability Analysis 

This research study herein discussed assumes as its own 

method of analysis for the column stability in elastic states 

that the state of stresses and strains in a critical transverse 

section (after losing stability and before losing its carrying 

capacity) appears as a superposition result of pure 

compression phenomena and bending effects (Fig. 1 and 

also (Murawski and Kłos, 2007; Murawski, 1992; 2011; 

2018)). The method is thus developed on a basic 

simplification for very slender columns, that is the 

beginning of the load-carrying capacity lost (i.e., the 

maximum achieved value of force, on a force P–shortening 

L graph) in elastic states follows the exceedance of the 

force line from a critical transverse section. 

 

 
n n

 y y

 g g

 c c

The critical cross section

a

b
t

P

P

y

x

y(x)

The radius of curved 
central line - 


dy

dx
The slope of the curved central line -

The curved central line -

The for ce line 

 
 
Fig. 1: Stress and strain analysis in the critical transverse section for a rectangular column axially compressed by force through ball-

and- socket joints, after the loss of stability and before the loss of carrying capacity 
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The fibre extension  at the distance y from the 

undeformed central line and the corresponding stress n 

are in fact given by (Fig. 1): 

 

 
,

y y   


  

    
  


 (4) 

 

,n g c

y P
E

A
  


        (5) 

 

where, E is defined in Equation (1), while: 

 

: Denotes the radius of the curved central line 

: The angle of the central line slope, in relation to the 

force line 

P: The imposed axial force 

A: The area of the critical cross-section 

g: Represents the bending stress 

c: The compressive stress 

n: The normal stress 

 

Due to the force equilibrium, it is: 

 

  .g c

y P
dP dA E dA

A
 



 
        

 
  (6) 

 

In this study, unlike Euler, it is moreover assumed 

that the displacement of the column axis is determined 

by taking into account the conditions of the small 

deformation theory, as a function of the curvature 

radius, that is: 

 
2

2

1
,

d y

dx
   (7)  

 

and the reference boundary conditions:  

 

/ 0 when / 2,dy dx x L    (8) 

and: 

 

0  when 0,y x    (9) 

 

The governing differential equations for the curved 

central line d2y/dx2 and its slope dy/dx, as well as the 

equation of the central line y(x) for a column axially 

compressed by force through ball-and-socket joints 

without friction are like Equation (59), (60), (61) in 

(Murawski, 2011), or Equation (2.7), (2.8), (2.9) in 

(Murawski, 2018). From the assumption that the losing 

of carrying capacity follows when the force line exceeds 

the critical transverse section (yx = L/2 = ycr), moreover, 

the critical stress cr for axially compressed columns 

under force through ball-and-socket joints is like 

Equation (65) in (Murawski, 2011), or Equation (2.13) in 

(Murawski, 2018). 

Theoretical Example 

As a theoretical example, the graphs of the elastic 

line y(x), its slope dy/dx and the dependence yL/2(P) 

for a rectangular column made of steel are presented. 

In doing so, a steel column agreeing with Fig. 1 is 

taken into account. 

Moreover, the nominal dimensions of the 

examined column are set in a = 20 mm, b = 28 mm 

and t = 1 mm for the resisting cross-section, while L = 

2500 mm is the selected span (and  = 314.8 the 

corresponding slenderness) and the column is 

compressed by ball-and-socket joints. The so-

collected results are presented in Fig. 2. 

Under the assumption that the loss of carrying 

capacity occurs when the force line leaves the critical 

transverse section (yx=L/2 = ycr = a/2+t), the 

dependency of various geometrical parameters on the 

mechanical performance of the selected column is 

highlighted in Figs. 3a-3d. 
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Fig. 2: Evolution of (a) elastic line y(x), (b) elastic line slope dy/dx and (c) function yL(P) for a rectangular steel column (dimensions: 

a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed by ball-and-socket joints 
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Fig. 3: Surface functions of critical stress for rectangular shaped shells made of steel and axially compressed by force through ball-

and-socket joints, according to the technical stability theory 
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Fig. 4: Surface functions of critical stress for axially compressed (by force through ball-and-socket joints) rectangular shaped shells 

made of steel, according to the technical stability theory 

 

The focus in Fig. 3 is given to: 

 

a) The critical stress that is shown in Fig. 3a, as a 

function of the cross sectional area A and 

slenderness ratio  at a/b = cost and t/b = cost 

b) The function shown in Fig. 3b is the same of Fig. 3a, 

but the parameters m = a/t, z = b/t and c = a/L are 

used under the condition that t = cost 

c) The same function is shown in Fig. 3c, with the 

exception that t = cost with the parameter m 

constant, but with c and m modify 

d) Finally, the function is shown in Fig. 3d with 

constant parameters m = a/t and z = b/t, but variable 

c and t 

 

The critical stress can be described also by the 

empirical formulas presented in Fig. 4.  

For thin walled columns (t > 0), the corresponding 

formulas for the critical stress analysis are presented in 

Fig. 5. Again, the sensitivity of critical stress is shown as 

a function of: 

 

a) the cross sectional area A and slenderness ratio  at 

a/b = cost 

b) slenderness ratio  and L/a = var at a/b = cost 

 

For comparative purposes, the Euler’s formulas of 

critical stresses for rectangular columns in the 

dependence on m, c, z and t are then presented in Fig. 6. 

More in detail, the analysis is proposed as a function of: 

 

a) The slenderness ratio  

b) The parameters m = a/t = var, c = a/L = var, z = 

b/t = cost 

c) The parameters z = b/t= var, c = a/L= var, m = 

a/t = cost 

d) And finally the parameters t = var, L = var, a = cost, 

with b = cost 

 

In the case of the reference rectangular column (a = 

20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) the critical 

stress according to Euler’s theory is calculated in 

cr
Euler() = 16.592 MPa. The reference value of Young’s 

modulus is set in E = 166600 MPa, according to past 

stability studies on thin walled columns (Murawski, 

2011). In this regard, the critical stress for the same 

column, according to the technical stability theory, is 

predicted in cr
balls

rectangular(, A, a/b, t/b) = 3.562 MPa. 
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Fig. 5: Surface functions of the critical stress of axially compressed (by force through ball-and-socket joints) rectangular shaped 

shells made of steel, according to the technical stability theory 
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Fig. 6: Surface function of the critical stress based on Euler’s formulation of rectangular shaped shells made of steel and axially 

compressed by force through ball-and-socket joints 
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Fig. 7: Surface function of the limited slenderness ratio el-lt based on the technical stability formula of rectangular shaped shells 

made of steel in dependence on (a) cross-sectional area A, ratio b/a = var and t/a = cost, (b) cross section area A, ratio t/a = 

var and b/a = cost 
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Fig. 8: Surface function of limited slenderness ratio el-lt, based on the technical stability formulation, of thin walled rectangular 

columns made of steel, in dependence on A and a/b = var 

 

Since the described phenomenon occurs in an elastic 

state for steel shells, it is thus expected that their 

slenderness ratio should be at least  > el-lt, according to 

Euler’s theory.  

The limited slenderness ratio el-lt is then calculated 

according to the technical stability theory in Fig. 7. For 

thin walled columns the formula for the limited 

slenderness ratio  el-lt
thin_walled

 can be also seen in Fig. 8. 

Stress and Strain Analysis 

According to the technical stability theory, the state 

of stresses and strains in the shell belonging to the 

critical transverse section of a rectangular shaped column 

compressed by ball-and-socket joints, after the loss of 

stability, is as the result of a superposition of bending 

and pure compression (Fig. 1) and thus: 
 

 

n n g c

g c

y P
E E

A

y L
E E

L

   


 


       

 
         

 

  (10) 

 
with: 

.n g c        (11)  

 

It results that the shell normal stress n is like 

Equation (71) in (Murawski, 2011), or Equation (2.19) 

from (Murawski, 2018): 

The graphs of the functions of the normal shell stress 

n, normal strain n, transverse stress y and transverse 

strain y in the selected rectangular column (a = 20 mm, 

b = 28 mm, t = 1 mm, L = 2500 mm), axially 

compressed by force through ball-and-socket joints, are 

presented in Figs. 9, 11 and 13.  

The stresses and strains are proposed in dependence 

of x and y, where x = 0÷L and y = -a/2, -a/4, -a/20, 0.0, 

a/20, a/4, a/2, respectively. 

The graphs of the functions of the normal stress 

n_x=L/2(y), normal strain n_x=L/2(y), transverse stress 

y_x=L/2(y) and transverse strain y_x=L/2(y) in the critical 

cross-section (x = L/2), depending on y and x, are 

presented in Figs. 10, 12 and 14 for load values set in P= 

0.1, 0.5, or 1.0 Pcr. 

The graphs of the function of the coordinate yn=0, 

x=L/2(P) of a zero normal stress n_x=L/2(y) = 0 in the 

critical cross-section (x = L/2) in dependence on the load 
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P are presented in Fig. 15a and the graphs of the function 

of the deformation Lx=L/2,y=a/2(P) in the critical (middle) 

cross-section (x = L/2) of the rectangular shaped steel 

shell on two opposite generating lines (y = ± a/2) in 

dependence on the load P is presented in Fig. 15b. As 

also previously described, the values of Young’s 

modulus E = 166600 MPa and Poisson’s ratio v = 0.3 

were taken into account for calculations.  
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Fig. 9: Values of (a) stress n(x,y), strain n(x,y), deformation L(x,y) and (b) stress y(x,y), strain y(x,y), deformation a(x,y) where 

x = 0÷L and y = -a/2, -a/4, -a/20, 0.0, a/20, a/4, a/2 respectively, for P = 0.1 Pcr in a rectangular steel shell (dimensions: a = 

20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed by ball-and-socket joints 
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Fig. 10: Values of (a) normal stress-strain-deformation n,n,L(y,x = L/2) and (b) transverse stress-strain-deformation y,y,2t(y,x 

= L/2) for P = 0.1 Pcr in a rectangular steel shell (dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed 

by ball-and-socket joints 
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Fig. 11: Values of (a) stress n(x,y), strain n(x,y), deformation L(x,y) and (b) stress y(x,y), strain y(x,y), deformation a(x,y) 

(where x = 0÷L and y = -a/2, -a/4, -a/20, 0.0, a/20, a/4, a/2 respectively) for an imposed load value P = 0.5 Pcr, in a 

rectangular steel shell (dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed by ball-and-socket joints 
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Fig. 12: Values of (a) normal stress-strain-deformation n,n,L(y,x = L/2) and (b) transverse stress-strain-deformation y,y,2t(y,x 

= L/2) for P = 0.5 Pcr, in a rectangular shell made of steel (dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) 

compressed by ball-and-socket joints 
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Discussion of Results 

The main conclusion which can be drawn out from Fig. 
3a is that in order to determine the critical stresses 
cr

balls
rectangular

 for general rectangular shaped shell 
elements, the slenderness ratio  is not sufficient. The 
critical stress estimates should be indeed related also to 

the cross-section area A and to values of the section 
ratios a/b and t/b.  

For a given slenderness ratio  like in original Euler's 

formulation) it is possible to obtain many different 

values of the critical stress cr
balls

rectangular
 in dependence 

of the cross-section area A and the ratios a/b and t/b. 
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Fig. 13: Values of (a) stress n(x,y), strain n(x,y), deformation L(x,y) and (b) stress y(x,y), strain y(x,y), deformation a(x,y) for P 

= 0.5 Pcr, in a rectangular shell made of steel (dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed by 

ball-and-socket joints (where x = 0÷L and y = -a/2, -a/4, -a/20, 0.0, a/20, a/4, a/2 respectively). 
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Fig. 14: Values of (a) normal stresses-strains n, n, L(y,x = L/2) and (b) transverse stress-strains y, y, 2t(y,x = L/2) for P = 1.0 

Pcr in a rectangular steel shell (dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 mm) compressed by ball-and-socket 

joints 

 

The theoretical results, moreover, show that the 

simplifications used in the technical stability theory like 

taking under consideration only normal stresses, the 

assumption of flat cross-section planes and small slope 

of central line, involves certain limitations on its 

application in the engineering practice. The first of those 

limitations, for rectangular shaped shells, is that the 

cross-section area A must be bigger than the unit. 

Otherwise, the function approaches asymptotically to 

the vertical flat plane A = 1 (Fig. 3a). 

The surface function in Fig. 3a with a/b = 0.714, t/b = 

0.0357 equals Euler’s function cr
Euler () for A = 2.6327.  
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Fig. 15: Values of (a) coordinate yn=0, x=L(P) of zero normal stress n = 0 and (b) deformation Lx=L,y=±a/2(P) in the critical cross-

section (x = L/2), in dependence of P for an axially compressed rectangular shaped shell made of steel (dimensions: a = 20 

mm, b = 28 mm, t = 1 mm, L = 2500 mm).  

 

Because of this reason, it is found that: cr
Euler() > 

cr
balls

rectangular (, A, a/b = 0.714, t/b = 0.0357) for 

A<2.6327 and cr
Euler()<cr

balls
rectangular(, A,a/b = 

0.714,t/b = 0.0357) for A < 2.6327.  

Some conclusions that can be thus drawn from the 

analysis of the surface function for cr
balls

rectangular(m,c,z = 

28, t = 1) that was shown in Fig. 3b. 

 With the increase of m and the decrease of c, in 

particular, it is observed that the stress value 

cr
balls

rectangular
 (m,c,z = 28, t = 1) also increases and this 

is in agreement with the original Euler’s formulation, as 

also shown in Fig. 6b. The graph in Fig. 3c, moreover, 

shows that with the increase of both the z and c 

parameters, the measured stress value cr
balls

rectangular 
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(m,c,z = 20, t = 1) decreases at constant values of the 

ratio m = a/t and thickness t.  

The graph in Fig. 3d, finally, shows that with the 

increase of the ratio b/a and the increase of the ratio t/a, 

the stress cr
balls

rectangular(t,c, m = 20, z = 28) decreases at 

constant values of the ratio c = L/t and the thickness t.  
Figure 4b shows that with the increase of the ratio b/a 

and with the increase of ratio t/a, the stress 
cr

balls
rectangular(b/a, t/a,  = 314.8, a = 20) decreases at 

constant values of slenderness ratio  and a.  
From the analysis of the surface function cr

balls_thin-

walled
rectangular (, A, a/b=0.714) shown in Fig. 5a and of the 

surface function cr
balls_thin-walled

rectangular (, A, a/b = 0.714) 
that is proposed in Fig. 5b, it is then possible to observe 
that - in case of thin walled columns - with the increase of 
the slenderness ratio  and cross-section area A at constant 
values of the ratios a/b, the measured stress value 
cr

balls_thin-walled
rectangular(, A, a/b = 0.714) also decreases. 

The surface functions cr
Euler’s_balls

rectangular = (m,c,z) 
and cr

Euler’s_balls
rectangular = (a, b, L, t), based on Euler’s 

formulation, are not sensitive to the cross-section area A. 
However, the Euler’s formula does not distinguish 

the obtained results in dependence on the profile of the 
cross-section for the examined column.  

This is indeed something that the technical stability 

formulation can capture.  

On the graph in Fig. 7a, it is possible to see that the 
limited slenderness ratio el-lt (A, b/a, t/a = 0.05), with the 
increase of the b/a ratio, minimally decreases, while 
strongly decreases at constant values of the ratio t/a with 
the increase of the cross-section area A. On the graph in 
Fig. 7b we see that the limited slenderness ratio el-lt (A, 

t/a, b/a = 1.4) with the increase of the ratio t/a increases 
and with the increase of the cross-section areas A 
decreases strongly at constant values of the ratio b/a.  

On the graph in Fig. 8 we see that the limited 

slenderness ratio el-lt
thin-walled (A, t/a, b/a = 1.4) with the 

increase of the ratio a/b increases and with the increase 

of the cross-section area A strongly decreases.  
On the graphs in Figs. 9a, 10a, 12a and 13a it is 

possible to see that the values of the stresses n(x,y), 
strains n(x,y) and deformations L(x,y) for P = 0.1 Pcr 
and 0.5 Pcr in the rectangular shell made of steel with 
dimensions: a = 20 mm, b = 28 mm, t = 1 mm, L = 2500 
mm compressed by ball-and-socket joints have minus 
sign, i.e., all fibers in parallel to the column axis 
direction are compressed. That means also that all fibers 
in perpendicular to the direction of the column axis 
direction are tensioned (Figs. 9b, 10b, 11b and 12b).  

From the graphs in Figs. 13a and 14a it can be 
noticed that the values of stresses n(x,y), strains n(x,y) 
and deformations L(x,y) in the rectangular shell (for P 
= Pcr) have partially negative sign. In this region, the 
fibers that are parallel to the column axis are 
compressed, while they are tensioned in the direction 
perpendicular to the column axis (Figs. 13b and 14b). 

In the region where the stress, strain, deformation 

values have positive sign, the fibers in direction parallel 

to the column axis are tensioned while they are 

compressed in the direction perpendicular to the column 

axis direction (Figs. 13b and 14b). 

The phenomena observed during past experimental 

tests (Murawski and Kłos, 2007) proved that the 

extensions of the two opposite generating lines are 

negative at the beginning of the phenomenon of the loss 

of stability. With the increase of time, however, one of 

them goes to positive values, as also shown on the graph 

in Fig. 16. This observation is in line with the technical 

stability theory (Fig. 15a) and this proves the accuracy of 

the proposed theory.  
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Fig. 16: (a) Extensions L in time for a pine column (870×12 mm), as obtained from (b) the strain gauges placed on the two 

opposite generating lines (b) in the mid-span cross-section (Murawski and Kłos, 2007).  
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The graph in Fig. 15a, finally, shows the coordinate 

yn=0, x=L/2(P) of a zero normal stress n_x=L/2(y) = 0 in the 

critical cross-section (x = L/2), in dependence of the 

imposed load P. It is shown that this coordinate is going 

from infinity to zero, while the load P increases from 

zero towards Pcr. 

Conclusion 

The design issue of stability for load-bearing 

members, in general, is a critical step of the overall 

design process and should be properly addressed. In this 

study, the attention was focused on the proposition and 

validation of a theoretical formulation for the technical 

stability analysis of slender columns in compression. The 

theoretical study was thus addressed with the support of 

case-study calculation examples carried out on slender 

columns made of steel.  
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