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Abstract: Geotechnical engineering is the art of making decisions in the 
presence of uncertainty, where real world problems are treated and this is 

associated with uncertainties arising from various sources. The sources of 

uncertainty may be divided into uncertainties of nature and uncertainties of 

mind. The uncertainties of nature are due to variation of encountered 

phenomena, e.g., the shear strength in a soil. This is reduced by obtaining 

more reliable data via the results of tests. The uncertainties of mind are 

related to the modelling, which may be reduced by change of philosophy. 

Here, the data is considered as variable instead of random so is reliable. 

Based on logical reasoning and concise mathematics a reliable formulation, 

i.e., the change of state philosophy which is digested in the Persian curve is 

proposed. The Persian curve method is free of uncertainties of mind. In the 

presented paper the Persian curve method is used to manage the variable 
geotechnical data in a form that can easily be used in practical geotechnical 

work for decision making and design. 
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Introduction 

Geotechnical engineering is the art of making 

decisions in the presence of uncertainty. Within this 

field, real world problems are treated and this is 

associated with uncertainties arising from various 

sources. The sources of uncertainty may be divided into 
uncertainties of nature (aleatory) and uncertainties of 

mind (epistemic). The uncertainties of nature are due to 

variation of encountered phenomena, e.g., the shear 

strength in a soil. This is reduced by obtaining more 

reliable data via the results of tests. Some of the pioneers 

in the field of geotechnical engineering, such as Karl 

Terzaghi, Arthur Casagrande and Ralph Peck, 

recognized that it was not always feasible to take fully 

into account all the uncertainties involved in design. 

Instead they proposed a structured methodology where 

the evaluation of the probability conditions of quantities 

involved in design were supplemented by evaluations 
based on possible unfavorable deviations from these 

conditions. They called it the experimental or observational 

method (Peck, 1969; Christian, 2004; Ang and Tang, 

2007). Application of probabilistic methods in 

geotechnical engineering has been increased in recent 

years. According to (El-Ramly et al., 2002), probabilistic 

slope stability analysis was one of the first application of 

reliability-based design in geotechnical engineering and 

dated back to the 1970. Since then, a lot of work has 

been put into the uncertainty in soil properties (Lumb, 

1974; Orchant et al., 1987; Phoon and Kulhawy, 1999) 

and the development of probabilistic calculation 
algorithms (Griffiths and Fenton, 2004; Xu and Low, 

2006). Some published papers on the subject of 

characterization of the geotechnical properties and the 

stability analysis are in (Zhang et al., 2004; 2009; 2010; 

Cao and Wang, 2013; Ching et al., 2010; Wu, 2011). 

Variability and uncertainty associated with natural variation 

of properties and inaccuracy caused by lack of information 

on parameters of models led the field of geotechnical 

engineering to be an active area of study in the last decade 

(Müller, 2013; Li, 2014; Johari et al., 2015; Johari and 

Khodaparast, 2015; Allahverdizadeh Sheykhloo, 2015; 

Maknoon, 2016; Wolebo, 2016; Das, 2016; Ersöz, 2017; 
Hernvall, 2017; Kanwar, 2018; Singh, 2018; 

Aladejare and Wang, 2018; Johari and Mousavi, 2019; 

Obregon and Mitri, 2019; Masoudian et al., 2019; 

Johari et al., 2020; Tran, 2019). A close insight into the 

aforementioned and other literature, led the authors to 

detect a need for further research and remedy. Toward 

the aim an intensive and extensive research is conducted 

in the past 20+ years. The result of investigations of 

Author’s Research Team (ART) concluded in a new 
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perspective of the knowledge, the so called Change of 

State Philosophy (CSP) which is digested in the Persian 

Curve (PC), where a phenomenon is defined as change in 

the system (Ranjbaran et al., 2008; Ranjbaran, 2010; 

Ranjbaran et al., 2011; Ranjbaran, 2012a; 2012b; 
Ranjbaran, 2013; Ranjbaran and Rousta, 2013a; 2013b; 

Ranjbaran et al., 2013a; 2013b; Ranjbaran and 

Ranjbaran, 2014; Ranjbaran, 2014; 2015; 2016; 

Ranjbaran and Ranjbaran, 2016; 2017a; 2017b; 2017c; 

2018; Ranjbaran et al., 2020a-d; Amirian and Ranjbaran, 

2020; Baharvand and Ranjbaran, 2020a; 2020b). In the 

conventional methods of analysis, the system change 

information is indirectly obtained via solution of 

governing equations. Consequently, the conventional 

methods contain epistemic (lack of knowledge) 

uncertainty. On the other hand, in the (CSP) the system 
change information is directly obtained by logical 

reasoning, concise mathematics and reliable data. 

Consequently the (CSP) is free of epistemic uncertainty. 

Moreover the (CSP) is a free size method, i.e., it is 

independent of the size, material, coordinate system and 

etc. Consequently, it is applicable to all natural-

phenomena, in different branches of human knowledge. 

In the presented paper the (CSP) is applied in analysis of 

variable data in geotechnical engineering.  

Basic Formulation  

The traditional formulation in the academic universe 

is commenced with construction of the governing 

differential Eq. (1), in which (ψ) is the displacement 

function, (n) is the core order of derivative and (ψ(n)) is 

the core derivative: 

 

  
 

... 0
n

n
    (1) 

 

Next step is solution of the governing equation. The 

procedures for solution of the governing equation are 

divided into the stiffness method and the flexibility method. 

In the stiffness method, the working parameter is selected as 

a decreasing system parameter called the stiffness. The 

governing equation for the stiffness method is in Equation 

(2) and shown in Fig. 1. On the other hand an increasing 

parameter called the flexibility, which is inverse of the 

stiffness, is the working parameter of the flexibility method. 

The governing equation for the flexibility method is in Eq. 

(3) and shown in Fig. 2. Equations (2) and (3) are symbolic 

equations in place of conventional differential and integral 

equations in the literature. In these equations, (kSS = kS-kC) is 

the survived stiffness, (fSF = fS + fC) is the survived 

flexibility, (kS) is the system-stiffness, (kC) is the change-

stiffness, (fS) is the system-flexibility, (fC) is the change-

flexibility, (F) is force and (ψ) is displacement: 

SS SSk F F k    (2) 

 

1SF SFf F F f   (3) 

 

 

CSSS kkk   

Ck  

Sk  

 

 
Fig. 1: Spring-model for stiffness method 

 

 
Sf  

CSSF fff   

Cf  

 

 
Fig. 2: Spring-model for flexibility method 



Abdolrasoul Ranjbaran et al. / International Journal of Structural Glass and Advanced Materials Research 2020, Volume 4: 276.293 

DOI: 10.3844/sgamrsp.2020.276.293 

 

278 

It is known that, in conventional methods, indirect 

computation of system parameters contains epistemic 

uncertainty. The main aim of the presented paper is to 

remove this uncertainty.  

Toward the aim, the (F) and (ψ) are omitted from Eq. 
(2) and (3) as in Eq. (4), in the first step: 

 

1SS SFk f  (4) 

 

In the next step, in view of Eq. (4) the product of 

equation (kSS = 1/fSF) for the changed state and equation 

(1/kS = fS) for the intact state is expressed in Eq. (5), as 

shown in Fig. 3: 

 

1 1 SS S
SS S

SF S S SF

k f
k f

f k k f

     
         

     
 (5)  

 

 Equation (5) is rearranged to obtain the (kSS) and 

(kC), in terms of the other parameters, in Eq. (6): 

 

S S S
SS S R S

S C S C

C S C
C S R S

S C S C

f k f
k k S k

f f f f

f k f
k k F k

f f f f


    

 


    

 

 (6) 

 

 in which the phenomenon functions (collection of 

the failure function (FR) and the survive function (SR) are 

defined in Eq. (7): 

 

   0,1 0,1C S
R R

S C S C

f f
F S

f f f f
   

 
 (7) 

 

Definition of the dimensionless phenomenon 

functions in a unit interval, introduced a down to earth 

method for human knowledge. Therefore, the proposed 

method is free of the common problems in the 
conventional methods, such as singularity, instability and 

etc. Consequently the authors decided to complete the 

work. In order to complete the formulation, the unknown 

parameters in Eq. (8) should be explicitly determined: 

 

? ?C Ck f   (8)  

 

The investigation for explicit definition of the 

aforementioned functions is continued in the next 

paragraph via definition and construction of the so 

called state functions. 

 Development of a functional (FR and SR) in terms of 

two functions (fS and fC) is not possible. Therefore, the 
phenomenon functions are customized for (kS = fS = 1) to 

define the destination function (D) and the origin 

function (O), which are collectively called the state 

functions and the state ratio (R) in Eq. (9). This is an 

artifice to define functions (D and O) in terms of only 

one variable (R): 

 

R R CF D S O f R    (9)  

 

Consequently the (D) and (O) are defined in terms of 

the (R) in Eq. (10): 

 

1

1 1

R D
D O R

R R R
  

 
 (10) 

 

The state functions may be considered as solution 

of the boundary value problems in Eq. (11), in which 

(min) and (max) denote minimum and maximum 

respectively: 
 

min 0 @ 0 max 1 @ 0

max 1 @ min 0 @

R R
D O

R R

   
 

     
 (11)  

 

The (R) with one end in the infinity, as shown in 

Fig. 4, is not a good working parameter. Moreover, this 

ratio is itself a function, so it is not wise to be used as an 

independent variable. Therefor, the state ratio (ξ  [0, 

1]) with a zero value (ξ = 0) at the origin and a unit value 

(ξ = 1) at the destination is defined. In terms of the state 

variable, the boundary value problems in Eq. (11) is 

rewritten in Eq. (12): 

 

min 0 @ 0 max 1 @ 0

max 1 @ 1 min 0 @ 1
D O

     
 

     
 (12) 

 

Investigation for construction of solution for 

boundary value problems in Eq. (12), led the authors to 
use their experience in structural mechanics, finite element 

method, mathematics and extensive research (Ranjbaran et 

al., 2020b). The results are the state functions defined in Eq. 

(13) and shown in Fig. 5: 

 

  

  

2 3

2 3

0.25 2 1 6 4 cos

0.25 2 1 6 4 cos

D

O

       

       
 (13)  

 

Equation (13) is an average of polynomial and 

trigonometric functions as defined in Eq. (14): 

 

   

   

2 3

2 3

0.25 0 6 4 0.25 1 cos

0.25 2 6 4 0.25 1 cos

D

O

       

       
 (14) 

 

The authors invite the readers from all over the world 

to propose new (better in some sense) state functions in 

place of Eq. (13). 
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Fig. 3: Change of state philosophy basic equation 
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Fig. 4: State Functions versus the state ratio 
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Fig. 5: State functions versus the state variable 
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Now attention is paid to construction of the 

phenomenon functions. Via the definition of the (kSS) and 

the (fSF) and the crack compliance (fC) in fracture mechanics 

(Anderson, 2005), the authors detected a fact that, the (fC) is 

directly proportional to the (kS)! This detection is called “the 
Persian Principle of Change (PPC)”. In view of this 

principle the (fC) is defined in Eq. (15): 

 

1C S C S C Sf R k f k R f k D O    (15)  

 

 Note that Eq. (15) is an alternative for the whole 

fracture mechanics (Anderson, 2005)! Insertion of Eq. (15) 

into Eq. (7) concluded in the general definition for the 

phenomenon functions in Eq. (16): 
 

2

2 2

S
R R

S S

k D O
F S

O k D O k D
 

 
 (16) 

 

The (kS) is not explicitly known so it is not a feasible 

working parameter. Toward better definition, Eq. (16) is 

rewritten in Eq. (17) in terms of the positive control 

parameters (aM) and (b) (Ranjbaran et al., 2020b). The 

flexibility for translation and rotation of phenomenon 

functions in the (11) working box, which let the experts 

to enforce their will, is provided by selection of two 

control parameters from calibration of reliable data: 

 
b b

M
R Rb b b b

M M

a D O
F S

O a D O a D
 

 
 (17) 

 

To this end the proposed formulation is mathematically 

in abstract form. Consequently, it is a universal formulation, 

in a sense that it is independent of geometry, coordinates, 

material properties, size and changing agent. Therefore it is 

equally applies to all natural phenomena. 

Persian Curve 

As observed, the proposed formulation is derived based 

on logical reasoning and concise mathematics. Moreover, 

there was no need for construction of differential and 

integral equations, which is the paramount basis of the 

conventional methods of analysis in human knowledge. 

Consequently, the proposed formulation is reliable and free 

of epistemic uncertainty, because it is based on obvious and 

certain basis, for example the definition of flexibility as 

inverse of stiffness in Eq. (4).  

For a given phenomenon, the lifetime is truncated at a 

workable interval (λ [λO, λT]) and is mapped onto the state 

variable as in Eq. (18), where (λO) is the origin point (O) 

and (λT) is the end point of lifetime respectively: 

 

       1 O T O T T                 (18) 

In terms of the lifetime, the (FR) is renamed as 

Persian-Fasa-curve (PF), the (SR) is renamed as 

Persian-Shiraz-curve (PS) and the two collectively 

called the Persian curve (PC), defined in Eq. (19), in 

which (PO) is the ordinate of the origin point (O) and 

(PT) is the ordinate of the truncated (end) point (T). 

Note that insertion of (PO = 1 and PT = 0) and (PO = 0 

and PT = 1) into Eq. (19) conclude into (FR) and (SR) 

respectively as in Eq. (17): 

 

   b b b b

C O T M MP P O P a D O a D    (19) 

 

In comply with the vocabulary of human knowledge, 

the (PS) is the unified equation for capacity and 

reliability representing a decreasing data and the (PF) is 

the unified equation for the probability and fragility 

representing an increasing data. Moreover, in comply 

with the common practice in stochastic analysis the 

(probability) density distribution, here called the Persian-

Zahedan-curve (PZ), is defined as the derivative of 

phenomenon functions with respect to the (ξ), in Eq. (20), 

in which (FR
(1), SR

(1) and D(1)) are derivatives of (FR, SR 

and D) with respect to (ξ) respectively. In spite of the 

paramount role of the density distribution in stochastic 

theory, it has no role in the (CSP) and it is used only for 

comparison with the conventional one: 

 

   
 

 

11 1
1 1

2

b b

M
R Z R Z Z

b b

M

ba D O D
F P S P P

O a D

 

    


 (20) 

 

Toward determination of control parameters, Eq. (19) 

is rearranged as in Eq. (21): 

 

     
b

M C O T CD O a P P P P    (21) 

 

In view of Eq. (21) and noting that at (M) (DM/OM = 1) 

then (aM), (aN) and (b), for a reliable decreasing data as 

shown in Fig. 6 or for a reliable increasing data as shown in 

Fig. 7 are obtained in terms of the Key Points coordinates 

(KPS), in Eq. (22), see Appendix: 

 

 

 
N MN O M O

N M

T N T M N N

Log a aP P P P
a a b

P P P P Log D O

 
  

 
 (22) 

 

The Key Points (KPS) are defined as the Origin point 

(O), the Middle point (M), the end point (T) and the Next 

point (N) (a point between the other three), in Eq. (23) 

and shown in Figs. 6 and 7 for decreasing and increasing 

data respectively: 

 

       0.0, , 0.5, 1.0,O N N M TO P N P M P T P  (23) 
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Fig. 6: Key points on Persian-Shiraz-curve 
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Fig. 7: Key points on Persian-Fasa-curve 

 

The (O) and (T) points are used for mapping in Eq. 

(18) and (N) and (M) are used for (aM) and (b) 

computation in Eq. (22). The (PC) solves quite nonlinear 

problems without any iteration but with simple and 

accurate artifice. Note that the (PC), similar to a natural 

phenomenon, is independent of, any coordinate system 

and any man made principle.  

Persian Curve Interpretation 

For the case of lifetime as value of real world data (as 

geotechnical data in this study), the Persian Curves are 

interpreted as follows. The value of (PS) for a data point 

(λA) denotes the ratio of number of data (nS) greater than 

(λA) over the total number of data (nt). It is a weight for 

data in the upper region. Similarly, the value of (PF) for 
a data point (λA) denotes the ratio of number of data (nF) 

less than (λA) over the total number of data (nt). It is a 

weight for data in the lower region. 

For the case of lifetime as a parameter of the system 

(such as relative slenderness ratio of structures), the 

Persian Curves are interpreted as follows. The value of 

(PS) for a data point (λA) denotes efficiency of the 

system, while the system-deficiency is denoted by the 
value of (PF).  

Analysis of Reliable Data 

The (CSP) has great similarity with the probability 

theory. This is taken for granted to increase the 

reliability of analysis. The (PF) is equivalent to the 

Cumulative Distribution Function (CDF) and the (PZ) is 

equivalent to the Probability Density Function (PDF). In 
probability theory the (PDF) plays the paramount role. 
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Different probability distributions are classified according 

to their (PDF’s). Determination of the (CDF) from the 

(PDF) is a difficult process. Moreover limited number of 

(PDFs) adds to the uncertainty of the results and 

necessitates the development of new (PDF) for new 
problems in all branches of human knowledge. That is not 

the case for the (CSP), where the (PF) as a pseudo (CDF) is 

directly determined from the reliable data. So it is simple, 

cheap and accurate. There is no need for the (PDF) at all. It 

is added for completeness and comparison with the results 

of the others in the literature.  

Within the field of geotechnical engineering, real 

world problems are treated and this is inevitably 

associated with uncertainties arising from various sources. 

The sources of uncertainty may be related to uncertainties 

of nature and uncertainties of mind, often referred to 
aleatory and epistemic uncertainties respectively. In view 

of the logical reasoning leading to the Persian curve, the 

uncertainty of mind is omitted. There remained the 

uncertainty of nature which is gradually reduced by 

providing more reliable data. Therefore in this study the 

data is treated as varying instead of uncertain. Analysis of 

data is conducted in the following steps. Step I: Divide the 

data between its minimum and maximum, into several 

intervals (preferably more than 10). Step II: Determine 

the frequencies (histogram) for the selected intervals (use 

the frequency function in Excel software). Step III: 

Cumulate the frequencies in Step II to obtain the 
cumulative data. Scale the data and cumulative data into 

unit intervals. Step IV: Select the key points as in Eq. (23) 

and compute the control parameters as in Eq. (22). Step V: 

Compute the Persian curves from Eq. (19) and the density 

curve from Eq. (20). 

In the following examples varying reliable data are 

managed in a form to prepare for reduction of 

uncertainties in the art of decision making in practical 

geotechnical engineering. 

Example 1 

Analyze the warehouse live load data (λ) by (Baker, 

1990; Kanwar, 2018). 

Solution 

The measured values of live load on the warehouse 

floor is shown in Table 1a. The corresponding density 

and the cumulative distribution (cum) are computed and 

shown in Table 1b and is denoted by (WLL). The Key 

Points (KPF) is shown in Eq. (24). The control 
parameters are shown in Eq. (25). The Persian-Fasa-

curve (PFR), the Persian-Shiraz-curve (PSR) and the 

Persian-Zahedan-curve (PZR) are shown in Fig. 8: 
 

       0.0, 0.0 0.25, 0.33 0.5, 0.77 1.0,1.0O N M T  (24) 

 

238 220 3.347 1.138C Mcum P a b       (25) 

The same data is analyzed by (Kanwar, 2018). The 

proposed formulation is exact and is more than hundred 

times simpler than that of the (Kanwar, 2018). 

Example 2 

The data of basalt rock uniaxial compressive 

strength parameter (S) are taken from (Cui et al., 

2017) and shown in Table 2a. Analyze the data by the 

Persian curve method. 

Solution 

For the given data, the frequencies and cumulative 

data (cum) (BASALT) computed, as in Table 2b and 
shown in Fig. 9. Then the key points are selected as in 

Eq. (26). The selected key points are used to calculate the 

control parameters in Eq. (27). Finally, the Persian-Fasa-

curve (PFR), the Persian-Shiraz-curve (PSR) and the 

Persian-Zahedan-curve (PZR) are shown in Fig. 9: 
 

       0.0, 0.0 0.25, 0.15 0.50, 0.58 1.0,1.0O N M T  (26)  

 

150 50 220 1.38 1.19C MS cum P a b      (27)  

 

Example 3 

The Nipigon River landslide occurred on the morning 

of April 23rd 1990, at the north area of the town of 
Nipigon, Ontario, Canada. The results of 121 corrected 

un-drained shear strength (V) at the Nipigon river slope 

is shown in Table 3a (Kanwar, 2018). Analyze the data 

by the Persian curve method. 

Solution 

For the given data, the frequencies and the 

cumulative data (cum) (NIPIG) are computed, as in 

Table 3b and shown in Fig. 10. Then the key points are 

selected as in Eq. (28). The selected key points are used 

for determination of the control parameters as expressed 
in Eq. (29). Finally the Persian-Fasa-curve (PFR), the 

Persian-Shiraz-curve (PSR) and the Persian-Zahedan-

curve (PZR) are shown in Fig. 10. Simplicity and 

accuracy of the presented formulation for the case of the 

Nipigon river slope is a good index for verification of the 

proposed work: 
 

       0.0, 0.0 0.25, 0.38 0.5, 0.83 1.0,1.0O N M T  (28) 

 

140 122 4.88 1.20C MV cum P a b      (29) 

 

Example 4 

The uniaxial compressive strength (S) of rock from 

an open-pit slope of China (Deng et al., 2004), is 

shown in Table 4a. Analyze the data by the Persian 
curve method. 
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Fig. 8: Analysis of warehouse live loads 
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Fig. 9: Persian analysis of Basalt rock uniaxial strength data. 
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Fig. 10: Persian analysis of shear strength on Nipigon river slope 
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Table 1a: Data of 220 sample values of warehouse live load (Psf) 

Data 220 sample warehouse live load 

0 7.8 36.2 60.6 64.0 64.2 79.2 88.4 38.0 72.7 
72.2 72.6 74.4 21.8 17.1 48.5 16.8 105.9 57.2 75.7 

225.7 42.5 59.8 41.7 39.9 55.5 67.2 122.8 45.2 62.9 

55.1 55.9 87.7 59.2 63.1 58.8 67.7 90.4 43.3 55.2 

36.6 26.0 90.5 23.0 43.5 52.1 102.1 71.7 4.1 37.3 

129.4 66.4 138.7 127.9 90.9 46.9 197.5 151.1 157.3 197.0 

134.6 73.4 80.9 53.3 80.1 62.9 150.8 102.2 6.4 45.4 

121.0 106.2 94.4 139.6 152.5 70.2 111.8 174.1 85.4 83.0 

178.8 30.2 44.1 157.0 105.3 87.0 50.1 198.0 86.7 64.6 

78.6 37.0 70.7 83.0 179.7 180.2 60.6 212.4 72.2 86.0 

95.4 24.1 87.3 80.6 74.8 72.4 131.1 116.1 53.6 99.1 

40.2 23.4 8.4 42.6 43.4 27.4 63.8 18.4 16.2 58.7 

92.2 49.8 50.9 116.4 122.9 132.3 105.2 160.3 28.7 46.8 

99.5 106.9 55.9 136.8 110.4 123.5 92.4 160.9 45.4 96.3 

88.5 48.4 62.3 71.3 133.2 92.1 111.7 67.9 53.1 39.7 

93.2 55.0 80.8 143.5 122.3 184.2 150.0 57.6 6.8 53.3 

96.1 54.8 63.0 228.3 139.3 59.1 112.1 50.9 158.6 139.1 

213.7 65.7 90.3 198.4 97.5 155.1 163.4 155.3 229.5 75.0 

137.6 62.5 156.5 154.1 134.3 81.6 194.4 155.1 89.3 73.4 

79.8 68.7 85.6 141.6 100.7 106.0 131.1 157.4 80.2 65.0 

78.5 118.2 126.4 33.8 124.6 78.9 146.0 100.3 97.8 75.3 
24.8 55.6 135.6 56.3 66.9 72.2 105.4 98.9 101.7 58.2 

 
Table 1b: Frequencies and cumulative data for warehouse live load 

Frequencies and cumulative data for 220 sample warehouse live load 

 = WL/237.5 WLL = CUM/220 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. WL  n CUM WLL 

1 0.0 0.0000 1 1 0.0045 

2 12.5 0.0526 5 6 0.0273 

3 37.5 0.1579 18 24 0.1091 

4 62.5 0.2631 48 72 0.3272 

5 87.5 0.3684 52 124 0.5636 

6 112.5 0.4737 37 161 0.7318 

7 137.5 0.5789 20 181 0.8227 

8 162.5 0.6842 23 204 0.9272 

9 187.5 0.7895 6 210 0.9545 

10 212.5 0.8947 6 216 0.9818 

11 237.5 1.0000 4 220 1.0000 

 
Table 2a: Data of 48-basalt rock uniaxial compressive strength (MPa) 

Uniaxial compressive strength of 48-OP basalt rock 
------------------------------------------------------------------------------------------------------------------------------------------------ 
No. SU No. SU No. SU No. SU No. SU 

1 61.2 11 106.4 21 125.8 31 140.7 41 162.6 

2 63.2 12 109.7 22 128.9 32 142.2 42 165.3 

3 66.6 13 112.0 23 129.2 33 142.6 43 165.5 

4 86.5 14 112.0 24 129.6 34 144.4 44 167.9 

5 90.8 15 114.6 25 129.6 35 147.5 45 174.7 

6 97.7 16 114.9 26 131.8 36 148.9 46 177.2 

7 98.0 17 115.0 27 136.4 37 150.9 47 191.7 

8 99.7 18 118.7 28 137.4 38 152.5 48 191.9 

9 102.4 19 119.7 29 139.0 39 152.9 49 
10 104.3 20 123.2 30 140.0 40 159.1 50 
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Table 2b: Frequencies and cumulative data for 48-basalt strength (MPa) 

Frequencies and cumulative data for 48-basalt strength 

 = (SU-50)/ PBAS = CUM/48 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. SU  n CUM PBAS 

1 50 0.0000 0 0 0.0.00 
2 70 0.1333 3 3 0.0625 
3 90 0.2667 5 8 0.1667 
4 110 0.4000 11 19 0.3958 
5 130 0.5333 11 30 0.6250 
6 150 0.6667 10 40 0.8333 

7 170 0.8000 6 46 0.9583 
8 190 0.9333 2 48 1.0000 
9 200 1.0000 0 48 1.0000 
10 

 
Table 3a: Corrected undrained shear strength values at the Nipigon river slope (121) 

Undrained shear strength (kPa) at the Nipigon river slope 

60.8 56.05 52.25 41.80 80.75 18.05 23.75 32.30 
61.75 56.05 52.25 41.75 38.95 18.05 25.65 33.25 
61.75 57.00 52.25 44.65 39.90 19.00 26.60 33.25 
62.7 57.00 52.20 44.65 39.90 19.00 26.60 33.25 
63.65 57.00 53.20 81.70 39.90 19.00 27.55 35.15 
64.6 57.00 53.20 84.55 39.90 20.90 28.50 36.10 
64.6 57.95 54.15 85.50 39.90 20.90 29.45 37.05 
64.6 57.95 45.60 87.40 39.90 22.80 33.25 37.05 
64.6 57.95 46.55 95.00 40.85 22.80 33.25 114.00 

65.55 58.90 47.50 95.00 40.85 23.75 38.00 
68.4 54.15 49.40 95.00 41.80 33.25 38.00 
65.55 55.10 49.40 96.90 29.45 33.25 38.00 
68.4 55.10 51.30 74.10 30.40 34.20 38.00 
68.4 68.40 104.50 67.45 32.30 35.15 38.00 
66.5 71.25 71.25 77.90 77.90 80.75 38.00 
66.5 66.50 66.50 67.45 68.40 68.40 104.50 

 
Table 3b: Frequencies and cumulative data for shear strength at the Nipigon river slope (kPa) 

Frequencies and cumulative data for shear strength (kPa) 

 = SC/140 NIPI = CUM/122  
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
C01 C02 C03 C04 C05 C06 

No. SU  n CUM NIPI 

1 0 0.0000 0 0 0.0000 
2 10 0.0714 1 1 0.0082 
3 30 0.2143 18 19 0.1557 
4 50 0.3571 41 60 0.4918 

5 70 0.5000 44 104 0.8525 
6 90 0.6428 11 115 0.9426 
7 110 0.7857 6 121 0.9918 
8 130 0.9286 1 122 1.0000 
9 140 1.0000 0 122 1.0000 
10 
11 

 

Solution 

For the given data, the frequencies and the cumulative 
data (cum) (CST) are computed as in Table 4b and shown 
in Fig. 11. The key points are selected as in Eq. (30). The 
selected key points are used for determination of the 

control parameters in Eq. (31). Then the Persian-Fasa-
curve (PFR), the Persian-Shiraz-curve (PSR) and the 
Persian-Zahedan-curve (PZR) are shown in Fig. 11. In 
order to see the excellence of the proposed work, the 
interested reader may refer to Example 1 in chapter 3 of 
(Singh, 2018) master thesis: 
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       0.0, 0.0 0.25, 0.15 0.5, 0.63 1.0,1.00O N M T  (30) 

 
9 25 50 1.70 1.32C MS cum P a b      (31) 

 
Example 5 

The measurement from the field Vane tests (V) 
(Singh, 2018), is casted in Table 5a. Analyze the data by 

the Persian curve method. 

Solution 

The frequencies and the cumulative data (cum) (VST) 

for the vane shear data are computed as in Table 5b and 

shown in Fig. 12. Then the key points are selected as in 

Eq. (32). The selected key points are used for 

determination of the control parameters in Eq. (33). 

Finally the Persian-Fasa-curve (PFR), the Persian-Shiraz-
curve (PSR) and the Persian-Zahedan-curve (PZR) are 

shown in Fig. 12. In order to see the beauty and excellence 

of the proposed work, the interested reader may refer to 

section 3.3.2 of (Singh, 2018) master thesis: 
 

       0.0, 0.0 0.25, 0.40 0.5, 0.80 1.0,1.0O N M T  (32) 

 
80 30 41 4.0 1.04C MV cum P a b      (33) 

 

Example 6 

The cohesion data of fine grained alluvial soils at the 

Paglia River alluvial plain in Central Italy (Di Matteo et al., 

2013) is casted in Table 6a. Analyze the data by the Persian 

curve method.  

Solution 

The frequencies and the cumulative data (cum) (CPT) 

for cohesion (C) are computed as in Table 6b and shown 

in Fig. 13. Then the key points are selected as in 

Equation (34). The selected key points are used for 

determination of the control parameters in Equation (35). 

At this stage the Persian-Fasa-curve (PFR), the Persian-

Shiraz-curve (PSR) and the Persian-Zahedan-curve 

(PZR) are shown in Fig. 13. In order to see the 

excellence of the proposed work, the interested reader 
may refer to Example 2 in chapter 3 of (Singh, 2018) 

master thesis: 

 

       0.0, 0.0 0.25, 0.13 0.5, 0.43 1.0,1.0O N M T  (34) 

 

18 10 50 0.75 0.94C MC cum P a b      (35) 

 

Example 7 

The shear angle data of fine grained alluvial soils 

at the Paglia River alluvial plain in Central Italy,     

(Di Matteo et al., 2013), is casted in Table 7a. Analyze 

the data by the Persian curve method.  

Solution 

The frequencies and the cumulative data (cum) 

(PHIT) for shear angle () are computed as in Table 7b 

and shown in Fig. 14. Then the key points are selected as 

in Equation (36). The selected key points are used for 

determination of the control parameters in Eq. (37). Then 
the Persian-Fasa-curve (PFR), the Persian-Shiraz-curve 

(PSR) and the Persian-Zahedan-curve (PZR) are shown 

in Fig. 14. In order to see the excellence of the proposed 

work, the interested reader may refer to Example 2 in 

chapter 3 of (Singh, 2018), master thesis: 

 

       0.0, 0.0 0.25, 0.30 0.5, 0.70 1.0,1.0O N M T  (36) 

 

4.5 25 57 2.33 0.98C Mcum P a b      (37)
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Fig. 11: Analysis of data for an open pit slope of China 
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Fig. 12: Persian analysis for vane shear strength data 
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Fig. 13: Persian analysis for cohesion data 
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Fig. 14: Persian analysis of shear angle data 
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Table 4a: Data of uniaxial compressive strength (MPa), (Deng et al., 2004; Singh, 2018) 

Uniaxial compressive strength (MPa) 

29 27.4 26.8 27.1 30.7 27.3 26.6 28.9 

30.4 29.9 29.3 28.3 28.3 28.2 28.2 

31.7 28.8 27.3 32.4 31.5 29.5 25.7 

26 29.1 28.0 29.6 26.4 31.3 28.5 

28.2 30.2 29.8 30.9 31.1 30.6 28.7 

27.9 25.2 28.0 30.6 27.8 29.4 31.3 

26.5 28.4 30.1 29.2 29.6 31.0 29.4 

 
Table 4b: Frequencies and cumulative data for uniaxial compressive strength (MPa) 

Frequencies and cumulative data for uniaxial compressive strength (MPa)  

 = (SC = 25)/9 CST = CUM/50 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. SC   n CUM CST 

1 25 0.0000 0 0 0.00 

2 26 0.1111 3 3 0.06 

3 27 0.2222 3 6 0.12 

4 28 0.3333 9 15 0.30 

5 29 0.4444 11 26 0.52 

6 30 0.5555 10 36 0.72 

7 31 0.6666 8 44 0.88 

8 32 0.7777 5 49 0.98 

9 33 0.8888 1 50 1.00 

10 34 1.0000 0 50 1.00 

11 

 
Table 5a: Vane shear strength data (kPa), (Singh, 2018) 

Vane shear strength data (kPa) 

55 57 42 72 70 68 102 

35 52 40 35 47 40 100 

47 69 40 44 75 42 55 

39 68 62 59 82 35 42 

38 52 60 72 69 42 32 

56 35 70 85 72 71 

 
Table 5b: Frequencies and cumulative data for vane shear 

Frequencies and cumulative data for vane shear 

 = (VS = 30)/80 VST = CUM/41 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. VS   n CUM CST 

1 30 0.0 0 0 0.0 

2 40 0.125 10 10 0.2439 

3 50 0.250 7 17 0.4146 

4 60 0.375 8 25 0.6097 

5 70 0.500 7 32 0.7805 

6 80 0.625 5 37 0.9024 

7 90 0.750 2 39 0.9512 

8 100 0.875 1 40 0.9756 

9 110 1.00 1 41 1.00 

10      

11 
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Table 6a: Data for cohesion factor C' (Di Matteo et al., 2013; Singh, 2018) 

Cohesion factor C' 

23.56 21.38 17.75 22.33 15.73 21.63 20.18 24.64 
22.82 10.69 21.63 19.27 23.56 14.94 19.11 19.56 
18.9 15.02 20.97 11.23 21.17 15.52 24.43 17.00 
21.75 24.51 15.07 14.61 24.97 23.98 19.03 20.72 
12.05 27.03 14.20 22.29 15.27 13.29 20.76 
25.05 19.44 20.80 23.40 22.45 27.03 17.91 
22.29 16.67 22.82 16.30 24.31 19.52 10.12 

16.51 10.53 25.96 17.50 14.28 23.45 25.05 

 
Table 6b: Frequencies and Cumulative data for cohesion factor C' 

Frequencies and cumulative data for cohesion factor C'  

 = (CP-10)/18 CPT = CUM/50 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. CP  n CUM CPT 

1 10 0.0.00 0 0 0.000 

2 12 0.1111 3 3 0.066 

3 14 0.2222 3 6 0.100 

4 16 0.3333 9 15 0.250 

5 18 0.4444 11 26 0.366 

6 20 0.5555 10 36 0.483 

7 22 0.6666 8 44 0.650 

8 24 0.7777 5 49 0.833 

9 26 0.8888 1 50 0.967 

10 28 1.0000 0 50 1.000 

11 

 

Table 7a: Data for shear angle ' (Di Matteo et al., 2013; Singh, 2018) 

25.99 26.51 27.51 25.60 28.09 25.9 27.50 25.60 
26.41 28.79 25.79 26.78 26.41 28.29 26.50 26.40 

27.3 28.53 26.60 29.61 26.41 28.00 25.29 28.21 
26.81 25.60 28.10 28.80 25.39 26.09 26.91 27.10 
29.6 25.40 29.00 25.48 28.61 28.50 26.69 
25.08 28.20 26.89 26.20 26.81 25.20 27.30 
25.48 26.79 26.41 27.20 25.39 26.40 29.30 
27.61 28.90 25.80 26.59 29.11 25.99 25.08 

 

Table 7b: Frequencies and cumulative data for shear angle ' 

Frequencies and cumulative data for friction angle ' 

 = (PHI-25)/4.5 PHIT = CUM/57 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

C01 C02 C03 C04 C05 C06 

No. PHI  n CUM PHIT 

1 25.0 0.0000 0 0 0.0.00 

2 25.5 0.1111 9 9 0.1578 

3 26.0 0.2222 8 17 0.2982 

4 26.5 0.3333 9 26 0.4561 

5 27.0 0.4444 10 36 0.6316 

6 27.5 0.5555 5 41 0.7193 

7 28.0 0.6666 3 44 0.7719 

8 28.5 0.7777 6 50 0.8771 

9 29.0 0.8888 6 56 0.9824 

10 29.5 1.0000 1 57 1.000 

11 
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Conclusion 

 Geotechnical engineering is the art of making 

decisions, where the real world problems are treated 

and this is associated with uncertainties arising from 

various sources. The sources of uncertainty may be 

divided into uncertainties of nature (aleatory) and 

uncertainties of mind (epistemic). The uncertainty of 

nature is due to variation of encountered phenomena, 

e.g., the soil properties as shear strength. The 

uncertainties of mind are related to the modelling and 

may be reduced by change of philosophy. A close 

insight into the open literature, led the authors to 

detect a need for further research and remedy. Toward 

the aim an intensive and extensive research is 

conducted in the past 20+ years. The result of 

investigations of Author’s Research Team (ART) 

concluded in a new perspective of the knowledge, the 

so called Change of State Philosophy (CSP) which is 

digested in the Persian Curve (PC), where a 

phenomenon is defined as change in the system. In the 

conventional methods of analysis, the system change 

information is indirectly obtained via solution of 

governing equations. Consequently, the conventional 

methods contain epistemic (lack of knowledge) 

uncertainty. On the other hand, in the (CSP) the 

system change information is directly obtained by 

logical reasoning, concise mathematics and reliable 

data. Consequently the (CSP) is free of epistemic 

uncertainty. Moreover the (CSP) is a free size method, 

i.e., it is independent of the size, material, coordinate 

system and etc. Consequently it is applicable to all 

natural phenomena, in different branches of human 

knowledge. In the presented paper the (CSP) is 

applied in analysis of variable data in geotechnical 

engineering. Via application of the (PC) to seven set 

of reliable data the validity of the work is verified. 
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Appendix 

Determination of Control Parameters 

Close insight into Equation (13) and Equation (19) 

concluded into the selection of the middle point (M) as an 

important key point due to the property in Equation (38): 

 

0.5 0.5M M M MD O D O    (38) 

 

Substitution of Equation (38) into Equation (19) 

concluded into a simple definition for the (aM) in 

Equation (39): 

 

 
b b

O M T M M M O
M Mb b

M M M T M

P O P a D P P
P a

O a D P P

 
  

 
 (39) 

 

Moreover the control parameter (b) is determined by 

substitution of Equation (39) and coordinates of the next 

key point (N) into Equation (19), as in Equation (40): 

 

 

 

 

b
b b

O N T M N N N O
N b b

N M N N T N M

N MN O
N

T N N N

P O P a D D P P
P

O a D O P P a

Log a aP P
a b

P P Log D O

  
   

  


  



 (40) 

 

Since the direction of (T to C) and (C to O), for a 

point (C) on both of the increasing and decreasing data, 

is the same, then the control parameters (aM and b) are 

always positive. 
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D: Destination function 

E: Initial modulus 
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fS: System flexibility 

fC: Change flexibility 
FS: Dimensioned flexibility 

fSF: Survived flexibility 

FR: Failure function 

(FR and SR): Phenomenon functions 
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FW: Weibull cumulative distribution function 
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kS: System stiffness 
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LB: Lower bound 
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T: Lifetime termination (end) 

M: Middle point 
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O: Origin (start) point 

O: Origin function 

PC: Persian curve (s) 
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PN: Next point ordinate 

PM: Middle point ordinate 
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PFU: Unified Persian-failure function 

PSU: Unified Persian-survive function 

PZU: Unified Persian-distribution function 

PZ: Persian-distribution function 

PF: Persian-failure function 

PS: Persian-survive function 

PC = (PF and PS): Persian curves 

r: Effective radius of gyration 
R: State ratio 

SR: Survive function 

SF = (D and O): State functions 
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