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Abstract: Stability of structures, as known, is a challenging issue, 

especially in critical engineering, i.e., in designing structures which in a 

wrong design process could cause a catastrophe. The avoidance of possible 

stability troubles is mandatory. In this study, the simplifications and 

hypotheses of loss of stability by lateral buckling in elastic-plastic states of 

semi-slender columns axially compressed by force are presented. The 

Tetmajer-Jasiński’s and Johnson-Ostenfeld’s simplifications as well as 

Engesser-Kármán-Shanley’s, Ylinen, Březina, Pearson-Bleich-Vol’mir’s 

and author’s approximated hypotheses are analysed. The graphs of surface 

functions of the compressing critical stress cr depending on the ratios = 

a/t or  = R/t and  = L/t are presented as the theoretical examples of thin-

walled cylindrical and square columns made of steel R35. In order to 

compare the results of the author’s approximated hypothesis, i.e., the 

modified Engesser-Kármán-Shanley’s hypothesis with others 

simplifications and hypotheses are shown in adequately ranges for elastic-

plastic states as the graphs of the functions cr(). 
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Introduction  

Shell structures, in the field of building construction 

and engineering in general, represent a thin, curved plate 

structure that is optimally shaped to transmit applied 

forces by compressive, tensile and shear stresses that act 

in the plane of the same surface. When we consider the 

application of shell elements in load-bearing structures, 

accordingly, the first issue to analyze is their load 

capacity to sustain axial loads, i.e., their stability and 

susceptibility to potential buckling collapse mechanisms 

that could compromise the structure and occupant safety. 

In the case of very slender columns, this refers to the 

problem of stability in elastic states.  

The basic theory of slender rods losing stability in 

elastic states, as known, has been originally 

formulated by (Euler, 1744; 1759). He first introduced 

the concept of critical load Pcr and presented, 

according to his theory, the differential equation of an 

elastic deflected central line. 

The stability phenomenon of semi slender columns in 

elastic-plastic states was researched too, by (Tetmajer, 

1886; Jasiński, 1894; Engesser, 1889; 1895; Ostenfeld, 

1898; von Kármán, 1908; Kármán, 1910; Shanley, 1947; 

Stowell, 1948; Bijlaard, 1949; Bleich, 1952; Broszko, 

1953; Ylinen, 1956; Radhakrishnan, 1956; Gerard and 

Becker, 1957; Gerard, 1957; 1962; Seide et al., 1960; 

Vol’mir, 1965; Březina, 1966). 

This phenomenon was later researched by others. 

Brank et al. (1997) presented a large-deformation 

model for thin shells composed of elastic-plastic 

material. Formulation of the shell model, equivalent to 

the two-dimensional Cosserat continuum, was developed 

from the three-dimensional continuum by employing 

standard assumptions on the distribution of the 

displacement field in the shell body. A model for thin 

shells was obtained by an approximation of terms 

describing the shell geometry. Finite rotations of the 

director field were described by a rotation vector 

formulation. An elastic-plastic constitutive model was 

developed based on the von Mises yield criterion and 

isotropic hardening.  
Lepik (1999) considered a bifurcation of axially 

loaded elastic–plastic cylindrical shells in the case of 

axisymmetric buckling. The effect of stress waves 

travelling along the shell was taken into account. It was 
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assumed that the shell material had linear strain 

hardening. The analysis was carried out for both the 

deformation and for the flow theory of plasticity. For 

solving the problem the quasi-bifurcation method was 

applied. Buckling threshold and spectrum of bifurcation 

times were calculated. A coefficient characterizing 

exponential growth of the buckling amplitudes was 

introduced. The numerical examples were presented. 

Papanastasiou and Durban (1999) presented a linear 

bifurcation analysis for pressure sensitive elastoplastic 

hollow cylinders under radial surface loads. Material 

response was modeled by the flow and deformation 

theories of the Drucker-Prager solid accounting for 

arbitrary hardening. Sample calculations were given for 

cylinders that deformed in axially symmetric patterns 

under uniform radial pressure applied at the boundaries. 

For thick-walled cylinders the dominant bifurcation 

mode predicted by deformation theory appeared to be a 

circumferential surface instability. Deformation theory 

results for bifurcations were apparently not sensitive to 

deviations from associativity. 

Dubina and Ungureanu (2000) dealt with the elastic-

plastic interactive buckling of thin-walled steel 

compression members. The interaction formula for 

local and overall buckling modes of Thin-Walled Steel 

Compression (TWSC) members, the effect of local 

buckling was introduced by means of the effective 

strength of short members. The local overall interactive 

buckling modes were regarded as interaction between 

local rigid-plastic mode and overall-elastic one and 

these two modes were coupled into an adequate 

interactive equation.  

Alvarenga and Silveira (2006) presented a study 

about the necessary steps to qualify a second-order 

inelastic analysis as advanced one. A plastic-zone 

approach applied to steel plane frames (portals) and the 

numerical formulation was based on finite element 

model of a Bernoulli-Euler beam-column member called 

“slice technique”. This element was set on a Lagrangian 

updated co-rotational system. The nonlinear problem 

was solved using Newton-Raphson iterative strategy and 

a new axial force iterative integration was shown. This 

process was implemented on a computer program 

PPLANAV* and the minimum requirements of 

advanced analysis (initial geometrical imperfections and 

residual stress) were automatically generated.  

Fraldi et al. (2008) aimed at deriving assessment and 

design formulae for determining the elastic–plastic 

response and the ultimate compressive strength of 

circular concrete columns confined by Fiber Reinforced 

Polymers (FRP). A constructive method for obtaining 

closed-form elastic and post-elastic solutions for 

Functionally Graded Material Cylinders (FGMCs), 

constituted by an isotropic central core and arbitrary 

cylindrically orthotropic hollow phases, was proposed. 

The hypotheses of axis-symmetrical boundary conditions, 

elasticity and perfect bond between the phases, with a new 

analytical solutions for self-equilibrated axial forces 

applied were derived. The elastic and post-elastic response 

of the overall solid and predictive formulae for estimating 

the failure mechanism, in terms of concrete ultimate 

compressive strength, confining pressure and strain at 

failure, were derived.  

Voyiadjis and Woelke (2008) presented a finite 

element model for the elastic-plastic and damage 

analysis of thin and thick shells. Linear elastic, inelastic 

and softening behaviors caused by damage in structural 

shells, as well as large rotations were investigated. The 

presented formulation was developed primarily for large 

scale structural analyses. They provided a constitutive 

model which allowed for accurate representation of the 

non-linear shell behavior up to failure, while offering 

high efficiency and applicability to large scale structural 

analyses. This was achieved by representing the elastic-

plastic behavior by means of the non-layered approach, 

with an updated Lagrangian method used to describe the 

geometric non-linearities. For the treatment of material 

non-linearities an Iliushin's yield function expressed in 

terms of stress resultants was adopted, with isotropic and 

kinematic hardening rules. 

Leoveanu et al. (2012) searched the steel light 

structures used in tall buildings, bridges piles and 

girders. They realize a smallest loading by the own 

weight of the structure components by designing in 

elastic-plastic state so the global and local instability was 

important. They designed buildings with using the 

welding joint technology. The authors tried to simplify 

the calculation process by use some statistical low to 

approximate some of the complex phenomenon and get 

good estimations on the residual stresses induced by the 

welded process in the double T profile. The verification 

of the influence of technology on the girder instability 

was easy to estimate the critical loads. 

Al-Kamal (2017) analysed the elastic stability of a 

column bolted at its mid-height to a simply supported 

square plate and subjected to a concentrated load, using 

the energy method. A uniform, homogeneous column 

was assumed to be pinned at both ends. From symmetry 

considerations, half of the column was modeled by 

making the plate acting as a torsion spring on the 

column at its mid-height. The analytical elastic 

buckling load was compared with a numerical solution 

obtained from finite element method using SAP2000. 

Silvestre et al. (2018) studied the influence of the 

nature of the deformation mode (global, local and 

distortional) on the load carrying capacity of beams 

beyond the yield load. Following recent investigations on 

the decomposition of elastic buckling modes into 

combinations of structurally meaningful deformation 

modes, they applied the same concept to the 1st order 



Krzysztof Murawski / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 233.253 

DOI: 10.3844/sgamrsp.2020.233.253 

 

235 

failure modes (elastic-plastic collapse mechanisms). To 

achieve this goal, a GBT-based code that performed first-

order elastic-plastic analyses of thin-walled members was 

employed. The five beams with different cross-sections, 

lengths, supports and loadings were analysed. It was 

concluded that larger contributions of local and 

distortional modes of the beam failure mode lead to a 

higher post-yielding strength reserve, which implied a 

higher beam load carrying capacity beyond the yield load.  

Słowiński and Piekarczyk (2017) dealt with a safe 
and economic design of steel cylindrical shells according 
to European Standard EN 1993-1-6 often requiring a 
non-linear analysis. The plastic collapse load resulting 
from a materially non-linear analysis was to be 
determined then in many cases. However, an extraction 
of the true plastic strength still was a relatively 
complex matter in a numerical analysis. The authors 
used the modified Southwell plot and also the plot 
between the load factor increment and the arc length 
for an evaluation of the plastic collapse resistance of a 
steel cylindrical shell. A proposal of an employment of 
the relation between the load factor increment and the 
arc length, which permitted to track the structural 
response of the whole shell during the progress of the 
numerical computations, was made.  

Krishan et al. (2019) presented a theoretical study of 
the structural resistance of compressed short concrete 
elements in a glass-fiber reinforced shell. The 
methodology was based on a nonlinear strain model of 
how this element reacts to incremental load in. What made 
computing of such structures difficult was the need to 

account for the continuously changing lateral shell 
pressure on the concrete core. The lateral pressure kept 
increasing due to changes in the concrete-core and glass 
fiber-reinforced shell lateral-strain coefficients, causing 
greater stress in the material. 

Stability of Semi-Slender Columns in Elastic-

Plastic States 

An application of thin-walled columns for structures 

mainly depends on their load capacity for axial loads, 

i.e., their stability. In the case of very slender columns, 

this will refer to the stability in elastic states, but more 

often in engineering practice in the elastic-plastic states. 

In an analysis of stability in practical designing for 

squat columns the determining of critical force may be 

used by a simplification formulated by (Tetmajer, 1886; 

Jasiński, 1894), which relies on replacement the Euler’s 

hyperbole by the Tetmajer-Jasiński’s straight line. 

For materials having the limit of the plastic stress 

pl(= 0) = Re
* ≈ Re (Fig. 16), where Re is the yield stress 

and the limit of the elastic stress H(= el_lt) = RH
Eu (Fig. 

16) the co-ordinates of Tetmajer-Jasiński’s straight line: 

 

_    Eu

cr H H el ltR for       (1) 

(simultaneously on the Euler’s hyperbole) and: 

 
*  for   0.cr pl eR       (2) 

 

where,  denotes the slenderness ratio. 

In that case the formula of Tetmajer-Jasiński’s straight 

line is as follows: 

 
*

*

_

.
Eu

T J e H
cr e

el lt

R R
R 



 
     (3) 

 

For semi-slender thin-walled cylindrical columns 

depending on  and  the critical stresses are (Fig. 1) 

as follows: 

 

 *

*

_

_

2 ,

Eu

e HT J

cr cylindr r

el lt

R R
R




 


 

  


 (4) 

 

where,  = R/t and  = L/t, while: 

R Denotes the median radius of the cylinder, 

L The length of the column, 

t  The wall thickness and 

el_lt  The slenderness ratio limiting the elasticstate. 

 

For semi-slender thin-walled square columns 

depending on  and  critical stresses are (Fig. 2): 

 

 *

*

_

_

6 ,

Eu

e HT J

cr square e

el lt

R R
R




 


 

  


 (5) 

 

where,  = a/t and  = L/t, while: a is denotes the 

median side of the square. 

The Tetmajer-Jasiński’s simplification was described 

in the paper (Murawski, 2008d). 

The next simplification which may be used in 

analysis of stability for squat columns to the determining 

of critical force in practical designing is the one 

formulated by (Ostenfeld, 1898).  

The simplification relies on replacement the Euler’s 

hyperbole by the Johnson-Ostenfeld’s parabola.  

For materials having the limit of plastic stress pl = Re
*: 

 
*       0.cr pl eR for       (6) 

 

The formula of Johnson-Ostenfeld’s parabola is as 

follows: 

 

 
*2

2*

2
,

4

J O e
cr e

R
R

E
 



   
 

 (7) 

 

where, E denotes the Young’s elastic modulus. 
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Fig. 1: Surface function T-J

cr_cylindr(,) based on the Tetmajer-Jasiński formula of the cylindrically-shaped columns made of steel 

R35 compressed by ball-and-socket joints. 
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Fig. 2: Surface function T-J

cr_square(,) based on the Tetmajer-Jasiński formula of the square-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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Fig. 3: Surface function J-O

cr_cylindr (,) based on the Johnson-Ostenfeld formula of the cylindrically-shaped columns made of steel 

R35 compressed by ball-and-socket joints 
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Fig. 4: Surface function J-O
cr_ square(,) based on the Johnson-Ostenfeld formula of the square-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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For semi-slender thin-walled cylindrical columns 

depending on  and  critical stresses are (Fig. 3): 
 

2*2
*

_ 2
2 ,

4

J O e
cr cylind e

R
R

E




 

  
    

   
 (8) 

 
For semi-slender thin-walled square columns 

depending on  and  critical stresses are (Fig. 4): 
 

2*2
*

_ 2
6 .

4

J O e
cr square e

R
R

E




 

  
    

   
 (9)  

 
The Johnson-Ostenfeld’s simplification was 

described in the paper (Murawski, 2008e). 

The loss stability theory of axially compressed semi-

slender columns in elastic-plastic states, based on the 

concept of the tangent modulus, was formulated by 

(Engesser, 1889; 1895; von Kármán, 1908; Kármán, 

1910; Shanley, 1947). According to the Engesser-

Kármán-Shanley’s hypothesis, the following two zones 

can be found in the critical cross-section of the axially 

compressed column in elastic-plastic state: 
 
 The squeezed zone, deformed plastically on the 

concave side of the neutral layer of the column and  

 The tensioned zone, deformed elastically on the 

convex side - Fig. 5a 
 

It was assumed, from the equilibrium of forces and 

moments in relation to the elastic line of the column 

before the loss of stability that the sum of forces due to 

the stresses as well as the sum of moments has to be 

equal to zero - Fig. 5b.  

In addition, the elastic zone was characterized with 

Young's modulus E and the plastic zone - with the so-

called tangent modulus Et, determined like Young's 

modulus from the graph stress strain , obtained during 

a standard tension test, but from the non-linear range. 

The Engesser-Kármán-Shanley’s theory was described 

in the papers and books (Murawski, 1998; 2002a; 2002b; 

2003; 2008a; 2011a; 2011b; 2011c; 2017; 2018). 

The formula for the Engesser-Kármán’s critical stress 

is like Euler’s but instead of the Young’s elastic modulus 

E was used Engesser-Kármán’s modulus EEK: 
 

2

.Engesser Karman

cr EKE





  
  
 

 (10) 

 
Shanley took advantage of this formula, replacing EEK 

directly by tangent modulus Et: 
 

2

.Engesser Shanaly

cr tE





  
  
 

 (11) 

 
But this formula does not give satisfactorily correct 

results, too. 

The determination of the course of the function Et() 

on the basis of this formula knowing the cr() function 

from experiments allows receiving the correct results in 

range of a population of examined specimens only.  

Later (Ylinen, 1956) used the approximation of the 

function Et = d/d= Et() with the equation: 
 

,e cr
t

e cr

R
E E

R c





 
  

  
 (12) 

 
Where: 

Re = The yield stress and  

c = Denotes dimensionless constant determined by 

experiment (c = 0.977 for steel, c = 0.875 for wood, 

c = 0 for concrete) 
 

The physical meaning of quadratic equation with 

respect to cr: 
 

2 Ylien
Ylien e cr
cr Ylien

e cr

R
E

R c

 


 

  
   
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 (13) 

 
has its root: 
 

2
2 2 2
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 (14) 

 
For the semi-slender thin-walled cylindrical column 

axially compressed by ball-and-socket joints the critical 

stress, according to Ylinen (Fig. 6) equals: 
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 (15)  
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 (16)  

 

The Ylinen’s theory was described in the paper 

(Murawski, 2008b). 

Březina (1966) used the function () according to 

the (Standard DIN 4114, 1953): 

 
2

4114 1 ,DIN x
t

e x

R
E E

R R

  
     

   

 (17) 

 

Where: 

Rx = The limit of proportional stress 

Re = Denotes the yield stress 
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and then the Engesser-Shanlay’s formula was changed to 

the form:  
 

2

1 .
Brzezina

Brzezina cr x
cr

e x

R
E

R R

 



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     

 (18) 

 

The root of this quadratic equation with respect to cr 

would be as follows: 
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 (19) 

 
For the semi-slender thin-walled cylindrical column 

axially compressed by ball-and-socket joints the critical 

stress, according to Březina is equal to (Fig. 8): 
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 (20) 

 

For the semi-slender thin-walled square column 

axially compressed by ball-and-socket joints the critical 

stress, according to Březina is equal to (Fig. 9): 
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 (21)  

 

The Březina’s hypothesis was described in the paper 

(Murawski, 2008c). 

 

Neutral layer 

Critical 
cross
section

P

P

   Central line



             
 (a) (b) 

 
Fig. 5: Axially compressed column (a) and its critical cross-section (b) at the moment of the stability loss, according to the Engesser-

Kármán-Shanley’s hypothesis; the Young’s modulus E, and tangent modulus Et during tension 
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Fig. 6: Surface function Ylinen

cr_cylindr(,) based on the Ylinen’s formula of the cylindrically-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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ball-and-socket joints 
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Fig. 8: Surface function Brzezina
cr_cylindr(,) based on the Březina’s formula of the cylindrically-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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Fig. 9: Surface function Brzezina
cr_ square(,) based on the Březina’s formula of the square-shaped columns made of steel R35 

compressed by ball-and-socket joints 

 

Pearson, (Bleich, 1952; Vol’mir, 1965) used in their 

research the combination of the tangent modulus Et and 

the modulus E: 

2

' .Pearson Bleich Vol mir

cr tE E





   
  
 

  (22) 
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Using the function () according to the (Standard 

DIN 4114, 1953), Equation (17), the root of this quadratic 

equation with respect to cr would be as follows: 
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 (23) 

 
For the semi-slender thin-walled cylindrical 

column axially compressed by ball-and-socket joints 

the critical stress, according to Pearson-Bleich-

Vol’mir is equal to (Fig. 10): 
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 (24) 

 
For the semi-slender thin-walled square column 

axially compressed by ball-and-socket joints the 

critical stress, according to Pearson-Bleich-Vol’mir’s 

is equal to (Fig. 11):  
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 (25) 

 
The secant modulus Es was used by (Stowell, 

1948; Bijlaard, 1949; Broszko, 1953; Gerard, 1957; 

Vol’mir, 1965): 
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cr sE
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

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  (26) 

 

The combination of the tangent modulus Et and the 

secant modulus Es used (Gerard, 1962): 

 

 
2

.Gerard

cr s tE E
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  
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 (27) 

 

Stowell (1948; Bijlaard, 1949) used the 

combination of the tangent modulus Et, a secant 

modulus Es and parameters: 

 
2

0.33 0.67 0.25 0.75 ,Stowell Bijlaard t
cr s

s

E
E

E







  
         

  (28) 

 

as well as Gerard and Becker (1957): 
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The combination of the tangent modulus Et, the 

secant modulus Es and Young’s modulus E used 

(Radhakrishnan, 1956): 
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cr
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E
E

E
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  (30) 

 
and (Seide et al., 1960): 

 
2

.Weingarten t
cr s

E
E

E
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
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  
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  (31) 

 

The formulas passed in these works give the 

ambiguous, i.e., a possibility of different results in 

dependence on received experimental values Et or Es. 

Therefore, applying these formulas wakes reservations. 

The determining the function Et() on the basis of a 

non-linear range of the () course obtained during the 

extension test of one normative specimen or as the 

standard like also wakes the reservations.  

Elastic-Plastic Stability of Semi-Slender Columns 

in Own Investigations 

The author did his own analysis of stability of thin-

walled columns (Murawski, 1998; 2002a; 2002b; 2003; 

2008a; 2008b; 2011a; 2011b; 2011c; 2017; 2018) 

In case of stability of columns in elastic states the 

author assumed that the loss of stability occurs already at 

minimum loads, whereas the position of the resultant 

neutral layer caused by the superposition of pure 

compression and bending of the elastic line of the 

column is changing. 

But for the loss of carrying capacity is responsible the 

position of a force line in relation to the critical 

transverse cross-section outline.  

If the force line goes throw the inside of the critical 

cross-section, the moments of inside forces in this 

section are in equilibrium.  

When the force line exits the critical cross-section 

outline, the equilibrium of the moments disappear and 

the column losses the carrying capabilities.  

In case of stability of columns in elastic-plastic states 

the author assumed, that the column loses the stability 

when the force line enters the plastic zone in the critical 

transverse cross-section. 

Approximated Theory of Technical Stability for 

Semi-Slender Columns in Elastic-Plastic States 

This theory can be also named as the modified 

Engesser-Kármán-Shanley’s theory.  
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Fig. 10: Surface function P-B-V

cr_cylindr(,) based on the Pearson-Bleich-Vol’mir’s formula of the cylindrically-shaped columns 

made of steel R35 compressed by ball-and-socket joints 
 

20
30

40
50

60
70

80
90

100
425

475
525

575
625

675
725

775

0

50

100

150

200

250

300

350


cr

 [
M

P
a

]

 L/t  a/t

 cr
P-B-V 

,

 
  

 































1
36

1
36

244

42

22

244

42
2

mir Vol’-Bleich-Pearson

E

RR

RRR
E

RR
RR

xe

xex
xe

xx

cr











 
 
Fig. 11: Surface function P-B-V

cr_square(,) based on the Pearson-Bleich-Vol’mir’s formula of the square-shaped columns made of 

steel R35 compressed by ball-and-socket joints 
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According to the assumption the state of stresses in 

the critical cross-section after the loss of stability and 

before the loss of carrying capacity results from the 

superposition of pure compression and bending. The 

modified Engesser-Kármán-Shanley’s theory was 

described in the works (Murawski, 2008a; 2011a; 2011b; 

2011c; 2017; 2018). 

The formulas for the Engesser-Kármán critical stress 

are as follows:  
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 
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       

 

 (32)  

 

The Re
* is attained for 0, i.e., cr( = 0) = Re

* and 

RH
Eu

 is attained for el_lt, i.e., cr(el_lt) = RH
Eu.  

If in the range (0, el_lt) instead of RH
Eu we use the 

linear function H
KM(), then similarly the compressive  

stress cr
KM from the range (0, el_lt) is attained for the 

slenderness ratio as follows: 
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hence, after taking into account Equation (32):  
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If RH
Eu = H(el_lt) = cr(el_lt) denotes the elasticity 

limit used in Euler’s formula to determine el_lt: 
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then after inserting Equation (31) in Equation (32):  
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After the insertion of Euler’s formula, we obtain: 

 

 

2 2

*

_ _ _

1 ,KM

H H

el lt el lt el lt

E R E
  

 
  

      
         

            

 (38)  
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 (39) 

 

or: 
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 (41) 

 

In case of the semi-slender thin-walled cylindrical 

column compressed by ball-and-socket joints the elastic 

stress is as follows (Fig. 12): 
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 (42)  

 

and the critical stress (Fig. 13):  
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 (43) 

 

In case of the axially compressed semi-slender thin-

walled square column by ball-and-socket joints the 

elastic stress is as follows (Fig. 14): 

 

 

2 2

*

_

_ _ _

6
1 ,KM

H square H

el lt el lt el lt

E R E
  

 
   

      
         

            

 (44) 

 

and the critical stress (Fig. 15):  
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 (45) 

where,  = R/t, = a/t and  = L/t.  

The graphs for the columns made of steel R35 were 

determined from the author’s studies (Murawski, 1998; 

2003; 2004). 

The following values were assumed by the author: 

for steel R35 (Standards: PN-73/H-74240, PN-75/H-

84019): Re
* = 346.54 MPa, RH

*
 = 268.24 MPa, RH

Eu
 = 

156 MPa, E = 166 614 MPa, el_lt = 102.6 (Fig. 16).  

In order to compare the results of the author’s 

approximated hypothesis with others simplifications and 

hypothesis-their results in the case of columns made of 

the steel R35 were determined and shown as the graphs 

of the functions cr() in Figs. 17 to 21. 
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Fig. 12: Surface function cr

KM
cylindr(,) based on the author’s formula of the cylindrically-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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Fig. 13: Surface function H

KM
cylindr(,) based on the author’s formula of the cylindrically-shaped columns made of steel R35 

compressed by ball-and-socket joints 
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Fig. 14: Surface function cr

KM
square(,) based on the author’s formula of the square -shaped columns made of steel R35 

compressed by ball-and-socket joints 
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Fig. 15: Surface function H

KM
square (,) based on the author’s formula of the square-shaped columns made of steel R35 compressed 

by ball-and-socket joints 
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Fig. 16: Functions cr() for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis 
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Fig. 17: Functions cr() for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis and to the 

Tetmajer-Jasiński’s simplification 
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Fig. 18: Functions cr() for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis and to the 

Johnson-Ostenfeld’s simplification 
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Fig. 19: Functions cr()  for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis and to the 

Ylinen’s hypothesis 
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Fig. 20: Functions cr() for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis and to 

Březina’s hypothesis 
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Fig. 21: Functions cr() for columns made of steel R35 according to the modified Engesser-Kármán-Shanley’s hypothesis and to 

Pearson (1950)-Bleich (1952)-Vol’mir (1965)’s  hypothesis 
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Discussion 

The Tetmajer-Jasiński’s surface Equation (4) and (5) 

shown in Figs. 1 and 2 are linearly decreasing with the  

ratio and strongly non-linearly with second degree 

increasing with  or  ratio. 

The Johnson-Ostenfeld’s surface Equation (8) and (9) 

shown in Figs. 3 and 4 are slightly non-linearly 

decreasing with the  ratio and strongly non-linearly 

with second degree increasing with  or  ratio. 

The Ylinen’s surface Equation (15) and (16) shown 

in Figs. 6 and 7 are strong non-linear with the third 

degree, with 2 points of changing of inclinations, of 

decreasing with the  ratio and very strong hyperbolic 

non-linearly increasing with  or  ratio, so big part of 

the surface function is almost flat. 

The Březina’s surface Equation (20) and (21) shown 

in Figs. 8 and 9 are almost linearly decreasing with the  

ratio and strongly non-linearly with second degree of 

increasing with  or  ratio.  

The Pearson-Bleich-Vol’mir’s surface Equation 

(24) and (25) shown in Figs. 10 and 11 are slightly 

non-linear with the second degree of decreasing with 

the  ratio and hyperbolic non-linear of increasing 

with  or  ratio, so a part of the surface function is 

almost flat. 

The author’s surface Equation (42) and (44) for the 

limiting elastic stress shown in Figs. 13 and 15 are linear 

decreasing with the  ratio and slightly non-linear 

increasing with  or  ratio, so a big part of the surface 

function is almost flat. 

The author’s surface Equation (43) and (45) for the 

critical compressive stress shown in Figs. 12 and 14 are 

linearly decreasing with the  ratio and non-linearly with 

second degree of increasing with  or  ratio, so a part of 

the surface function is almost flat. 

In order to compare the results of the author’s 

approximated hypothesis, i.e., the modified Engesser-

Kármán-Shanley’s hypothesis with others simplifications 

and hypotheses-their results in the case of columns made 

of the steel R35 were determined and shown for 

adequately ranges for elastic-plastic states as the graphs of 

the functions cr() in Figs. 16 to 21. Because these 

functions are currently various then above differences 

absolute and relative are not connected.  

In Fig. 16 is shown how are determined the 

parameters Re
* - as the limit of the plastic stress Re but for 

 = , RH
*- as the RH but for  =  and RH

Eu - as the limit 

of the elastic stress RH but for  = el_lt. 

The maximal departures the results of those 

simplifications and hypotheses from the author’s 

approximated hypothesis are presented in Table 1. 

Table 1: Maximal differences  [%] between results obtained 

according to other simplifications and hypotheses and 

the author’s approximated hypothesis 
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 

 





 
 

 35: /

_ max

max

%

100%

St Ylinen KM

cr

KM Ylinen

cr cr

KM

cr

 



 

 
  
 

 

-65.10 -25.25 

 

 

35:

_ max

max

St Brezina KM

cr

KM Brezina

cr cr

MPa

 

 

 
 

 35: /

_ max

max

%

100%

St Brezina KM

cr

KM Brezina

cr cr

KM

cr

 



 

 
  
 

 

-15.76 -5.45  

   

 

35:

_ max

max

P B V KMSt

cr

KM P B V

cr cr

MPa

 

  

 



 
 

   /35:

_ max

max

%

100%

P B V KMSt

cr

KM P B V

cr cr

KM

cr

 



 

 



 
  
 

 

-40.40 -14.58  

 

The biggest maximal differences are between the 

Ylinen’s and approximated author’s hypotheses: -65,10 

MPa and -25,25%. The least maximal differences are 

between the Březina’s simplification and author’s 

approximated hypothesis: -15,76 MPa and -5,45%. 

Conclusion 

The surface functions for the Tetmajer-Jasiński’s 

straight line, Johnson-Ostenfeld’s parabola, Ylinen’s, 

Březina’s and Pearson-Bleich-Vol’mir’s theories 

depending on  = R/t and  = a/t and  = L/t, for the same 

ranges of arguments-adequately for cylindrical and square 

columns made of steel R35, shown in Figs. 1 to 4 and 

Figs. 6 to 11, give a possibility to compare them in 

relation to the modified Engesser-Kármán-Shanley’s 

theory with the surface functions shown in Figs. 12 to 15. 

The review and analysis of those theories shows that 

those theories are rather pure, simplified and give 

limited, inaccurate results, e.g., the surface functions for 

the cylindrically-shaped and square-shaped columns are 

the same for adequately ranges for elastic-plastic states.  

For the Johnson-Ostenfeld’s, Ylinen’s, Březina’s and 

Pearson-Bleich-Vol’mir’s theories the surface functions 

are almost flat in the most part-the blue parts of the 

surface functions in Figs. 3 and 4 and Figs. 6 to 11.  
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The formulas given by those theories don’t allow to 

present them depending on the transverse cross-section 

area A and slenderness ratio together. That proves that 

those theories are simplified and limited. 

They don’t allow to present the functions for the 

elastic limit stress, for what allows the approximated 

theory of technical stability for columns in elastic-plastic 

states, however this theory also gives big flat parts of the 

surface functions as well as doesn’t allow to present it 

depending on the transverse cross-section area A and 

slenderness ratio together. 

They don’t allow to present the functions for the shell 

stresses and strains. 

The theories basing on the tangent modulus Et and/or 

secant modulus Es can use the (Standard DIN 4114, 

1953), but this standard is rather simplified and can be 

unsuitable for every case. 

The comparison of results obtained from the 

simplifications and theories related to the modified 

Engesser-Kármán-Shanley’s hypothesis gives departures 

between -25.25 and +10.39%. Naturally, those 

simplifications and theories should be also compared to 

experimental findings. The results of so comparison are 

presented in the paper (Murawski, 2020b). 
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