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Abstract: Glass is being increasingly used as a structural material. Its 

favorable aesthetic qualities have made it popular with modern designers. 

Recently glass is used for major structural elements such as beams and 

columns in modern and innovative architectural applications. High 

slenderness ratios and brittle behavior in tension contribute to the 

complexity of stability and ultimate strength analysis of glass structures. 

Moreover the available design curves and methods of ultimate strength 

analysis of glass structure contain epistemic uncertainty, therefore are 

not reliable. In this study, based on logical reasoning, concise 

mathematics and reliable data, a reliable method called the change of 

state philosophy is developed and expressed in the Persian curve. The 

Persian curve is used for reliable analysis of glass structures. The 

validity of the work is verified via its sound basic formulation and 

comparison of the results with those of the others in the literature. 
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Introduction 

Glass is being increasingly used as a structural 

material in particular its favorable aesthetic qualities 

have made it popular with modern designers. The most 

recent developments have seen glass being used as major 

structural elements such as beams and columns. From 

the engineering viewpoint these new applications 

presents a series of design problems which need to be 

addressed before a coherent and safe design philosophy 

can be achieved. Porter (2011) used a fracture mechanics 

approach for remedy. Feldmann and Longosch (2010) 

focused on the results of buckling with monolithic 

sections of heat strengthened and tempered glass, giving 

buckling curves proposed by derivations and 

experiments. The buckling of laminated glass composite 

beams in compression is investigated in (Amadio and 

Bedon, 2011). They used a simple analytical model 

developed on the basis of Newmark’s theory of 

composite beams with deformable connections. Finally, 

simple design criteria have been proposed to prevent 

buckling failure. Ouwerkerk (2011) focused on further 

knowledge and understanding of the structural aspects 

specifically related to structural glass columns and, on 

the basis of these findings, to design glass column as 

structural element in a pavilion. An exploratory study to 

the design aspects of glass columns was performed by 

doing experiments. The load carrying behavior of in 

plane compress and in plane shear laminated glass 

elements was investigated by (Amadio and Bedon, 2012; 

2013) respectively. Bedon and Amadio (2015), proposed 

a Eurocode-based approach for buckling verification of 

glass columns and beams. Based on experimental and 

numerical results from the literature, buckling curves are 

proposed for laminated glass beams and columns 

composed of up to three glass layers. The stability of 

laminated glass beams and columns up to five layers, 

subjected to compressive load, mid-span loads, 

uniformly distributed loads, four-point bending and pure 

bending or torsion, was investigated by (Costa MSLM, 

2015). The shear buckling response and actual 

resistance of structural glass walls with non-ideal 

restraints has been assessed by means of extended 

finite element method in (Bedon and Amadio, 2017). 

Bedon and Amadio (2017), proposed and analytical 

formulation for the resistance verification of a structural 

element under ultimate state variable loads. The method 

is assessed toward three existing analytical formulations. 

Evaluation of lateral-torsional buckling resistance and 

actual behavior of the beams due to absence of standards 

for design of glass load-bearing structures is done by 

(Pešek and Melcher, 2018). Experimental results were 
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compared with lateral torsional buckling resistance 

calculated according to the buckling curve approach. 

Analysis and design of glass structural members is an 

active area of study in this days (Bedon and Amadio, 

2018; Bedon, 2019; Bedon et al., 2019; Koca, 2019; 

Santo et al., 2020). 

Current state of the art of the methods for analysis of 

structural glass members, is based on the so called Perry-

Robertson method, in which the ultimate strength is 

obtained via analysis of a member with initial lateral 

displacement. Selection of the shape and the value of initial 

displacement along with using the linear governing 

equation, introduced epistemic (lack of knowledge) 

uncertainty to the work. The epistemic uncertainty can only 

be removed by change of philosophy behind the work.  

The current authors research team detected the need for 

remedy and after extensive research (Ranjbaran et al., 2008; 

Ranjbaran, 2010; Ranjbaran et al., 2011; Ranjbaran, 

2012a-b; 2013; Ranjbaran and Rousta, 2013a-b; 

Ranjbaran et al., 2013a-b; Ranjbaran and Ranjbaran, 

2014; Ranjbaran, 2014; 2015; 2016; Ranjbaran and 

Ranjbaran, 2016; 2017a-c; 2018; Hosseini et al., 2018; 

Amirian and Ranjbaran, 2020; Baharvand and Ranjbaran, 

2020a-b; Ranjbaran et al., 2020a-d), in the last two decades, 

proposed the Change of State Philosophy (CSP) which 

expressed in the Persian Curves (PC) (Ranjbaran et al., 

2020a). The aim of the presented paper is to derive and 

validate the (PC) and then apply it for analysis of structural 

glass members as follows.  

Basic Formulation 

In this section, the basic formulation for the change 

of state philosophy via a sound logical basis, is 

developed. All parameters are managed to be non-

negative. The traditional formulations in the academic 

universe are divided into the stiffness method and the 

flexibility method. The stiffness method, is based on the 

change of a decreasing system parameter, called 

stiffness, as shown in Fig. 1. While the flexibility 

method makes use of flexibility (inverse of stiffness as 

an increasing parameter) as shown in Fig. 2. Near the 

end of the phenomenon, the stiffness become very small 

and the flexibility become very large and hence 

introduce uncertainty into the work. As shown in Fig. 3 

near (ξ = 1) the stiffness is small and the flexibility is 

big, so that the systems such as computers are not able to 

detect their value and fail. The governing equations for 

these two methods is expressed in Eq. (1) and (2), in 

which (kSS = kS-kC) is the survived-stiffness, (fSF = fS + fC) 

is the survived-flexibility, (kS) is the system-stiffness, (fS) 

is the system flexibility, (kC) is the change-stiffness, (fC) 

is the change-flexibility, (F) is the applied load and () 

is the resultant system displacement. In conventional 

methods the (kSS) and (fSF) and one of (F) or () are 

assumed to be known and the other is the result of 

analysis. The symbolic Eq. (1) and (2) are representative 

of all conventional differential and integral equations: 

 

/SS SSk F F k      (1) 

 

1SF SFf F F f   (2) 

 

1SS SFk f  (3) 

 

Computation of the parameters that are assumed to 

be known and the result of analysis introduce 

epistemic uncertainty into the work. This is the main 

shortcoming of all conventional methods of analysis 

in different branches of human knowledge. This 

shortcoming is removed, in the change of state 

philosophy (Ranjbaran et al., 2020a), as follows. The 

first step was deletion of (F) and (), from the 

conventional equations, as in Eq. (3). Then, in view of 

Eq. (3), the product of equalities (kSS = 1/fSF) for the 

changed state and (1/kS = fS) for the intact state, as shown 

in Fig. 3, is expressed in Equation (4): 
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Fig. 1: Spring-model for stiffness method 
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Fig. 2: Spring-model for flexibility method 
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Fig. 3: Change of state philosophy basic equation 

 

Equation (4) is rearranged to obtain the (kSS) and (kC), 

in terms of the other parameters, in Eq. (5): 

 

S S S
SS S R S

S C S C

C
C S SS S R S

S C

f k f
k k S k

f f f f

f
k k k k F k

f f


    

 

     


 (5) 

 

in which the phenomenon functions (collection of the 

failure function (FR) and the survive function (SR)) are 

defined in Eq. (6): 

 

   0 1 1 0C S
R R

S C S C

f f
F S

f f f f
   

 
 (6) 

 

Consideration of the fact that the dimensionless 

phenomenon functions are defined in a unit interval, 

introduces a down to earth method for human 

knowledge. Therefore the methods of analyzes based 

on these functions are free of common problems, such 

as singularity, instability and etc., that are available in 

the conventional methods in human knowledge. 

Consequently the authors decided to continue the 

investigation via looking for the correct and soft 

definition of the (fC) and other unknown functions.  

The proposed form of phenomenon functions in Eq. 

(6) are defined in terms of the (kC) and the (fC), which 

are unknown to this end. The investigation for explicit 

definition of these functions is continued in the next 

paragraph via definition and construction of the so 

called state functions. 

Development of functionals (SR and FR) in terms of 

two functions (fS and fC) is not possible. Then the 

phenomenon functions are customized for (kS = fS = 1) to 

define the destination function (D), the origin function 
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(O) (which are collectively called the state functions) and 

the state Ratio (R) in Eq. (7). This is an artifice to define 

functions (D&O) in terms of only one variable (R): 

 

 
R R CF D S O f R    (7) 

 

Consequently the (D&O) are defined in terms of the 

(R) in Equation (8): 

 

1

1 1

R D
D O R

R R O
  

 
 (8) 

 

The state functions may be considered as the solution 

of the boundary value problems as expressed in Equation 

(9) and shown in Fig. 4, where (min) denotes minimum 

and (max) denotes maximum: 

 

min 0 @ 0 max 1 @ 0

max 1 @ min 0 @

R R
D O

R R

    
  

      
 (9) 

 

The state ratio, with the far end in the infinity (Fig. 4), 

is not a good working parameter. Moreover, this ratio is 

itself a function, so it is not wise to be used as an 

independent variable. Therefore, the state variable [0 1] 

with a zero value ( = 0) at the origin and a unit value ( 

= 1) at the destination is defined. In term of the state 

variable, the boundary value problems in Eq. (9) is 

rewritten as in Eq. (10): 

 

min 0 @ 0 max 1 @ 0

max 1 @ 1 min 0 @ 1
D O

      
  

      
 (10) 

Investigation for construction of solution for 

boundary value problems in Eq. (10), led the authors 

to make use of their experience in structural 

mechanics, finite element method, mathematics and 

their extensive research. The results are the state 

functions as defined in Eq. (11) and shown in Fig. 5 

(Ranjbaran et al., 2020a): 

 

 

 

2 3

2 3

0.25 2 1 6 4 cos

0.25 2 1 6 4 cos

D

O

       

       
 (11) 

 

Equation (11) is an average of polynomial and 

trigonometric functions as defined in Eq. (12): 

 

   

   

2 3

2 3

0.25 0 6 4 0.25 1 cos

0.25 2 6 4 0.25 1 cos

D

O

       

       
 (12) 

 

The authors invite the readers from all over the 

world to propose new functions for the state functions 

and report to them. The authors cordially appreciates 

their efforts.  

Via the definition of the survived stiffness (kSS) and 

the survived flexibility (fSF) and study of the equations 

for computation of crack compliance in fracture 

mechanics where cracking is considered as the change 

(Anderson, 2005), the authors detected a fact that, the 

(fC) is directly proportional to the (kS)! This detection is 

called “the Persian Principle of Change (PPC)”. In view 

of this principle the (fC) is defined in Eq. (13): 

 

1C S C S C Sf R k f k R f k D O      (13) 

 

0

0.25

0.5

0.75

1

0 1 2 3 4 5

SF

R

O D

 

 
Fig. 4: State functions versus the state ratio 
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Fig. 5: State functions versus the state variable 

 

Note that Eq. (13) is an alternative for the whole 

fracture mechanics. Substitution of Eq. (13) into Eq. (6) 

concluded in the general definition for the phenomenon 

functions in Eq. (14): 

 
2

2 2

S
R R

S S

k D O
F S

O k D O k D
 

 
 (14) 

 

The (kS) is not explicitly known and so it is not a 

feasible working parameter. Therefore Equation (14) 

is rewritten in a unified form as in Eq. (15), in terms 

of the positive control parameters (aM) and (b) 

(Ranjbaran et al., 2020a). The control parameters are to 

be determined from calibration of reliable data: 

 
b b

M
R Rb b b b

M M

a D O
F S

O a D O a D
 

 
 (15) 

 

To this end the proposed formulation is 

mathematically in an abstract form, so it is a universal 

one in the sense that it is independent of geometrical and 

material properties and the changing agent. Therefore, it 

applies to all natural phenomena!  

Persian Curves  

As demonstrated in previous sections, the proposed 

formulation, were derived based on logical reasoning 

and concise mathematical logics. There was no need for 

construction and solution of differential and/or integral 

equations, which is the paramount basis of the 

conventional methods of analysis in human knowledge. 

Therefore the proposed formulation is free of epistemic 

uncertainty, because it is based on obvious and certain 

basis, for example the definition of flexibility as inverse 

of stiffness in Eq. (3). 

For a given phenomenon, the lifetime is truncated at 

a workable interval ([o T]) and is mapped onto the 

state variable in Eq. (16), where (o) is the origin point 

(O) and (T) is the end point (T) of the lifetime: 

 

       1 O T O T O                 (16) 

 

As functions of the lifetime, the (FR) is renamed as 

Persian-Fasa-curve (PF) and the (SR) is renamed as 

Persian-Shiraz-curve (PS) and the two collectively 

called the Persian-curves (PC). In comply with 

vocabulary of human knowledge, the (PS) is the 

unified equation for the capacity and reliability and 

the (PF) is the unified equation for the probability and 

fragility. The reliable (capacity and reliability) and the 

reliable (probability and fragility) data are managed in 

decreasing and increasing order respectively. For a 

reliable data, (PS) for increasing data and (PF) for 

decreasing data, is defined as the Persian-curves (PC) 

in Eq. (17), in which (PO) is the ordinate of the start 

point (O) and (PT) is the ordinate of the end point (T). 

Note that the points (O) and (T) are the necessary and 

sufficient points for construction of Eq. (16) and (17). 

Note that insertion of (PO = 1 and PT = 0) and (PO = 0 

and PT = 1) into Eq. (17) conclude into (FR) and (SR) 

respectively as in Eq. (15): 

 

   b b b b

C O T M MP P O P a D O a D    (17) 
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Moreover, in comply with the common practice in 

stochastic analysis the (probability) density 

distribution, here called the Persian-Zahedan-curve 

(PZ), is defined as the derivative of the phenomenon 

functions with respect to the state variable (), in Eq. 

(18), in which       1 1 1

R RF S and D  are the derivatives of 

(FR, SR and D) with respect to the () respectively. 

Note that, in spite of the paramount role of the 

probability density in conventional probability theory, 

in the (CSP) it has no permanent role and is only used 

for comparison with the conventional one: 

 

   
 

 

11 1
1 1

2

b b

M
R Z R Z Z

b b

M

ba D O D
F P S P P

O a D

 

    


 (18) 

 

For a reliable decreasing data as shown in Fig. 6 and 

for a reliable increasing data as shown in Fig. 7, the 

positive control parameters (aM) and (b) are obtained, in 

terms of the coordinates of the Key-Points (KPS), in Eq. 

(19), see the Appendix: 

 

 

 
N MN O M O

N M

T N T M N N

Log a aP P P P
a a b

P P P P Log D O

 
  

 
 (19) 

 

The Key Points (KPS) are defined as the origin point 

(O), the middle point (M), the end point (T) and the next 

point (N) (a point between the other three), defined in 

Eq. (20) and shown in Figs. 6 and 7, for decreasing data 

and increasing data respectively: 

   

   

0.00, ,

0.50, 1.00,

O N N

M T

O P N P

M P T P


 (20) 

 

The (O) and (T) points are used for mapping in Eq. (16) 

and (N) and (M) are used for determination of (aM) and (b) 

in Eq. (19). Finally, via logical reasoning, a unified equation 

for capacity (design) and fragility (assessment) curve is 

proposed as follows. Extensive research of the author’s 

team (Ranjbaran et al., 2020a) concluded into the fact that 

the Persian curve for complete failure is defined in Eq. (21) 

(We looked for reliable capacity data in different codes, 

theses, dissertations, papers and reports (Ranjbaran et al., 

2020a). Analysis of these data shown that the values of (aM 

= 2 and b = 1) satisfied all requirements. Then substitution 

of the (aM = 2 and b = 1) into Eq. (17) and (18) concluded in 

Eq. (21)), where (PSU) is unified capacity, (PFU) is unified 

fragility and (PZU) is unified density. As shown, fragility is 

equal to 1 min capacity and vice versa. Moreover the 

horizontal axis, which is the Peak Ground Acceleration 

(PGA) as a measure index (IM  [0, 3]) in fragility curve is 

replaced by the relative slenderness 

    2/ 0,3yL r F E    in capacity analysis, in which 

(L) is effective length, (r) is radius of gyration, (Fy) is yield 

limit and (E) is working (elastic) modulus: 

 

 

 

1

2

1.8 1 0.8

1 1

2
2 1

1

FU SU

ZU M

D D
P P

D D

D
P a b

D


 

 

  


 (21)
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Fig. 6: Key points on Persian-shiraz-curve 
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Fig. 7: Key points on Persian-Fasa-curve 

 

Moreover the key point ordinate on unified Persian 

curves are defined in Eq. (22). The values recorded in 

Eq. (22) are the corresponding parameters for (O, N, 

M and T) which are computed from Eq. (16) and (21) 

for completeness: 

 

0.000 0.750 1.500 3.000

0.000 0.250 0.500 1.000

0.000 0.237 0.600 0.900

1.000 0.763 0.400 0.100

0.000 1.686 1.364 0.000

FU

SU

ZU

PC O N M T

P

P

P




 (22) 

 

Persian curve is managed as a bridge between the 

abstract mathematical concepts and the real world. 

Therefore it is applied for stability analysis of glass 

structures in the following section. Perhaps these are the 

most beautiful (simple, explicit and accurate) equations 

in the literature. Here is the end of the proposed logical 

formulation. Note that the question ((kC) and (fC) = ?) in 

Equation (4) is logically answered. 

Persian Curve Interpretation 

For the case of lifetime as value of real world data, 

the Persian Curves are interpreted as follows. The 

value of (PS) for a data point (λA) denotes the ratio of 

number of data (nS) greater than (λA) over the total 

number of data (nt). It is a weight for data in the upper 

region. Similarly, the value of (PF) for a data point 

(λA) denotes the ratio of number of data (nF) less than 

(λA) over the total number of data (nt). It is a weight 

for data in the lower region. 

 For the case of lifetime as a parameter of the 

system (such as relative slenderness ratio of 

structures), the Persian Curves are interpreted as 

follows. The value of (PS) for a data point (λA) denotes 

efficiency of the system, while the system-deficiency 

is denoted by the value of (PF).  

Persian-Curves for Glass Structure 

Capacity  

The proposed Persian-curves are used in load bearing 

capacity of glass structures as follows. In comply with 

the literature the verification of the work is done via 

comparison of the results with that of the others in the 

following examples. As explained in previous sections, 

the unified Persian curves from Equation (21) is to be 

used for determination of the ultimate strength of 

structural members. The capacity curve (PSU), the 

fragility curve (PFU) and the density distribution (PZU) 

for glass members are compared with the results of 

experiments in the following examples, where (ξ = λ/3). 

The data is scanned from the addressed references. 

Example 1  

Feldmann and Langosch (2010), conducted tests 

for buckling capacity of glass planes under axial 
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loading. The buckling loads of column specimens 

without eccentricity (FELD), is compared with the 

unified Persian curves in Fig. 8. Close agreement of 

the results verified the work. 

Example 2  

Amadio and Bedon (2012) focused on the load 

carrying behavior of in plane compressed laminated 

glass elements. They proposed some analytical 

formulation and verified their results via comparison 

of the results with the results of test selected from 

open literature. Their numerical and experimental 

results, for lateral torsional buckling of beams in 

compression (AMAD) is scanned and compared with 

the unified Persian curves in Fig. 9. Excellent 

agreement of the results is a flag for reliability of the 

unified Persian curves. 

Example 3 

Monolithic and laminated glass elements, are 

typically brittle and slender, thus frequently subjected 

to buckling phenomena. Amadio and Bedon (2013) 

focused on the load carrying behavior of 2-layyer and 

3-layyer simply supported laminated glass panels 

subjected to in-plane shear load. They verified their 

work via comparison with the numerical analysis and 

with the experimental results. The numerical and the 

test results (AMAD) for a 2-layyer laminated glass 

panel under in plane shear load is compared with the 

unified Persian curves in Fig. 10. The results expressed 

the validity of Persian curves for ultimate strength 

analysis of laminated panels under in plane shear load. 

Example 4  

 Structural glass is frequently used in modern 

buildings. The verification of load-carrying elements 

composed of traditional materials, analytical 

procedures and consolidated verification methods are 

available in standards, this is not the case for glass. A 

Eurocode based approach is proposed for the buckling 

verification of glass columns and beams in (Bedon and 

Amadio, 2015). They used numerical and 

experimental results for verification of their proposed 

method. The experimental and numerical results for 

flexural torsional buckling load for monolithic and 

laminated glass beams (BEDON) is compared with 

the unified Persian curves in Fig. 11. The feasibility 

of the unified Persian curve as a design curve for glass 

structure is apparent from this example. 

Example 5  

 Pešek and Melcher (2018), conducted experimental 

research of stability behavior of laminated structural 

glass beams. The purpose of their research was 

evaluation of lateral-torsional buckling resistance and 

actual behavior of beams due to absence of standards for 

design of glass load bearing structures. Their 

experimental results (PESEK) is compared with the 

unified Persian curves in Fig. 12. 

At a point in the loaded system the released Energy 

Density (ER) over the available Energy Density (EA) is 

equal to (R = D/O) (Ranjbaran et al., 2020c). Then at 

(ξ = 0.5) the (ER = EA) and the system become 

unstable. That is a reason for better agreement between 

the theory and experiments for (ξ ≥0.5). 

 

0

0.5

1

1.5

0 0.25 0.5 0.75 1

PC

ξ

FELD PSU PFU PZU

 

 

Fig. 8: Comparison of Persian curve and monolithic glass column test results 
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Fig. 9: Comparison of Persian curves with the numerical and experimental lateral torsional buckling of glass beams 
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Fig. 10: Comparison of Persian curve with experimental buckling load of laminated glass panels under in plane shear load 
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Fig. 11: Comparison of Persian curve with numerical and experimental flexural torsional buckling load of laminated glass beams 
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Fig. 12: Comparison of Persian curve with the experimental lateral torsional buckling load of laminated glass beams 

 

Conclusion 

The following conclusions are obtained from the 

present study. 

The author’s research team conducted an intensive 

research in the past two decades on analysis of natural 

phenomena. Via logical reasoning and concise 

mathematics they proposed the so called change of 

state philosophy which is expressed in the Persian 

curve. The Persian curve is then used to derive the 

universal capacity design curve for all structures. The 

proposed method is simple, explicit and exact and 

needs no nonlinear analysis. The validity of the work 

is verified via concise mathematics and comparison of 

the results with the results of experiments for stability 

analysis of structural glass members. 
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Appendix 

Determination of Control Parameters 

Close insight into Eq. (11) and (17) concluded into 

the selection of the middle point (M) as an important 

key point due to the property in Eq. (23): 

 

0.5 0.5M M M MD O D O    (23) 

 

Substitution of Eq. (23) into Eq. (17) concluded into 

a simple definition for the (aM) in Eq. (24): 

 

 
b b

O M T M M M O
M Mb b

M M M T M

P O P a D P P
P a

O a D P P

 
  

 
 (24) 

 

Moreover the control parameter (b) is determined by 

substitution of Eq. (24) and coordinates of the next key 

point (N) into Eq. (17), as in Eq. (25): 

 

 

 

 

b
b b

O N T M N N N O
N b b

N M N N T N M

N MN O
N

T N N N

P O P a D D P P
P

O a D O P P a

Log a aP P
a b

P P Log D O

  
   

  


  



 (25) 
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Since the direction of (T to C) and (C to O), for a 

point (C) on both of the increasing and decreasing data, 

is the same, then the control parameters (aM and b) are 

always positive. 
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List of Symbols 

aM: Control parameter at M  

aN: Control parameter at N  

A: Sign parameter 

A = -1: For decreasing data 

A = +1: For increasing data 

b: Control parameter (power) 

CSP: Change of State Philosophy 

D: Destination function 

E: Initial modulus  

F: Force 

Fy: Yield limit 

fS: System flexibility 

fC: Change flexibility 

FS: Dimensioned flexibility 

fSF: Survived flexibility 

FR: Failure function 

(FR and SR): Phenomenon functions 

fW: Weibull probability density function  

FW: Weibull cumulative distribution function 

: Recovery rate 

kS: System stiffness 

kC: Change stiffness 

kSS: Survived stiffness 

KPF: Key points on Failure curve 

KPS: Key points on Survive curve 

KPS: Key points  

L: Effective length 

LB: Lower bound 

: Lifetime parameter 

2

yFL

r E



 : Relative slenderness ratio 

O: Lifetime origin 
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T: Lifetime termination (end) 

M: Middle point 

N: Next point 

O: Origin (start) point 

O: Origin function 

PC: Persian curve (s) 

PO: Origin point ordinate 

PN: Next point ordinate 

PM: Middle point ordinate 

PT: End point ordinate 

PFU: Unified Persian-failure function 

PSU: Unified Persian-survive function 

PZU: Unified Persian-distribution function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PZ: Persian-Distribution function 

PF: Persian-Failure function 

PS: Persian-survive function 

PC = (PF and PS): Persian curves 

r: Effective radius of gyration 

R: State ratio 

SR: Survive function 

SF = (D and O): State functions 

T: Termination (end) point 

UB: Upper bound 

: State variable 

ψ: Displacement 


